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(1) Let X be Hausdorff and x ∈ X. Moreover, let us refer to the intersection of the
text as Cx. Surely x ∈ Cx; for any y ̸= x we have open neighborhoods U, V of x, y
such that U ∩ V = ∅, so y /∈ U =⇒ y /∈ Cx =⇒ Cx = {x}.
Conversely, let Cx = {x} ∀x; this means that given x ̸= y ∈ X there is an open
neighborhood U of x such that y /∈ U, and hence U and the complement V of U
are open sets with x ∈ U, y ∈ V and U ∩V = ∅, so X is Hausdorff by arbitrariness
of x, y.

(2) (a) If F contained the neighborhood filters of x, y, x ̸= y then it would contain
two disjoint open sets U ∋ x, V ∋ y, as we are assured of their existence by
the Hausdorff property. But then it would contain their intersection ∅, which
is absurd;

(b) if X is not Hausdorff there are x ̸= y ∈ X such that V ∩W ̸= ∅ for all V,W
neighborhoods of x, y respectively; then the set F in the hint is a filter as
it does not contain the empty set by definition, is clearly closed by taking
supersets as it is defined by a superset condition, and also closed by finite
intersections as a finite intersection of neighborhoods is a neighborhood and
V ∩W is always nonempty; therefore, if it converges it has a unique limit.
But F clearly converges to both x, y as we can choose A = V ∩X = V and
A = X ∩W = W .

(3) (a) Clearly X×Y and ∅ are open as we can see by taking (V,W ) = (X, Y ) in one
case and (∅, ∅) in the other (for any (x, y)). The union condition is clearly
satisfied as if U =

⋃
I Ui and (x, y) ∈ U then there is i ∈ I such that (x, y) ∈ Ui

and we can take as (V,W ) those that work for Ui. Finally, if U =
⋂N

1 Ui and
(x, y) ∈ U , then (x, y) ∈ Ui ∀i = 1, ..., N and there are (Vi,Wi) open in X, Y

such that (x, y) ∈ Vi ×Wi ⊂ Ui, so setting V =
⋂N

1 Vi, W =
⋂N

1 Wi then
they are open in X, Y respectively and we have (x, y) ∈ V ×W ⊂ U ;

(b) the diagonal being closed is equivalent to its complement being open, i.e. that
for any (x, y) ∈ X × Y, x ̸= y, there are V,W ⊂ Y open with (x, y) ∈ V ×W
and V ×W ∩ ∆X = ∅ (it is clear that a basis for the product topology for
X × Y in general is given by {V ×W, V ⊂ X, W ⊂ Y open sets}). But
this is precisely equivalent to V,W being disjoint, and so to having for any
x ̸= y ∈ X disjoint open neighborhoods, which is precisely the Hausdorff
condition;

(c) consider the map ϕ : X×X −→ Y ×Y defined as ϕ(x, y) = (f(x), g(y)). Then
the first set is precisely ϕ−1(∆Y ). But ∆Y is closed by the previous point, and
ϕ is continuous as the preimage of an open set V ×W, V,W ⊂ Y of Y × Y
is the open f−1(V ) × g−1(W ) ⊂ X ×X (we can clearly verify continuity on
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a base), so ϕ−1(∆Y ) is closed. Similarly, the second set is once again just
the preimage of the diagonal in Y × Y under the map ψ : X −→ Y × Y ,
ψ(x) = (f(x), g(x)), which is continuous as the preimage of an open set
V ×W, V,W ⊂ Y is f−1(V )∩g−1(W ), which is open in X as the intersection
of open sets;

(d) by the above point we have that the set {x ∈ X : f(x) = g(x)} ⊂ X is closed,
so if it contains a dense subset it must be the whole X;

(e) consider the map ϕ : X × Y −→ Y × Y , ϕ(x, y) = (f(x), y). The graph of f
is just ϕ−1(∆Y ), and we are done as in c).

