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(1) (a) If F is principal then by definition there is x ∈ X such that F = {S ⊂ X :
x ∈ S}, so in particular {x} ∈ F . If F contains a finite set A = {x1, ..., xn}
then we can show by induction on n that it contains a singleton: if n = 1
we are done, otherwise we know that F contains either {xn} or X \ {xn};
in the former case we are done, and otherwise F contains A ∩ (X \ {xn}) =
{x1, ..., xn−1} and we are done by the inductive hypothesis;

(b) the complements of finite sets are a filter F0, as taking finite unions/subsets
of finite sets gives finite sets. So we know that there is an ultrafilter F ⊃ F0.
But F cannot be principal as it would contain a finite set by the previous
point, and hence it would not contain its complement, which is absurd;

(c) proceeding as in the hint, we get that X \ A ∈ F and hence F ∋ (A ∪B) ∩
(X \ A) = B \ A. As this is a subset of B, it follows that B ∈ F ;

(d) As A ∩ B is empty, they cannot both belong to F , as otherwise X \ A ⊃ B
would belong to F , contradicting the ultrafilter condition; by the previous
point we know that A ∪B ∈ F ⇐⇒ one of A,B does, so we are done;

(e) we have ν(A) = ν(A \B) + ν(A ∩B) and similarly for B, so we get

ν(A) + ν(B)− ν(A ∩B) = ν(A ∩B) + ν(A \B) + ν(B \ A) =
= ν(A ∩B) + ν(A△B) = ν(A ∪B),

where A△B is the symmetric difference;

(f) if A ⊂ B and ν(A) = 1 then ν(B) = ν(A) + ν(B \ A) ≥ ν(A), but also
ν(B) ∈ {0, 1} and hence ν(B) = 1; if ν(A) = ν(B) = 1 then ν(A ∩ B) =
ν(A) + ν(B) − ν(A ∪ B) = 1 + 1 − 1 = 1 by the previous point, and finally
ν(∅) = 0 trivially by the hypothesis, so Fν is a filter. By the hypothesis we
also get 1 = ν(X) = ν(A) + ν(X \ A) ∀A ⊂ X, so it is also an ultrafilter.

(2) (a) If B was disconnected we would have open sets U1, U2 with B ⊂ U1 ∪ U2

and B ∩ Ui nonempty and disjoint from each other for i = 1, 2. But then
also A ⊂ U1 ∪ U2 and the A ∩ Ui would be disjoint as A ⊂ B; finally we
could not have A ⊂ Ui for any i, as otherwise X \ Uj, j ̸= i, would be a
closed set containing A but not B, contradicting the fact that B ⊂ A: hence,
A = (A ∩ U1) ⊔ (A ∩ U2) is disconnected, absurd;

(b) A is connected as the image of the the connected interval (0,∞) under the
continuous map f : R −→ R2, x 7→ (x, sin(1/x));

(c) let S be the segment we added; the claim follows from point a) as B ⊂ A
(they are in fact equal): for any P ∈ S and any ϵ > 0, BR2(P, ϵ) ∩ A ̸= ∅ as
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we can find x > (ϵ)−1 such that sin(x) = yP by the continuity and periodicity
of the sine over R and the fact that −1 ≤ yP ≤ 1.

(3) (a) The complement of an intersection is the union of the complements, so we
get the desired claim, since the equality X \ A = (X \ A)◦ (and analogously

X \X \ A = A◦) is true as both containements follow by definition;

(b) if B \ ∂A = ∅, then B ⊂ A◦ ⊔ (X \ A)◦ by the previous point, and the claim
follows by the connectedness of B;

(c) this follows immediately from the previous point;

(d) as X is connected we can apply the result of the above point for B = X,
obtaining that ∂A = B ∩ ∂A ̸= ∅;

(e) writing X = A ⊔ B with A,B open and nonempty, we have A = A,B = B
and hence ∂A = A ∩B = ∅ by a).

(4) If A is nonempty and not a singleton, it contains distinct elements x = (xk)k≥1 ̸=
y = (yk)k≥1. So there is an n such that xn ̸= yn. But then U = {z ∈ C : zn = xn}
and V = {z ∈ C : zn = yn} are disjoint open sets (they are an open neighborhood
of any of their points by definition of the topology on C) such that U⊔V = C ⊃ A.
Since both U ∩A and V ∩A are nonempty, we are done. (This proof can be given
in the context of the hint: the pks are continuous by definition of the topology,
but pn is not constant on A for n the same index as above).

