TOPOLOGY SPRING 2024

SOLUTIONS SERIE 6

(1) (a) If \mathscr{F} is principal then by definition there is $x \in X$ such that $\mathscr{F}=\{S \subset X$: $x \in S\}$, so in particular $\{x\} \in \mathscr{F}$. If \mathscr{F} contains a finite set $A=\left\{x_{1}, \ldots, x_{n}\right\}$ then we can show by induction on n that it contains a singleton: if $n=1$ we are done, otherwise we know that \mathscr{F} contains either $\left\{x_{n}\right\}$ or $X \backslash\left\{x_{n}\right\}$; in the former case we are done, and otherwise \mathscr{F} contains $A \cap\left(X \backslash\left\{x_{n}\right\}\right)=$ $\left\{x_{1}, \ldots, x_{n-1}\right\}$ and we are done by the inductive hypothesis;
(b) the complements of finite sets are a filter F_{0}, as taking finite unions/subsets of finite sets gives finite sets. So we know that there is an ultrafilter $F \supset F_{0}$. But F cannot be principal as it would contain a finite set by the previous point, and hence it would not contain its complement, which is absurd;
(c) proceeding as in the hint, we get that $X \backslash A \in \mathscr{F}$ and hence $\mathscr{F} \ni(A \cup B) \cap$ $(X \backslash A)=B \backslash A$. As this is a subset of B, it follows that $B \in \mathscr{F}$;
(d) As $A \cap B$ is empty, they cannot both belong to \mathscr{F}, as otherwise $X \backslash A \supset B$ would belong to \mathscr{F}, contradicting the ultrafilter condition; by the previous point we know that $A \cup B \in \mathscr{F} \Longleftrightarrow$ one of A, B does, so we are done;
(e) we have $\nu(A)=\nu(A \backslash B)+\nu(A \cap B)$ and similarly for B, so we get

$$
\begin{aligned}
\nu(A)+\nu(B)-\nu(A \cap B) & =\nu(A \cap B)+\nu(A \backslash B)+\nu(B \backslash A)= \\
& =\nu(A \cap B)+\nu(A \triangle B)=\nu(A \cup B)
\end{aligned}
$$

where $A \triangle B$ is the symmetric difference;
(f) if $A \subset B$ and $\nu(A)=1$ then $\nu(B)=\nu(A)+\nu(B \backslash A) \geq \nu(A)$, but also $\nu(B) \in\{0,1\}$ and hence $\nu(B)=1$; if $\nu(A)=\nu(B)=1$ then $\nu(A \cap B)=$ $\nu(A)+\nu(B)-\nu(A \cup B)=1+1-1=1$ by the previous point, and finally $\nu(\emptyset)=0$ trivially by the hypothesis, so \mathscr{F}_{ν} is a filter. By the hypothesis we also get $1=\nu(X)=\nu(A)+\nu(X \backslash A) \forall A \subset X$, so it is also an ultrafilter.
(2) (a) If B was disconnected we would have open sets U_{1}, U_{2} with $B \subset U_{1} \cup U_{2}$ and $B \cap U_{i}$ nonempty and disjoint from each other for $i=1,2$. But then also $A \subset U_{1} \cup U_{2}$ and the $A \cap U_{i}$ would be disjoint as $A \subset B$; finally we could not have $A \subset U_{i}$ for any i, as otherwise $X \backslash U_{j}, j \neq i$, would be a closed set containing A but not B, contradicting the fact that $B \subset \bar{A}$: hence, $A=\left(A \cap U_{1}\right) \sqcup\left(A \cap U_{2}\right)$ is disconnected, absurd;
(b) A is connected as the image of the the connected interval $(0, \infty)$ under the continuous map $f: \mathbf{R} \longrightarrow \mathbf{R}^{2}, x \mapsto(x, \sin (1 / x))$;
(c) let S be the segment we added; the claim follows from point a) as $B \subset \bar{A}$ (they are in fact equal): for any $P \in S$ and any $\epsilon>0, B_{\mathbf{R}^{2}}(P, \epsilon) \cap A \neq \emptyset$ as
we can find $x>(\epsilon)^{-1}$ such that $\sin (x)=y_{P}$ by the continuity and periodicity of the sine over \mathbf{R} and the fact that $-1 \leq y_{P} \leq 1$.
