
TOPOLOGY SPRING 2024
SOLUTIONS SERIE 7

(1) (a) Since d(x, y) = |x− y| is a distance on X, any function D : X×X −→ [0,∞)
of the form D(x, y) = |f(x) − f(y)| is symmetric, nonnegative and satisfies
the triangle inequality. In the case of our δ, f(x) = e−x is injective, so
δ(x, y) = 0 ⇐⇒ x = y, and hence it is a distance;

(b) clearly f is bijective. Moreover, the open ball Bδ(x0, r) = {x ≥ 0 : |f(x) −
f(x0)| < r} is precisely the preimage under f of Beuc(f(x0), r), which implies
continuity of f and its inverse (it is enough to verify it on a basis). So, the
topology induced by δ is precisely the preimage under f of the euclidean
topology on (0, 1]; as the exponential function is continuous on R with the
euclidean topology, any restriction of it is, so any open set for τδ is open in
the euclidean topology. The converse follows from the same argument with
the logarithm, so we are done;

(c) the sequence xn = n is Cauchy as, for n ≤ m, |e−n − e−m| < e−n goes to 0 in
n, but it does not converge in X, so (X, δ) is not complete

(d) we know R with the euclidean distance is complete (we will always take R
with this distance in this point, without specifying it); let i : X ↪→ R be the
inclusion. Given a Cauchy sequence (xn)n≥0 in X with the restriction of the
euclidean distance, the sequence (i(xn))n≥0 has a limit x ∈ R: we want to
prove that x ∈ i(X). The key idea is that (i(xn))n≥0 has to be contained in a
compact set: otherwise, by the classification of compact subsets of R, there
are arbitrarily large elements in the sequence, which therefore cannot possibly
have finite limit, and hence limit in R. But then, ∃C ⊂ [0,∞) compact such
that i(xn) ∈ C ∀n ≥ 0 and hence (i(xn))n≥0 admits a subsequence converging
in C, but since the whole sequence converges the limit must be the same, so
x ∈ C ⊂ i(X) and we are done.

(2) (a) Take a sequence as in the hint. By the inclusion and diameter hypotheses,
for n ≤ m we have d(xn, xm) ≤ diam(Cn) → 0 as n → ∞, so the sequence is
Cauchy and hence has a limit x ∈ X. Let C be the intersection and suppose
x /∈ C: then there is N such that x /∈ CN . Since the Cn’s are closed, this
means that there is a neighborhood Bd(x, ϵ) of x disjoint from CN , and hence
from any Cn with n ≥ N ; but this implies that infy∈Cn d(x, y) ≥ ϵ ∀n ≥ N,
and since xn ∈ Cn the sequence cannot converge to x, which gives the desired
absurd;

(b) we can just take (X, d) = (X, δ) from Exercise 1, Cn = [n,∞) which are
closed by 1b) and xn = n ∈ Cn which has no limit in X. Since the Cn’s
satisfy the containment condition and have diameter e−n → 0 as n → ∞, this
is a counterexample for a non-complete (X, d).

1



2 TOPOLOGY SPRING 2024 SOLUTIONS SERIE 7

(3) (a) As with the topological version of Baire’s Theorem, we proceed by induction.
To construct Un, n ≥ 1 we take x ∈ Un−1 \ Cn (which exists by the empty
interior condition) and consider the sequence (Vk)k≥1 of open sets given by
Vk = B(x, 1

k
): we claim that there is k such that Vk satisfies the three required

properties. Clearly the last one is satisfied for k ≥ 2n; for the first two we just
need to find k such that Vk∩Yn = ∅, where Yn is the closed set Cn∪(X\Un−1).
If this intersection was nonempty for all k ≥ 1, we would have a sequence
(yk)k≥1 of elements with yk ∈ Vk ∩ Yn, and since Yn is complete by what you
have seen in class, this converges to some y ∈ Yn, which therefore satisfies
limk→∞ d(yk, y) = 0. On the other hand, we have yk ∈ Vk and

⋂
k≥1 Vk = {x}

as a metric space is Hausdorff, so limk→∞ d(yk, y) = d(x, y) ̸= 0, absurd. So,
choosing Un = Vk, we are done;

(b) this follows from 2a) applied to Cn = Un (not to be confused with this Exer-
cise’s Cn’s). Indeed these satisfy the containment hypothesis by the second
condition and the diameter hypothesis by the third condition;

(c) let x be a point in the above intersection: then x ∈ U by the second condition,
so if we had U ⊂ C we would have x ∈ C =⇒ ∃N : x ∈ CN . But since by
definition x ∈ Un ∀n ≥ 1 we have x /∈ Cn ∀n ≥ 1 by the first condition, which
gives the desired absurd.