(5) (a) R0 is a point andR1 is an interval inR, and we know these are connected. We
proceed by induction on d: consider the map ρ : R×Rd−1 −→ Rd, (x, v) 7→
(x, v1, ..., vd−1), which is clearly continuous (it is an identification map), and
define ρv : R −→ Rd, x 7→ ρ(x, v) and ρx : Rd−1 −→ Rd, v 7→ ρ(x, v) which
are also continuous as precompositions of ρ with continuous immersions. So
given continuous f : Rd −→ {0, 1}, we have that f ◦ ρv is continuous from
R to {0, 1} and hence is constant; if we define U0 = {v ∈ Rd−1 : f ◦ ρv(x) =
0 ∀x ∈ R} and U1 = {v ∈ Rd−1 : f ◦ ρv(x) = 1 ∀x ∈ R} we then have
U0 ⊔ U1 = Rd−1 but also Ui = (f ◦ ρx)

−1(i), so they are open, and since
Rd−1 is connected by the inductive hypothesis, one of them is empty, so f is
constant;

(b) R\{0} = (−∞, 0)∪(0,∞) is the disjoint union of two nonempty open subsets,
and therfore disconnected. As these two are homeomorphic to intervals of R
(via the identity), they are connected, and in particular the two connected
components;

(c) the hyperspherical coordinates give an homeomorphismRd−1\{0} ≃ (0,∞)×
S1 × [0, π]d−2. Since S1 and (0,∞) are connected, the proof of a) (which in
fact shows that the product of connected spaces is connected) directly adapts
for d = 2. Then, for d > 2, we can proceed analogously by induction on the
exponent of [0, π];
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(d) if d = 0, Sd = {−1, 1} is disconnected as a discrete set with more than one
element. For d ≥ 1, the projections Rd+1 \ {0} −→ Sd, which in the coordi-
nates of the previous point are given by (r, ϕ, θ1, ..., θd−1) 7→ (1, ϕ, θ1, ..., θd−1)
are clearly continuous and surjective, so Sd is also connected (otherwise, the
preimages of two disjoint open subsets disconnecting Sd would disconnect
Rd+1);

(e) the strategy of the hint works because of a lemma seen in class. As Cs

we can take the union of the sphere of radius s centred at the origin with
the segment connecting the origin with (r, 0, ..., 0). So clearly these have
nonempty intersection given by this segment, and their union is Br. But they
are also connected, as we can again apply the lemma to the union that defines
them, since both spheres and segments are connected, and they intersect in
(s, 0, ..., 0), so we are done.

(6) (a) Let P0 = (0, 1) be the missing point. The stereographical projection from P0

π : X −→ R, P 7→ lP ∩ {y = 0} where lP is the line connecting P and P0 is
a well-known homeomorphism (all the verifications are trivial), and since R
is connected, X is;

(b) we can just take B = B((1, 0),
√
2 + ϵ) for any 0 < ϵ < 2 −

√
2; indeed, we

then have (−1, 0) /∈ B =⇒ B ⊂ Q ⊔ (X \ (Q ∪ {(−1, 0)})), where Q = {π
2
<

θ < π} is the portion of S1 contained in the open top left quadrant. Since
X \ (Q ∪ {(−1, 0)}) = {−π < θ < π

2
} is open for the same reason, and both

it and Q intersect B as ϵ > 0, B is not connected.

(7) (a) Clearly if a ≤ s ≤ t then s ∈ G by definition of G, so we just need to show
that if t ∈ G, then G contains a right neighborhood of t. If t ∈ G, then
[a, t] ⊂

⋃
j∈J Uj, so there is j such that t ∈ Uj, and hence, since Uj is open,

there is ϵ > 0 such that [a, b]∩ [t, t+ ϵ) ⊂ Uj, which implies that any s in this
right neighborhood is in G;

(b) consider the complement H of G in [a, b]: let us prove that H is open. Given
s ∈ H, clearly r ∈ H for all r > s; hence, we just need to prove that H
contains a left neighborhood of s: as there is some l ∈ I such that s ∈ Ul,
there is ϵ > 0 such that (s−ϵ, s] ⊂ Ul, so if we could find some r ∈ (s−ϵ, s)∩G,
we’d have [a, s] ⊂ Ul∪

⋃
J Uj where [a, r] ⊂

⋃
J Uj with J finite, contradicting

the fact that s /∈ G. So H is open and hence G is closed;

(c) as [a, b] is connected, G is either empty or [a, b]. But clearly a ∈ G, so
G = [a, b] and hence [a, b] is compact by definition of G.


