TOPOLOGY SPRING 2024 SOLUTIONS SERIE 7

- (1) (a) Since d(x, y) = |x y| is a distance on X, any function D : X × X → [0, ∞) of the form D(x, y) = |f(x) f(y)| is symmetric, nonnegative and satisfies the triangle inequality. In the case of our δ, f(x) = e^{-x} is injective, so δ(x, y) = 0 ⇔ x = y, and hence it is a distance;
 - (b) clearly f is bijective. Moreover, the open ball $B_{\delta}(x_0, r) = \{x \ge 0 : |f(x) f(x_0)| < r\}$ is precisely the preimage under f of $B_{\text{euc}}(f(x_0), r)$, which implies continuity of f and its inverse (it is enough to verify it on a basis). So, the topology induced by δ is precisely the preimage under f of the euclidean topology on (0, 1]; as the exponential function is continuous on \mathbf{R} with the euclidean topology, any restriction of it is, so any open set for τ_{δ} is open in the euclidean topology. The converse follows from the same argument with the logarithm, so we are done;
 - (c) the sequence $x_n = n$ is Cauchy as, for $n \le m$, $|e^{-n} e^{-m}| < e^{-n}$ goes to 0 in n, but it does not converge in X, so (X, δ) is not complete
 - (d) we know \mathbf{R} with the euclidean distance is complete (we will always take \mathbf{R} with this distance in this point, without specifying it); let $i: X \hookrightarrow \mathbf{R}$ be the inclusion. Given a Cauchy sequence $(x_n)_{n\geq 0}$ in X with the restriction of the euclidean distance, the sequence $(i(x_n))_{n\geq 0}$ has a limit $x \in \mathbf{R}$: we want to prove that $x \in i(X)$. The key idea is that $(i(x_n))_{n\geq 0}$ has to be contained in a compact set: otherwise, by the classification of compact subsets of \mathbf{R} , there are arbitrarily large elements in the sequence, which therefore cannot possibly have finite limit, and hence limit in \mathbf{R} . But then, $\exists C \subset [0, \infty)$ compact such that $i(x_n) \in C \ \forall n \geq 0$ and hence $(i(x_n))_{n\geq 0}$ admits a subsequence converging in C, but since the whole sequence converges the limit must be the same, so $x \in C \subset i(X)$ and we are done.
- (2) (a) Take a sequence as in the hint. By the inclusion and diameter hypotheses, for $n \leq m$ we have $d(x_n, x_m) \leq \text{diam}(C_n) \to 0$ as $n \to \infty$, so the sequence is Cauchy and hence has a limit $x \in X$. Let C be the intersection and suppose $x \notin C$: then there is N such that $x \notin C_N$. Since the C_n 's are closed, this means that there is a neighborhood $B_d(x, \epsilon)$ of x disjoint from C_N , and hence from any C_n with $n \geq N$; but this implies that $\inf_{y \in C_n} d(x, y) \geq \epsilon \ \forall n \geq N$, and since $x_n \in C_n$ the sequence cannot converge to x, which gives the desired absurd;
 - (b) we can just take $(X, d) = (X, \delta)$ from Exercise 1, $C_n = [n, \infty)$ which are closed by 1b) and $x_n = n \in C_n$ which has no limit in X. Since the C_n 's satisfy the containment condition and have diameter $e^{-n} \to 0$ as $n \to \infty$, this is a counterexample for a non-complete (X, d).