(4) (a) Let n ≥ m ≥ N > 0. Then the hypothesis and the triangle inequality give

d(xn, xm) = d(f (m)(xn−m), f
(m)(x0)) ≤ αmd(xn−m, x0) ≤ αN

n−m−1∑
k=0

d(xk+1, xk),

as α ≤ 1, where f (k) denotes the k-th iterate of f . But d(xk, xk−1) ≤
αkd(x1, x0) again by the hypothesis, so we get d(xn, xm) ≤ αN

1−α
d(f(x0), x0) by

the geometric series formula. This goes to 0 independently of x0 and α < 1 as
N goes to ∞, so the sequence is Cauchy, and hence converges to some y ∈ X
by completeness.
Now we want to prove f(y) = y; suppose it is not: then there is an open
neighborhood V of f(y) not containing y. By continuity of f , U = f−1(V ) is
an open neighborhood of y, so it contains a tail (xn)n≥N of the sequence. But
then we have that the subtail (xn)n>N = (f(xn))n≥N lies in V, and therefore
cannot converge to y, which is absurd;

(b) if z satisfies the fixed-point functional equation, we have d(y, z) = d(f(y), f(z)) ≤
αd(y, z), which for α < 1 implies d(y, z) = 0, i.e. y = z.

(5) (a) X is a length 1 ”comb” with infinitely many vertical ”teeth” of length 2, in
particular one attached at each extreme {0, 1} of the horizontal segment and
the others accumulating to the 0 extreme as {1/n}. Let H be the horizontal
segment and Tn, n > 0 be the tooth attached at 1/n, while we denote T0

the tooth attached at 0. To show X is connected we resort to the usual
lemma seen in class, writing X =

⋃
NAn where An = H ∪ Tn for n ≥ 0.

Then
⋂

NAn = H ̸= ∅, and each An is clearly connected: A0 and A1 are
homeomorphic to an interval of R (by straightening the right angle) and
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for the other An’s we can simply reapply the lemma to the decomposition
An = (Tn ∪ (H ∩ {x ≤ 1/n})) ∪ (Tn ∪ (H ∩ {x ≥ 1/n})). Therefore, X is
connected;

(b) they do because X has the subspace euclidean topology and the Uδ are the
intersection of X with a fundamental system of open neighborhoods of (0, 0)
in R2;

(c) for such δ, Uδ is disjoint fromH, so it consists of the disjoint union of infinitely
many vertical open segments of length 2δ; the connected component of x0 in
Uδ is therefore the segment containing it, i.e. {0} × (−δ, δ);

(d) given any fundamental system (Vi)I of open neighborhoods of x0, for any
δ > 0 there must be i = i(δ) such that Uδ ⊃ Vi, so the above argument gives
that the connected component of x0 in Vi is a subset of {0} × (−δ, δ), and
hence Vi is not connected as Vi must itself contain some Uδ′ , 0 < δ′ < 1,
and hence infinitely many vertical open segments. Since X has a point not
admitting a fundamental system of connected open neighborhoods, it is not
locally connected;

(e) any discrete subset of R with more than one element, like {0, 1}, clearly
works.

(6) (a) The empty set is open in X and also compact, so we just need to verify the
union and finite intersection conditions: given a collection {Ui}i∈I of sets in
T∞, either all of them are subsets of X, in which case the topology conditions
are satisfied by definition, or we have⋃

I

Ui = U ∪ {∞} ∪
⋃
J

(X \ Cj)

for an open set U of X, nonempty J and compact subsets Cj, j ∈ J of X.
Therefore, letting C be the closed subset X \ U of X, we have⋃

I

Ui = {∞} ∪X \ (C ∩
⋂
J

Cj).

But as each Cj is compact and X is Hausdorff, each Cj is closed, so fixing
any j0 ∈ J we have that C ∩

⋂
J Cj = Cj0 ∩ (C ∩

⋂
J\{j0}Cj) is closed in a

compact set and therefore compact, so the union still belongs to T∞.
Letting I be finite this time, we have that either ∞ /∈

⋂
I Ui, in which case the

intersection is a finite intersection of sets in the topology of X with finitely
many sets of the form X \C with C compact, and hence closed, so again open
sets, and hence still belongs to T∞, or if ∞ belongs to the intersection, we
have ⋂

I

Ui = {∞} ∪ (X \
⋃
I

Ci),

with the finite union being of compact subsets of X, and hence itself compact
by Exercise 5 of Serie 4;

(b) separating x, y ∈ X can be done by restricting to the topology on X as it is
Hausdorff, so let WLOG y = ∞; we want to prove that there are an open
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neighborhood U of x and a compact set C ⊂ X \U . Taking any such U ̸= X
(which exists by the Hausdorff condition) and any z ∈ X \ U, we know that
z has a compact neighborhood D. So D ∩ (X \U) is closed in a compact set,
and hence compact, but also nonempty and disjoint from x, so we are done;

(c) let U be open in X̂; clearly if U is an open subset of X it is stable under

i, so in particular i−1 is continuous by the definition of the topology on X̂.
Otherwise, U = {∞} ∪ (X \ C) and so i−1(U) = X \ C is the complement of
a compact, and hence closed (X is Hausdorff), subset of X, and hence open,
so i is continuous. Moreover, being an inclusion, i is injective and surjective,
so we are done;

(d) given an open cover {Ui}I of X̂, it must contain an open set U ∋ ∞, so

C = X̂ \ U is compact by definition of the topology; but the restriction
{Ui ∩C}I is an open cover of C, so admits a finite subcover {Un ∩C}N1 , and
hence {U} ∪ {Un}N1 is a finite open subcover for X̂;

(e) only in point b). If X is compact then {∞} itself is open, so we are just
adding a discrete point.