(3) (a) The complement of an intersection is the union of the complements, so we get the desired claim, since the equality $X \backslash \bar{A}=(X \backslash A)^{\circ}$ (and analogously $\left.X \backslash \overline{X \backslash A}=A^{\circ}\right)$ is true as both containements follow by definition;
(b) if $B \backslash \partial A=\emptyset$, then $B \subset A^{\circ} \sqcup(X \backslash A)^{\circ}$ by the previous point, and the claim follows by the connectedness of B;
(c) this follows immediately from the previous point;
(d) as X is connected we can apply the result of the above point for $B=X$, obtaining that $\partial A=B \cap \partial A \neq \emptyset$;
(e) writing $X=A \sqcup B$ with A, B open and nonempty, we have $\bar{A}=A, \bar{B}=B$ and hence $\partial A=A \cap B=\emptyset$ by a).
(4) If A is nonempty and not a singleton, it contains distinct elements $x=\left(x_{k}\right)_{k \geq 1} \neq$ $y=\left(y_{k}\right)_{k \geq 1}$. So there is an n such that $x_{n} \neq y_{n}$. But then $U=\left\{z \in C: z_{n}=x_{n}\right\}$ and $V=\left\{z \in C: z_{n}=y_{n}\right\}$ are disjoint open sets (they are an open neighborhood of any of their points by definition of the topology on C) such that $U \sqcup V=C \supset A$. Since both $U \cap A$ and $V \cap A$ are nonempty, we are done. (This proof can be given in the context of the hint: the $p_{k} \mathrm{~S}$ are continuous by definition of the topology, but p_{n} is not constant on A for n the same index as above).
(a) \mathbf{R}^{0} is a point and \mathbf{R}^{1} is an interval in \mathbf{R}, and we know these are connected. We proceed by induction on d : consider the map $\rho: \mathbf{R} \times \mathbf{R}^{d-1} \longrightarrow \mathbf{R}^{d},(x, v) \mapsto$ $\left(x, v_{1}, \ldots, v_{d-1}\right)$, which is clearly continuous (it is an identification map), and define $\rho_{v}: \mathbf{R} \longrightarrow \mathbf{R}^{d}, x \mapsto \rho(x, v)$ and $\rho_{x}: \mathbf{R}^{d-1} \longrightarrow \mathbf{R}^{d}, v \mapsto \rho(x, v)$ which are also continuous as precompositions of ρ with continuous immersions. So given continuous $f: \mathbf{R}^{d} \longrightarrow\{0,1\}$, we have that $f \circ \rho_{v}$ is continuous from \mathbf{R} to $\{0,1\}$ and hence is constant; if we define $U_{0}=\left\{v \in \mathbf{R}^{d-1}: f \circ \rho_{v}(x)=\right.$ $0 \forall x \in \mathbf{R}\}$ and $U_{1}=\left\{v \in \mathbf{R}^{d-1}: f \circ \rho_{v}(x)=1 \forall x \in \mathbf{R}\right\}$ we then have $U_{0} \sqcup U_{1}=\mathbf{R}^{d-1}$ but also $U_{i}=\left(f \circ \rho_{x}\right)^{-1}(i)$, so they are open, and since \mathbf{R}^{d-1} is connected by the inductive hypothesis, one of them is empty, so f is constant;
(b) $\mathbf{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)$ is the disjoint union of two nonempty open subsets, and therfore disconnected. As these two are homeomorphic to intervals of \mathbf{R} (via the identity), they are connected, and in particular the two connected components;
