TOPOLOGY SPRING 2024

SOLUTIONS SERIE 5

(1) (a) We just need to show that its complement is open, i.e. that for any $y \neq x$ there is a neighborhood V of y that does not contain x; this is directly implied by the Hausdorff property (which is actually stronger);
(b) \emptyset is open by definition, and $\widetilde{X}=X \cup\{\eta\}$ is open as X is open in itself; any union $\bigcup_{i \in I} U_{i}$ of open sets in \widetilde{X} can be written, by discarding any empty $U_{i} \mathrm{~S}$ which do not contribute, as $\bigcup_{i \in I}\left(V_{i} \cup\{\eta\}\right)=\{\eta\} \cup \bigcup_{i \in I} V_{i}$ with the $V_{i} \mathrm{~s}$ open in X, and hence is open by definition; finally, any finite intersection of open sets in the new topology is either empty (if one of them is) or equal to $\{\eta\} \cup \bigcap_{1}^{N} V_{i}$ with the V_{i} s open in X, and therefore open.
(c) if the claim were false, we would have a nonempty open set $U \subset \widetilde{X}$ not containing η, which contradicts the definition of the toplogy on \widetilde{X}.
(2) (a) for any point $y \in A$ we can take open neighborhoods U_{y}, V_{y} of x, y with empty intersection. $\left\{V_{y}\right\}_{A}$ is an open covering of A, which is compact as a closed subspace in a compact space, so there are $y_{1}, \ldots, y_{N} \in A$ such that $V=\bigcup_{1}^{N} V_{y_{i}} \supset A$. But then we have that $U=\bigcap_{1}^{N} U_{y_{i}}$ is an open neighborhood of x contained in the closed subset $X \backslash V$, and hence $\bar{U} \subset X \backslash V$ is disjoint from A;
(b) as the base step is done $\left(U=U_{0}\right)$, let us take care of the inductive step for index n : as C_{n} has empty interior there is $x \in U_{n-1}$ such that $x \notin C_{n}$ (otherwise $U_{n-1} \subset C_{n}^{\circ}$). Apply point a) with $A=C_{n}$ and such x to get an open neighborhood U^{\prime} of x whose closure is disjoint from C_{n}. Finally, either $\overline{U^{\prime}} \subset U_{n-1}$ and we are done by taking $U_{n}=U^{\prime}$, or to get U_{n}, apply a) again for x and $A=X \backslash U_{n-1}$ (which is nonempty as U_{n-1} does not contain \bar{U}), getting another open neighborhood V, and set $U_{n}=U \cap V$, which then satisfies the second condition (and also the first as it is a subset of U^{\prime});
(c) if the intersection were empty, then $\left\{X \backslash \overline{U_{n}}\right\}_{n \geq 1}$ would be an open covering of X, thus admitting a finite subcovering, and hence we would get an N such that $\bigcap_{1}^{N} \overline{U_{n}}=\emptyset$, which is absurd as the second condition implies that this intersection is just $\overline{U_{N}}$, which is nonempty as the closure of a neighborhood of some x; finally, if $U \cap(X \backslash C)=\emptyset$, we would have $U \subset C$. But taking $x \in \bigcap_{1}^{\infty} \overline{U_{n}} \subset U$, we have $x \in \overline{U_{n}} \forall n$ by definition and hence $x \notin C_{n} \forall n$ by the first condition, yielding $x \notin C$;
(d) the previous point is exactly saying that U is not contained in C; as U is an arbitrary nonempty open set, we get that C has empty interior;
(e) the sequence $\left(C_{n}\right)_{n \geq 1}, C_{n}=X \backslash V_{n}$ satisfies the hypotheses above in virtue of the density condition, so its union has empty interior, which means that the complement of $V=\bigcap_{1}^{\infty} V_{i}$ has empty interior, and hence V is dense;
(f) set $V_{n}=X \backslash R_{n}$ where R_{n} consists of the (finitely many) rational numbers in $[0,1]$ which, when written in minimal terms, have denominator $\leq n$. So clearly V_{n} is dense and open. But the intersection is the irrational numbers in $[0,1]$, which is not open as \mathbf{Q} is dense in \mathbf{R}.
(3) (a) The empty set and Y have the empty set and X, which are open, as preimages. The other two properties follow immediately from the fact that the union of the preimages of a collection of sets is the preimage of their union, and the same for the intersection;
(b) injectivity is clear, as no two points of X with different \mathbf{R}-coordinate are identified. For continuity, let $U \subset Y$ be open and nonempty: then $p^{-1}(U) \neq \emptyset$ is open in X; we distinguish three cases:

- if $\left|U \cap\left\{o_{+}, o_{-}\right\}\right| \neq 1$, then $p^{-1}(U)$ is of the form $V \times\{ \pm 1\}$ with $V \subset \mathbf{R}$ open and $i_{\epsilon}^{-1}(U)=V$, so we are done;
- if $U \cap\left\{o_{+}, o_{-}\right\}=o_{\epsilon}, p^{-1}(U)$ is of the form $(V \backslash\{0\}) \times\{ \pm 1\} \cup(0, \epsilon)$ with $V \subset \mathbf{R}$ open containing 0 , and we have $i_{\epsilon}^{-1}(U)=V$, so we are done;
- if $U \cap\left\{o_{+}, o_{-}\right\}=o_{-\epsilon}, p^{-1}(U)$ is of the form $(V \backslash\{0\}) \times\{ \pm 1\} \cup(0,-\epsilon)$ with $V \subset \mathbf{R}$ open containing 0 , and we have $i_{\epsilon}^{-1}(U)=V \backslash\{0\}$ which is still open, so we are done;
(c) $\operatorname{Im}\left(i_{+}\right)$consists of the classes of all elements of the form $(x, 1)$, i.e. of $Y \backslash$ $[(0,-1)]=Y \backslash o_{-}$by the identification. As i_{+}is continuous and injective, to prove it is a homeo on the image we just need to prove that the inverse is continuous: given $V \subset \mathbf{R}$ open, we need to prove that $p^{-1}\left(i_{+}(V)\right) \subset X$ is open. But if $0 \notin V$ this set is just $V \times\{ \pm 1\}$, otherwise it is $V \times\{1\} \cup(V \backslash$ $\{0\}) \times\{-1\}$, which is still open;
(d) by the homeomorphism of the previous point, it suffices to show that for each y there is an $\epsilon \in\{ \pm 1\}$ and a neighborhood U of y with $U \subset Y \backslash\left\{o_{\epsilon}\right\}$. But this is clear, letting ϵ be any $\{ \pm 1\}$-coordinate appearing in the preimage of y, the neighborhood $U=i_{\epsilon}(V)$ with V any R-neighborhood of $i_{\epsilon}^{-1}(y)$ works;
(e) it suffices to push forward via i_{ϵ} as above a countable fundamental system V_{n} for $i_{\epsilon}^{-1}(y)$;
(f) for any sequence $\left(x_{n}\right)_{n \geq 1}$ of nonzero reals with $\lim _{n \rightarrow \infty} x_{n}=0$, the sequence $\left(\left[\left(x_{n}, 1\right)\right]\right)_{n \geq 1}$ in Y converges to both origins (as it is equal to the sequence $\left.\left(\left[\left(x_{n},-1\right)\right]\right)_{n \geq 1}\right)$.
(4) (a) Sum and product of functions are defined pointwise (and are clearly still functions $X \longrightarrow \mathbf{C}$), and ($\mathbf{C},+, \cdot)$ is a commutative ring with multiplicative identity 1 , so $\mathscr{C}(X)$ is indeed a ring with the specified operations;
(b) we have $|f(x)|^{2}=f(x) \overline{f(x)} \in I$ as $f \in I$ and $\bar{f} \in \mathscr{C}(X)$;
(c) since the operations are defined pointwise, this amounts to saying that $0+0=$ 0 and $0 z=0 \forall z \in \mathbf{C}$;
(d) let $g \in \mathscr{C}(X)$ be arbitrary. Then $g=f \times \frac{g}{f}$ and $\frac{g}{f} \in \mathscr{C}(X)$ as it is well-defined since $f(x) \neq 0 \forall x \in X$, so $g \in I \Longrightarrow I=\mathscr{C}(X)$;
(e) the hypothesis tells us that for every $x \in X$ there is $f_{x} \in I$ such that $f_{x}(x) \neq 0$; since f_{x} is continuous and \mathbf{C} is Hausdorff, we can find a neighborhood U_{x} of x such that $f_{x}(y) \in V_{x} \forall y \in U_{x}$ with V_{x} a neighborhood of $f_{x}(x)$ not containing 0 , so we are done;
(f) by d) we just need to construct a function $f \in I$ which is never 0 . For all $x \in X$ take f_{x} as above: then the U_{x} 's are an open covering of X, so there is a finite subcovering $\left(U_{i}\right)_{1}^{N}$. But then we have by b) that $\left|f_{i}\right|^{2} \in I, i=1, \ldots, N$, and hence $x \rightarrow \sum_{1}^{N}\left|f_{i}(x)\right|^{2}$ is in I, and it never vanishes, as by the previous point and the covering condition, for any $y \in X$ there is $1 \leq i \leq N$ such that $f_{i}(y) \neq 0 \Longrightarrow\left|f_{i}(y)\right|^{2}>0$ (and all other summands are nonnegative);
(g) we now know that if I is not contained in $m_{x_{0}}$ for some x_{0} then it is the whole $\mathscr{C}(X)$; so if I is maximal in particular it is contained in some $m_{x_{0}}$, which is an ideal by c), and hence I must be equal to that $m_{x_{0}}$ by maximality. Conversely, $m_{x_{0}}$ is an ideal, and if it were contained in another proper ideal J this would have to be (contained in) some other $m_{x_{1}}$, but clearly we never have a containement of the form $m_{x_{0}} \subset m_{x_{1}}$ for $x_{0} \neq x_{1}$, as the indicator function of $\left\{x_{1}\right\}$ is in $m_{x_{0}}$, so $m_{x_{0}}$ is maximal.