- (3) (a) As with the topological version of Baire's Theorem, we proceed by induction. To construct $U_n, n \ge 1$ we take $x \in U_{n-1} \setminus C_n$ (which exists by the empty interior condition) and consider the sequence $(V_k)_{k\ge 1}$ of open sets given by $V_k = B(x, \frac{1}{k})$: we claim that there is k such that V_k satisfies the three required properties. Clearly the last one is satisfied for $k \ge 2n$; for the first two we just need to find k such that $\overline{V_k} \cap Y_n = \emptyset$, where Y_n is the closed set $C_n \cup (X \setminus U_{n-1})$. If this intersection was nonempty for all $k \ge 1$, we would have a sequence $(y_k)_{k\ge 1}$ of elements with $y_k \in \overline{V_k} \cap Y_n$, and since Y_n is complete by what you have seen in class, this converges to some $y \in Y_n$, which therefore satisfies $\lim_{k\to\infty} d(y_k, y) = 0$. On the other hand, we have $y_k \in \overline{V_k}$ and $\bigcap_{k\ge 1} \overline{V_k} = \{x\}$ as a metric space is Hausdorff, so $\lim_{k\to\infty} d(y_k, y) = d(x, y) \neq 0$, absurd. So, choosing $U_n = V_k$, we are done;
 - (b) this follows from 2a) applied to $C_n = \overline{U_n}$ (not to be confused with this Exercise's C_n 's). Indeed these satisfy the containment hypothesis by the second condition and the diameter hypothesis by the third condition;
 - (c) let x be a point in the above intersection: then $x \in U$ by the second condition, so if we had $U \subset C$ we would have $x \in C \implies \exists N : x \in C_N$. But since by definition $x \in \overline{U_n} \forall n \ge 1$ we have $x \notin C_n \forall n \ge 1$ by the first condition, which gives the desired absurd.
- (4) (a) Let $n \ge m \ge N > 0$. Then the hypothesis and the triangle inequality give

$$d(x_n, x_m) = d(f^{(m)}(x_{n-m}), f^{(m)}(x_0)) \le \alpha^m d(x_{n-m}, x_0) \le \alpha^N \sum_{k=0}^{n-m-1} d(x_{k+1}, x_k),$$

as $\alpha \leq 1$, where $f^{(k)}$ denotes the k-th iterate of f. But $d(x_k, x_{k-1}) \leq \alpha^k d(x_1, x_0)$ again by the hypothesis, so we get $d(x_n, x_m) \leq \frac{\alpha^N}{1-\alpha} d(f(x_0), x_0)$ by the geometric series formula. This goes to 0 independently of x_0 and $\alpha < 1$ as N goes to ∞ , so the sequence is Cauchy, and hence converges to some $y \in X$ by completeness.

Now we want to prove f(y) = y; suppose it is not: then there is an open neighborhood V of f(y) not containing y. By continuity of $f, U = f^{-1}(V)$ is an open neighborhood of y, so it contains a tail $(x_n)_{n\geq N}$ of the sequence. But then we have that the subtail $(x_n)_{n>N} = (f(x_n))_{n\geq N}$ lies in V, and therefore cannot converge to y, which is absurd;

- (b) if z satisfies the fixed-point functional equation, we have $d(y, z) = d(f(y), f(z)) \le \alpha d(y, z)$, which for $\alpha < 1$ implies d(y, z) = 0, i.e. y = z.
- (5) (a) X is a length 1 "comb" with infinitely many vertical "teeth" of length 2, in particular one attached at each extreme $\{0, 1\}$ of the horizontal segment and the others accumulating to the 0 extreme as $\{1/n\}$. Let H be the horizontal segment and T_n , n > 0 be the tooth attached at 1/n, while we denote T_0 the tooth attached at 0. To show X is connected we resort to the usual lemma seen in class, writing $X = \bigcup_{\mathbf{N}} A_n$ where $A_n = H \cup T_n$ for $n \ge 0$. Then $\bigcap_{\mathbf{N}} A_n = H \neq \emptyset$, and each A_n is clearly connected: A_0 and A_1 are homeomorphic to an interval of **R** (by straightening the right angle) and

for the other A_n 's we can simply reapply the lemma to the decomposition $A_n = (T_n \cup (H \cap \{x \le 1/n\})) \cup (T_n \cup (H \cap \{x \ge 1/n\}))$. Therefore, X is connected;