(c) the hyperspherical coordinates give an homeomorphism $\mathbf{R}^{d-1} \backslash\{0\} \simeq(0, \infty) \times$ $S^{1} \times[0, \pi]^{d-2}$. Since S^{1} and $(0, \infty)$ are connected, the proof of a) (which in fact shows that the product of connected spaces is connected) directly adapts for $d=2$. Then, for $d>2$, we can proceed analogously by induction on the exponent of $[0, \pi]$;
(d) if $d=0, S^{d}=\{-1,1\}$ is disconnected as a discrete set with more than one element. For $d \geq 1$, the projections $\mathbf{R}^{d+1} \backslash\{0\} \longrightarrow S^{d}$, which in the coordinates of the previous point are given by $\left(r, \phi, \theta_{1}, \ldots, \theta_{d-1}\right) \mapsto\left(1, \phi, \theta_{1}, \ldots, \theta_{d-1}\right)$ are clearly continuous and surjective, so S^{d} is also connected (otherwise, the preimages of two disjoint open subsets disconnecting S^{d} would disconnect \mathbf{R}^{d+1};
(e) the strategy of the hint works because of a lemma seen in class. As C_{s} we can take the union of the sphere of radius s centred at the origin with the segment connecting the origin with $(r, 0, \ldots, 0)$. So clearly these have nonempty intersection given by this segment, and their union is B_{r}. But they are also connected, as we can again apply the lemma to the union that defines them, since both spheres and segments are connected, and they intersect in $(s, 0, \ldots, 0)$, so we are done.
(6) (a) Let $P_{0}=(0,1)$ be the missing point. The stereographical projection from P_{0} $\pi: X \longrightarrow \mathbf{R}, P \mapsto l_{P} \cap\{y=0\}$ where l_{P} is the line connecting P and P_{0} is a well-known homeomorphism (all the verifications are trivial), and since \mathbf{R} is connected, X is;
(b) we can just take $B=B((1,0), \sqrt{2}+\epsilon)$ for any $0<\epsilon<2-\sqrt{2}$; indeed, we then have $(-1,0) \notin B \Longrightarrow B \subset Q \sqcup(X \backslash(Q \cup\{(-1,0)\}))$, where $Q=\left\{\frac{\pi}{2}<\right.$ $\theta<\pi\}$ is the portion of S^{1} contained in the open top left quadrant. Since $X \backslash(Q \cup\{(-1,0)\})=\left\{-\pi<\theta<\frac{\pi}{2}\right\}$ is open for the same reason, and both it and Q intersect B as $\epsilon>0, B$ is not connected.
(7) (a) Clearly if $a \leq s \leq t$ then $s \in G$ by definition of G, so we just need to show that if $t \in G$, then G contains a right neighborhood of t. If $t \in G$, then $[a, t] \subset \bigcup_{j \in J} U_{j}$, so there is j such that $t \in U_{j}$, and hence, since U_{j} is open, there is $\epsilon>0$ such that $[a, b] \cap[t, t+\epsilon) \subset U_{j}$, which implies that any s in this right neighborhood is in G;
(b) consider the complement H of G in $[a, b]$: let us prove that H is open. Given $s \in H$, clearly $r \in H$ for all $r>s$; hence, we just need to prove that H contains a left neighborhood of s : as there is some $l \in I$ such that $s \in U_{l}$, there is $\epsilon>0$ such that $(s-\epsilon, s] \subset U_{l}$, so if we could find some $r \in(s-\epsilon, s) \cap G$, we'd have $[a, s] \subset U_{l} \cup \bigcup_{J} U_{j}$ where $[a, r] \subset \bigcup_{J} U_{j}$ with J finite, contradicting the fact that $s \notin G$. So H is open and hence G is closed;
(c) as $[a, b]$ is connected, G is either empty or $[a, b]$. But clearly $a \in G$, so $G=[a, b]$ and hence $[a, b]$ is compact by definition of G.

