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(1) (a) 0 ∈ Ā ⇐⇒ ∀U open set containing 0, U ∩ A ̸= ∅. But such U necessarily
contains the set U(xi),ϵ = {g ∈ X : |g(xi)| < ϵ ∀i = 1, ..., N} for some
(xi)

N
i=1 ∈ RN and ϵ > 0 by definition, and all the U(xi),ϵ (as (xi), ϵ vary) are

clearly open sets containing 0, so 0 ∈ Ā ⇐⇒ ∀N, ((xi), ϵ) ∈ RN × R+ we
have A ∩ U(xi),ϵ ̸= ∅, which is precisely the claim;

(b) for A the set of indicator functions, clearly 0 /∈ A as such a function vanishes
only on a finite set by definition, but 0 ∈ Ā as for any open neighborhood U
of 0 there are N and x1, ..., xN ∈ R such that {g : R −→ C : g(xi) = 0 ∀i =
1, , , ., N} ⊂ U , so f{xi} ∈ U with the notation of the exercise test.
For A the monic polynomials, clearly 0 ̸= A, as it is not a monic polynomial;
on the other hand, for any N ≥ 1 and (xi) ∈ RN we can find a real monic
polynomial p such that p(xi) = 0 as the relative interpolation problem always
has solution, so we are done by point a);

(c) Given a sequence (fn)n≥0, the set Z = {x ∈ R : ∃n ≥ 0 : fn(x) = 0} ⊂ R is
a countable union of finite sets, and therefore countable. But R is uncount-
able, so we can find x ∈ R where none of the fn vanishes, which proves their
sequence cannot converge to 0 in the pointwise convergence topology (as they
equal 1 when nonzero).

(2) (a) Let U ⊂ X be open and nonempty: we need to show that A ∩ U ̸= ∅. From
the definition of the pointwise convergence topology we know that U contains
some U(xi),ϵ(f) = {g ∈ X : |g(xi) − f(xi)| < ϵ ∀i = 1, ..., N} for some f ∈ X
and N ≥ 1, (xi) ∈ CN , ϵ > 0, so this is equivalent to showing that for
any such f,N and ((xi), ϵ) ∈ CN × R+ there is a polynomial p such that
|p(xi) − f(xi)| < ϵ ∀i = 1, ..., N , but it is well known that the interpolation
problem for N pairs in C2 has solution in polynomials of degree at most N−1,
so we are done by applying it to the pairs (xi, f(xi));

(b) if we had a polynomial p and a neighborhood U ⊃ p (for Tp) such that U ⊂ A
then we will have N points (xi) ∈ CN and an ϵ > 0 such that all functions
f : C −→ C satisfying |f(xi) − p(xi)| < ϵ ∀i = 1, ..., N are polynomials.
Clearly this is false as we can define f as matching p on the xis and equal to 0
everywhere else except for f(z) = 1 at some other z ̸= xi, so f is discontinuous
and hence not a polynomial;

(c) this follows easily from the definition: first of all, the collection {Vf,n : n ≥ 1}
clearly is countable for f fixed. Second, each open set U ⊃ f must contain
Vf,n for some n as by definition it contains {g ∈ X : |g(x)−f(x)| < ϵ ∀x ∈ C}
for some ϵ > 0 and there is n such that n−1 < ϵ. Finally, let us prove they
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are open: let g ∈ Vf,n. We know δ = δg = supC |g(x)− f(x)| < n−1, so by the
triangle inequality Vf,n contains {h ∈ X : |g(x) − h(x)| < n−1 − δ ∀x ∈ C}
and therefore is open;

(d) we just need to prove that for any polynomial p with 0 constant term there
is n ≥ 1 such that Vp,n does not contain other polynomials with 0 constant
term. But any such n works as otherwise we would have two polynomials p, q
whose difference is a bounded, and therefore constant, function by Liouville’s
Theorem (as polynomials are holomorphic), which means that p = q as they
agree for z = 0.

(3) (a) Cn is the zero-set of the polynomial 0, and the empty set is the zero-set
of the polynomial 1. Given two algebraic sets with associated families of
polynomials (fi)I , (gj)J , their union is the zero-set of the family (figj)I×J (as
(f · g)(zi) = 0 ⇐⇒ either f(zi) = 0 or g(zi) = 0; notice how this fails
for arbitrary unions because polynomials have finite degree). Given algebraic
sets (As)S with associated families of polynomials Fs = (f s

i )i∈Is (here s is an
index, not an exponent), their intersection is the algebraic set corresponding
to the family

⋃
s∈S Fs, by definition. So we proved that the complements of

the algebraic sets define a topology, the Zariski topology;

(b) we just need to show that the zero-sets of nonzero complex polynomials in one
variable are all the finite subsets of C. Surely they are finite as any nonzero
polynomial over a field has finitely many roots in it (equal to the degree over
an algebraic closure), and we can obtain any finite set S = {x1, ..., xn} since
the polynomial

∏n
i=1(x− xi) vanishes precisely on S;

(c) let A ⊂ Cm be closed, and hence algebraic, the zero-set of (say) (gj)J .
The preimage of A under a polynomial map f is {x ∈ Cn : gj(fi(x)) =
0 ∀i = 1, ..., n, ∀j ∈ J} and is therefore algebraic, relative to the family
(gj ◦ fi)J×{1,...,n}. So it is closed and hence f is continuous;

(d) it suffices (and is stronger) to show that the union of two algebraic sets C1, C2

different from Cn is never Cn (i.e. that any open set is dense). We show this
in Exercise 4;

(e) say A is not dense, i.e. there exists a proper algebraic set containing A.
Then there is a nonempty family (fi)I of nonzero polynomials vanishing on
A, and choosing any gives the desired claim. Notice how the two things are
equivalent: if such f exists, A is contained in a proper algebraic set, and
hence not dense;

(f) we argue by induction: for n = 1 the previous point tells us that if the claim
is false then there exists a nonzero polynomial vanishing over infinitely many
complex numbers, which is absurd. Assume now the thesis for n − 1: if
the claim is false, we get a polynomial f with coefficients in C[x1, ..., xn] =
C[x1, ..., xn−1][xn] vanishing on Zn, and hence, specializing xn = k, polyno-
mials fk ∈ C[x1, ..., xn−1] vanishing on Zn−1, which by the previous point is
absurd unless fk = 0. But if fk = 0 ∀k ∈ Z this means f = 0 (its coefficients
as a polynomial in xn have to be 0), which is absurd.
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(4) (a) If U is not dense, by definition there is a Zariski nonempty open V such that
U ∩ V = ∅, so their complements A1, A2 are proper closed set whose union is
Cn;

(b) take f ∈ I1 ∩ I2. Then f vanishes on A1 and A2 by definition, but we know
Cn = A1 ∪ A2 and so f vanishes on all of Cn, and therefore is 0 identically.

(c) working as the hint suggests, the product f = f1f2 is in I1∩ I2 but is nonzero
as both the fis are, which gives the desired contradiction.

(5) With the given identification, GLn(C) is the complement of the Zariski closed
set det(x1, ..., xn2) = 0, where det is the degree-n2 polynomial form that gives
the determinant of a matrix when computed on its entries, hence it is open and
therefore dense by the previous exercise (it contains the identity, so it is nonempty).
So if any polynomial function of the entries vanishes on GLn(C) that means that
GLn(C) ⊂ C(f) with C(f) = {(x1, ..., xn2) : f(xi) = 0} closed, but since GLn(C)

is dense we have C(f) = Cn2
and so f = 0 vanishes on all matrices.