(4) (a) The set R \ {y} is an open neighborhood of x not containing y. X is not
Haudorff because every nonempty open set is dense (which is an even stronger
condition): the complement of an open set is finite, and so cannot contain a
nonempty open set;

(b) this graph is by definition just the diagonal ∆X , which is not closed by 3b);

(c) if f is constant then it is continuous as the preimage of any point is either
empty or the whole R. Suppose f is not constant: then the preimage of any
point is never the whole R, and hence must be a finite set by continuity as
the proper closed sets are precisely the finite sets (hence in particular points
are closed). This precisely means that the equation f(x) = y has only finitely
many solutions for any y ∈ R. Moreover, since the preimage of an union is
the union of the preimages, the condition of having finite fiber over any point
is also sufficient for continuity, as all closed sets are finite and hence the finite
union of their points: in particular, bijections are continuous;

(d) just take f as the identity and g as the identity on R \ {0, 1} and g(0) =
1, g(1) = 0. They are bijections by construction but f − g is identically 0
except at 0, 1, so it is not constant but the equation (f − g)(x) = 0 has
infinitely many solutions, and hence it is not continuous by c);

(e) in 3c), 3d) take X = Y as our X and f, g as above. Then the second subset
of 3c) is U = R \ {0, 1}, which is not closed as it is proper and infinite, and
the first one is U ×U ∪{0, 1}∪{1, 0} which again is proper in R2 (it does not
contain (0, 0)) but not finite; since all closed sets in X ×X are intersections
of finite unions of product of closed sets, they are finite (as closed proper sets
C ⊂ X are), and hence U × U ∪ {0, 1} ∪ {1, 0} is not closed.
Finally, our f and g agree on the dense subset X \ {0, 1} but are not equal,
which is a ”counterexample” to 3d).

(5) (a) Let {Ui}i∈I be a covering of A1∪A2; then {Ui∩Ak}i∈I is a covering of Ak for
k = 1, 2, so from each we can extract a finite subcovering, i.e. there are posi-
tive integersA,B and indeces i1, ..., iA, j1..., jB such that {Ui1∩A1, ..., UiA∩A1}
is a covering of A1 and {Uj1 ∩A2, ..., UjB ∩A2} is a covering of A2. From this
it follows that {Ui1 , ..., UiA , Uj1 , ..., UjB} is a covering of A1∪A2, which proves
it is a compact subset;
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(b) we saw that if X is Hausdorff, a compact subset is closed, so A1 ∩ A2 is
closed as the intersection of two closed sets. But then it is closed also as
a subspace of A1 with the subspace topology, so it is a closed subset of a
compact topological space, and hence itself compact.

(6) (a) We have (x0, y) /∈ Γf with the latter being closed in X × Y in virtue of 3e),
as Y is Hausdorff, so there is an open neighborhood W ⊂ X × Y of (x0, y)
such that W ∩ Γf = ∅. By definition of the product topology, for any point
(x, y) ∈ W , W contains the product of an open set of X containing x with
one of Y containing y, so choosing x = x0 (y was already arbitrary) we get
the desired claim;

(b) Y \V is closed in a compact space and hence is compact. For any y ∈ Y \V we
can find thanks to a) open sets Uy ∋ x0 and Vy ∋ y such that (Uy×Vy)∩Γf = ∅;
by definition the Vys form a covering of Y \ V and we can therefore extract
a finite subcovering {Vyi}Ni=1. But then we have that U = ∩N

i=1Uyi ⊂ X is an
open neighborhood of x0 such that U × (Y \ v) ∩ Γf = ∅ by construction;

(c) f is continuous iff for any open set of Y its preimage is open, i.e. if for any
(x0, y0) as in the hypotheses and any open neighborhood V of y0 there is an
open neighborhood U of x0 that maps inside V . This is precisely what point
b) says.

(7) The ”only if” part follows from the definition of compactness. For the other
direction, let U = (Ui)i∈I be an open covering of X and let us pick for any x ∈ X,
using the AC, an ix ∈ I such that Uix ∋ x. Then we have a subcollection (Uix)x∈X
which is still a covering as any x is contained in its respective open set. By
hypothesis there is a finite set S ⊂ X such that V = (Uix)x∈S is still a covering,
so indeed U admits a finite subcovering V .


