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Using the same notation for the functions f,, as in the example of the lecture
referenced in the hint, we can just take the sequence {f + €f,}n>1 C B(f,¢),
which is again an infinite discrete closed subset as d(f + €fn, f + €fn) =
d(€fm,€fn) = 2¢, so the ball cannot be compact;

if there was an f with such neighborhood U, U would contain an open ball
B(f,2¢)° = {g € X : d(f,g) < 2¢} and hence the closed ball B(f,¢), which
would then be compact as a closed subset of a compact set, hence an absurd
by the previous point.

Given x = (x;) # y = (y;), there must exists j € I such that x; # y;, so
we can take U;, V; C X, disjoint open neighborhoods of z;,y; respectively.
Then U = [[,U;,V = [[,V; with U; = V; = X for i # j are disjoint open
neighborhoods of x,y respectively;

since a basis 4 for the product topology on X is given by the sets of the form
I1, Ui with U; C X, open and U; = X, for all but finitely many 4, a basis for
the subspace topology on Y is the intersection of the sets in % with Y, so
subsets of the form [[,V; with V; C Y; open (by definition of the subspace
topology) and V; = Y; for all but finitely many i; a basis for the product
topology on Y is by definition the same, so we are done;

let Y be as in the previous point and let m; : X — X, be the natural
projection; the largest open that doesn’t intersect Y is Y¢ = [J, 7 ' ((Y¥)°),
as the subspace and product topologies on Y are the same. But then its
complement is [, 7; ' (Vi) = [, Vi (this is purely set theoretical), so the two
subsets of the claim have the same complement and hence are equal;

by the previous point we know [[, C; = [[, C; = [, Ci, so we are done;

it suffices to take any infinite I, X; = R Vi and U; = R™ Vi. Then the product
U is not open as no element of the basis used above is contained in U;

the convergence of the sequence means that for each open neighborhood U of x
there is n such that z,, € U. So, if for each i € I we take a fundamental system
of open neighborhoods {U}} ser of a; in X; and apply this for U = ﬂi_l(U}),
we precisely obtain that (x,;) has to converge to x; as n tends to co. This
is also sufficient as we took fundamental systems of neighborhoods and so by
definition any U is a union of finite intersections of the 1(U}L)’s;

let C' be the connected component of z and C; be the connected component
of z; in X;; we proved that the product of connected sets is connected in
the previous Solutions sheet, so [[, C; C C. To finish, we just need to prove

that if m;(C) C C; Vi. But m;(C) is the image under a continuous map of a
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connected space and hence is connected; as it contains x, it is contained in
C; by definition.

Asd(z,y) =), -, 2 "a, with a, < 1, we have that d(z,y) <> ;27" =1
Clearly d is nonnegative and symmetric as a sum of nonnegative and sym-
metric quantities, and it is 0 when all summands are 0, so when d,,(z,y) = 0
for all n, so x = y. To prove the triangle inequality we note that the functions
a, = an(z,y) as defined above are distances, as we proved in Exercise 1 of
Serie 2, and hence satisfy the triangle inequality. But then, so does any linear
combination of them (even infinite, as the inequality is true term-by-term);

say U C X is open in the product topology and fix z = (z,,) € U. Then
we can find a finite set S C Z" and balls By, (xk,€;) for k € S such that
NPy (Bay(wg,€x)) C U, where py : X —> X} is the canonical projec-
tion. But then, setting M = ming 2_k1ik€k we immediately get By(z, M) C
Mg i (Bay (T, €x)), so an open set for the product topology is open for d.

To prove the converse, take U and x as above and some open ball By(x,¢) C U.

Let N =1+ |—logy(e)] > 1; as e — 27" = § > 0, setting o = ﬁ (or
a=o0if § =1) we get that
al a a
d <y 27k — 2 "< — 42 VN =42 N =¢
(x,y) (1+04)N+ Z _1+a+ + €
k=1 n>N+1

and therefore

N
ﬂplzl(Bdk(xk,oz)) C By(z,e) C U;
k=1

let (2")zen be a Cauchy sequence in X; from the definition we immediately
get that for any € > 0 there is k = k(e) such that, for any 4,5 > k and for
1+di(xﬁf),w55>)
of n-th coordinates (IL‘q(lk))kGN in X,, is Cauchy as for any 6 > 0 we have

dn(ng),xg)) < § for i,j > k = k(+2Z5) (if €2 > 1 we simply get k = 0).
Hence it converges to some z,, € X,,. But then z = (x,),>1 is an element
of X, and so our original sequence converges to x since for any ¢ > 0 we
can find K € N such that d(z, %)) < e: just take as usual N > 1 such that

Y onen 27" <€ call 6 their (positive) difference, and take K large enough that

all the N distances d,(zp, :cff)) for n =1,..., N are less than §/N for k > K
(such K exists because of the coordinate wise-convergence and the fact that
we are imposing the condition on finitely many coordinates);

any n > 1, < €2". This immediately implies that the sequence

note the change of notation from the above point: now each superscript cor-
responds to a sequence of elements of X (whose index, along with the coor-
dinates, are subscripts), and not to a single element.

Let us proceed by induction. =" is already defined (it does not strictly satisfy
(3) as even if X is compact we’d need to extract a subsequence, so say we do
that); to extract ™) from 2™~1 we need the additional condition that the
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sequence of the N-th coordinates converges. As the sequence (24 )y (with
n varying) lives in Xy which is compact, it admits a converging subsequence

(z4V)y with i € Z*; now we can just define xg»N) = x,(f;/_l) and we are done.

Finally, the sequence (:c%“) n>1 is a (well-defined, by (2)) subsequence of
() which converges by the same argument of ¢), since the sequences of its
coordinates converge by (3);

this follows directly from d) and the equivalence of definitions of compactness
for metric spaces you saw in class.

We know that for any x5 € X5 the maps i,, : X1 — X, x — (x,z5) are
homeomorphisms on the image, so since f,, = f 0i,,, fz, is continuous as the
composition of continuous maps. The same argument works for g,,;

since R" is Hausdorff, continuous functions have a unique limit as the variable
tends to a point, equal to the value of the function at that point. In our case,
f£((0,0)) = 0 but the limit taken along the line x = y is lim;_o % =140,
so f is not continuous.

On the other hand, if x3 # 0 then f,,(v) = 7727 is a formula that clearly

2

defines f for all x € R, and is continuous as the product/composition of
elementary continuous functions; if 25 = 0 we get f(x) = 0 which is also
continuous. As f is symmetric, the claim also holds for g,,;

this is precisely the standard definition of continuity applied to g., at the
point x = xo;

we know y — e < f(z1,v;) < y+ € for i = 1,2 by the previous point. Let
w; = f(x1,v;) and let d; be the smallest of the two distances |u; — (y & €)| of
u; from the extremes of the interval; then, by the continuity of f,, at x = x4,
we get that for each n > 0 there is § > 0 such that u; —n < f(x,v;) < u; +1n
for all x; —§ < x < z1 4+ 9, for ¢ = 1,2. This, applied to any 1 < min;(d;)
gives the claim;

with the above notation, as (z1,x2) was arbitrary, the claim is equivalent to
the following: for any € > 0 there exists u > 0 such that y —e < f(z,t) < y+e
for all (z,t) such that x1 —p <z < x1 + p, 3 — p < t < xo + pu. Take the
two inequalities obtained in d) for z € (z7 — §, 1 + J); for any such x, by the
monotonicity hypothesis, we have y —e < f(z,v1) < f(z,t) < f(z,v9) < y+e
for any ¢ € (v1,vy): therefore, by taking g = min(d, xe — vy, vy — x2), We are
done.