- (b) they do because X has the subspace euclidean topology and the U_{δ} are the intersection of X with a fundamental system of open neighborhoods of (0,0) in \mathbb{R}^2 ;
- (c) for such δ , U_{δ} is disjoint from H, so it consists of the disjoint union of infinitely many vertical open segments of length 2δ ; the connected component of x_0 in U_{δ} is therefore the segment containing it, i.e. $\{0\} \times (-\delta, \delta)$;
- (d) given any fundamental system $(V_i)_I$ of open neighborhoods of x_0 , for any $\delta > 0$ there must be $i = i(\delta)$ such that $U_{\delta} \supset V_i$, so the above argument gives that the connected component of x_0 in V_i is a subset of $\{0\} \times (-\delta, \delta)$, and hence V_i is not connected as V_i must itself contain some $U_{\delta'}$, $0 < \delta' < 1$, and hence infinitely many vertical open segments. Since X has a point not admitting a fundamental system of connected open neighborhoods, it is not locally connected;
- (e) any discrete subset of \mathbf{R} with more than one element, like $\{0,1\}$, clearly works.
- (6) (a) The empty set is open in X and also compact, so we just need to verify the union and finite intersection conditions: given a collection {U_i}_{i∈I} of sets in *T*_∞, either all of them are subsets of X, in which case the topology conditions are satisfied by definition, or we have

$$\bigcup_{I} U_{i} = U \cup \{\infty\} \cup \bigcup_{J} (X \setminus C_{j})$$

for an open set U of X, nonempty J and compact subsets C_j , $j \in J$ of X. Therefore, letting C be the closed subset $X \setminus U$ of X, we have

$$\bigcup_{I} U_{i} = \{\infty\} \cup X \setminus (C \cap \bigcap_{J} C_{j}).$$

But as each C_j is compact and X is Hausdorff, each C_j is closed, so fixing any $j_0 \in J$ we have that $C \cap \bigcap_J C_j = C_{j_0} \cap (C \cap \bigcap_{J \setminus \{j_0\}} C_j)$ is closed in a compact set and therefore compact, so the union still belongs to \mathscr{T}_{∞} .

Letting I be finite this time, we have that either $\infty \notin \bigcap_I U_i$, in which case the intersection is a finite intersection of sets in the topology of X with finitely many sets of the form $X \setminus C$ with C compact, and hence closed, so again open sets, and hence still belongs to \mathscr{T}_{∞} , or if ∞ belongs to the intersection, we have

$$\bigcap_{I} U_i = \{\infty\} \cup (X \setminus \bigcup_{I} C_i),$$

with the finite union being of compact subsets of X, and hence itself compact by Exercise 5 of Serie 4;

(b) separating $x, y \in X$ can be done by restricting to the topology on X as it is Hausdorff, so let WLOG $y = \infty$; we want to prove that there are an open neighborhood U of x and a compact set $C \subset X \setminus U$. Taking any such $U \neq X$ (which exists by the Hausdorff condition) and any $z \in X \setminus U$, we know that z has a compact neighborhood D. So $D \cap (X \setminus U)$ is closed in a compact set, and hence compact, but also nonempty and disjoint from x, so we are done;

- (c) let U be open in \hat{X} ; clearly if U is an open subset of X it is stable under i, so in particular i^{-1} is continuous by the definition of the topology on \hat{X} . Otherwise, $U = \{\infty\} \cup (X \setminus C)$ and so $i^{-1}(U) = X \setminus C$ is the complement of a compact, and hence closed (X is Hausdorff), subset of X, and hence open, so i is continuous. Moreover, being an inclusion, i is injective and surjective, so we are done;
- (d) given an open cover $\{U_i\}_I$ of \hat{X} , it must contain an open set $U \ni \infty$, so $C = \hat{X} \setminus U$ is compact by definition of the topology; but the restriction $\{U_i \cap C\}_I$ is an open cover of C, so admits a finite subcover $\{U_n \cap C\}_1^N$, and hence $\{U\} \cup \{U_n\}_1^N$ is a finite open subcover for \hat{X} ;
- (e) only in point b). If X is compact then $\{\infty\}$ itself is open, so we are just adding a discrete point.