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(1) (a) We just need to show that its complement is open, i.e. that for any y ̸= x
there is a neighborhood V of y that does not contain x; this is directly implied
by the Hausdorff property (which is actually stronger);

(b) ∅ is open by definition, and X̃ = X ∪ {η} is open as X is open in itself;

any union
⋃

i∈I Ui of open sets in X̃ can be written, by discarding any empty
Uis which do not contribute, as

⋃
i∈I(Vi ∪ {η}) = {η} ∪

⋃
i∈I Vi with the Vis

open in X, and hence is open by definition; finally, any finite intersection of
open sets in the new topology is either empty (if one of them is) or equal to

{η} ∪
⋂N

1 Vi with the Vis open in X, and therefore open.

(c) if the claim were false, we would have a nonempty open set U ⊂ X̃ not

containing η, which contradicts the definition of the toplogy on X̃.

(2) (a) for any point y ∈ A we can take open neighborhoods Uy, Vy of x, y with
empty intersection. {Vy}A is an open covering of A, which is compact as
a closed subspace in a compact space, so there are y1, ..., yN ∈ A such that
V =

⋃N
1 Vyi ⊃ A. But then we have that U =

⋂N
1 Uyi is an open neighborhood

of x contained in the closed subset X \ V , and hence U ⊂ X \ V is disjoint
from A;

(b) as the base step is done (U = U0), let us take care of the inductive step
for index n : as Cn has empty interior there is x ∈ Un−1 such that x /∈ Cn

(otherwise Un−1 ⊂ C◦
n). Apply point a) with A = Cn and such x to get an

open neighborhood U ′ of x whose closure is disjoint from Cn. Finally, either
U ′ ⊂ Un−1 and we are done by taking Un = U ′, or to get Un, apply a) again for
x and A = X \Un−1 (which is nonempty as Un−1 does not contain U), getting
another open neighborhood V , and set Un = U ∩ V , which then satisfies the
second condition (and also the first as it is a subset of U ′);

(c) if the intersection were empty, then {X \ Un}n≥1 would be an open covering
of X, thus admitting a finite subcovering, and hence we would get an N such
that

⋂N
1 Un = ∅, which is absurd as the second condition implies that this

intersection is just UN , which is nonempty as the closure of a neighborhood
of some x; finally, if U ∩ (X \ C) = ∅, we would have U ⊂ C. But taking
x ∈

⋂∞
1 Un ⊂ U , we have x ∈ Un ∀n by definition and hence x /∈ Cn ∀n by

the first condition, yielding x /∈ C;

(d) the previous point is exactly saying that U is not contained in C; as U is an
arbitrary nonempty open set, we get that C has empty interior;
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(e) the sequence (Cn)n≥1, Cn = X \ Vn satisfies the hypotheses above in virtue
of the density condition, so its union has empty interior, which means that
the complement of V =

⋂∞
1 Vi has empty interior, and hence V is dense;

(f) set Vn = X \ Rn where Rn consists of the (finitely many) rational numbers
in [0, 1] which, when written in minimal terms, have denominator ≤ n. So
clearly Vn is dense and open. But the intersection is the irrational numbers
in [0, 1], which is not open as Q is dense in R.

(3) (a) The empty set and Y have the empty set andX, which are open, as preimages.
The other two properties follow immediately from the fact that the union of
the preimages of a collection of sets is the preimage of their union, and the
same for the intersection;

(b) injectivity is clear, as no two points of X with different R-coordinate are
identified. For continuity, let U ⊂ Y be open and nonempty: then p−1(U) ̸= ∅
is open in X; we distinguish three cases:

• if |U ∩{o+, o−}| ≠ 1, then p−1(U) is of the form V ×{±1} with V ⊂ R
open and i−1

ϵ (U) = V, so we are done;

• if U ∩{o+, o−} = oϵ, p
−1(U) is of the form (V \{0})×{±1}∪ (0, ϵ) with

V ⊂ R open containing 0, and we have i−1
ϵ (U) = V, so we are done;

• if U ∩ {o+, o−} = o−ϵ, p
−1(U) is of the form (V \ {0})× {±1} ∪ (0,−ϵ)

with V ⊂ R open containing 0, and we have i−1
ϵ (U) = V \ {0} which is

still open, so we are done;

(c) Im(i+) consists of the classes of all elements of the form (x, 1), i.e. of Y \
[(0,−1)] = Y \ o− by the identification. As i+ is continuous and injective,
to prove it is a homeo on the image we just need to prove that the inverse
is continuous: given V ⊂ R open, we need to prove that p−1(i+(V )) ⊂ X is
open. But if 0 /∈ V this set is just V × {±1}, otherwise it is V × {1} ∪ (V \
{0})× {−1}, which is still open;

(d) by the homeomorphism of the previous point, it suffices to show that for each
y there is an ϵ ∈ {±1} and a neighborhood U of y with U ⊂ Y \ {oϵ}. But
this is clear, letting ϵ be any {±1}-coordinate appearing in the preimage of
y, the neighborhood U = iϵ(V ) with V any R-neighborhood of i−1

ϵ (y) works;

(e) it suffices to push forward via iϵ as above a countable fundamental system Vn

for i−1
ϵ (y);

(f) for any sequence (xn)n≥1 of nonzero reals with limn→∞ xn = 0, the sequence
([(xn, 1)])n≥1 in Y converges to both origins (as it is equal to the sequence
([(xn,−1)])n≥1).

(4) (a) Sum and product of functions are defined pointwise (and are clearly still
functions X −→ C), and (C,+, ·) is a commutative ring with multiplicative
identity 1, so C (X) is indeed a ring with the specified operations;

(b) we have |f(x)|2 = f(x)f(x) ∈ I as f ∈ I and f̄ ∈ C (X);
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(c) since the operations are defined pointwise, this amounts to saying that 0+0 =
0 and 0z = 0 ∀z ∈ C;

(d) let g ∈ C (X) be arbitrary. Then g = f× g
f
and g

f
∈ C (X) as it is well-defined

since f(x) ̸= 0 ∀x ∈ X, so g ∈ I =⇒ I = C (X);

(e) the hypothesis tells us that for every x ∈ X there is fx ∈ I such that fx(x) ̸= 0;
since fx is continuous and C is Hausdorff, we can find a neighborhood Ux of x
such that fx(y) ∈ Vx ∀y ∈ Ux with Vx a neighborhood of fx(x) not containing
0, so we are done;

(f) by d) we just need to construct a function f ∈ I which is never 0. For all
x ∈ X take fx as above: then the Ux’s are an open covering of X, so there is
a finite subcovering (Ui)

N
1 . But then we have by b) that |fi|2 ∈ I, i = 1, ..., N,

and hence x →
∑N

1 |fi(x)|2 is in I, and it never vanishes, as by the previous
point and the covering condition, for any y ∈ X there is 1 ≤ i ≤ N such that
fi(y) ̸= 0 =⇒ |fi(y)|2 > 0 (and all other summands are nonnegative);

(g) we now know that if I is not contained in mx0 for some x0 then it is the whole
C (X); so if I is maximal in particular it is contained in some mx0 , which
is an ideal by c), and hence I must be equal to that mx0 by maximality.
Conversely, mx0 is an ideal, and if it were contained in another proper ideal
J this would have to be (contained in) some other mx1 , but clearly we never
have a containement of the form mx0 ⊂ mx1 for x0 ̸= x1, as the indicator
function of {x1} is in mx0 , so mx0 is maximal.


