TOPOLOGY SPRING 2024

SOLUTIONS SERIE 8

(1) (a) Using the same notation for the functions f_{n} as in the example of the lecture referenced in the hint, we can just take the sequence $\left\{f+\epsilon f_{n}\right\}_{n \geq 1} \subset B(f, \epsilon)$, which is again an infinite discrete closed subset as $d\left(f+\epsilon f_{m}, f+\epsilon f_{n}\right)=$ $d\left(\epsilon f_{m}, \epsilon f_{n}\right)=2 \epsilon$, so the ball cannot be compact;
(b) if there was an f with such neighborhood U, U would contain an open ball $B(f, 2 \epsilon)^{\circ}=\{g \in X: d(f, g)<2 \epsilon\}$ and hence the closed ball $B(f, \epsilon)$, which would then be compact as a closed subset of a compact set, hence an absurd by the previous point.
(2) (a) Given $x=\left(x_{i}\right) \neq y=\left(y_{i}\right)$, there must exists $j \in I$ such that $x_{j} \neq y_{j}$, so we can take $U_{j}, V_{j} \subset X_{j}$ disjoint open neighborhoods of x_{j}, y_{j} respectively. Then $U=\prod_{i} U_{i}, V=\prod_{i} V_{i}$ with $U_{i}=V_{i}=X_{i}$ for $i \neq j$ are disjoint open neighborhoods of x, y respectively;
(b) since a basis \mathscr{B} for the product topology on X is given by the sets of the form $\prod_{i} U_{i}$ with $U_{i} \subset X_{i}$ open and $U_{i}=X_{i}$ for all but finitely many i, a basis for the subspace topology on Y is the intersection of the sets in \mathscr{B} with Y, so subsets of the form $\prod_{i} V_{i}$ with $V_{i} \subset Y_{i}$ open (by definition of the subspace topology) and $V_{i}=Y_{i}$ for all but finitely many i; a basis for the product topology on Y is by definition the same, so we are done;
(c) let Y be as in the previous point and let $\pi_{i}: X \longrightarrow X_{i}$ be the natural projection; the largest open that doesn't intersect Y is $\bar{Y}^{c}=\bigcup_{i} \pi_{i}^{-1}\left(\left(Y_{i}^{c}\right)^{\circ}\right)$, as the subspace and product topologies on Y are the same. But then its complement is $\prod_{i} \pi_{i}^{-1}\left(\bar{Y}_{i}\right)=\prod_{i} \bar{Y}_{i}$ (this is purely set theoretical), so the two subsets of the claim have the same complement and hence are equal;
(d) by the previous point we know $\overline{\prod_{i} C_{i}}=\prod_{i} \bar{C}_{i}=\prod_{i} C_{i}$, so we are done;
(e) it suffices to take any infinite $I, X_{i}=\mathbf{R} \forall i$ and $U_{i}=\mathbf{R}^{+} \forall i$. Then the product U is not open as no element of the basis used above is contained in U;
(f) the convergence of the sequence means that for each open neighborhood U of x there is n such that $x_{n} \in U$. So, if for each $i \in I$ we take a fundamental system of open neighborhoods $\left\{U_{f}^{i}\right\}_{f \in F}$ of x_{i} in X_{i} and apply this for $U=\pi_{i}^{-1}\left(U_{f}^{i}\right)$, we precisely obtain that $\left(x_{n, i}\right)$ has to converge to x_{i} as n tends to ∞. This is also sufficient as we took fundamental systems of neighborhoods and so by definition any U is a union of finite intersections of the $\pi_{i}^{-1}\left(U_{f}^{i}\right)$'s;
(g) let C be the connected component of x and C_{i} be the connected component of x_{i} in X_{i}; we proved that the product of connected sets is connected in the previous Solutions sheet, so $\prod_{i} C_{i} \subset C$. To finish, we just need to prove that if $\pi_{i}(C) \subset C_{i} \forall i$. But $\pi_{i}(C)$ is the image under a continuous map of a
connected space and hence is connected; as it contains x, it is contained in C_{i} by definition.
(a) As $d(x, y)=\sum_{n \geq 1} 2^{-n} a_{n}$ with $a_{n}<1$, we have that $d(x, y)<\sum_{n \geq 1} 2^{-n}=1$. Clearly d is nonnegative and symmetric as a sum of nonnegative and symmetric quantities, and it is 0 when all summands are 0 , so when $d_{n}(x, y)=0$ for all n, so $x=y$. To prove the triangle inequality we note that the functions $a_{n}=a_{n}(x, y)$ as defined above are distances, as we proved in Exercise 1 of Serie 2, and hence satisfy the triangle inequality. But then, so does any linear combination of them (even infinite, as the inequality is true term-by-term);
(b) say $U \subset X$ is open in the product topology and fix $x=\left(x_{n}\right) \in U$. Then we can find a finite set $S \subset \mathbf{Z}^{+}$and balls $B_{d_{k}}\left(x_{k}, \epsilon_{k}\right)$ for $k \in S$ such that $\bigcap_{S} p_{k}^{-1}\left(B_{d_{k}}\left(x_{k}, \epsilon_{k}\right)\right) \subset U$, where $p_{k}: X \longrightarrow X_{k}$ is the canonical projection. But then, setting $M=\min _{S} 2^{-k} \frac{\epsilon_{k}}{1+\epsilon_{k}}$ we immediately get $B_{d}(x, M) \subset$ $\bigcap_{S} p_{k}^{-1}\left(B_{d_{k}}\left(x_{k}, \epsilon_{k}\right)\right)$, so an open set for the product topology is open for d. To prove the converse, take U and x as above and some open ball $B_{d}(x, \epsilon) \subset U$. Let $N=1+\left\lfloor-\log _{2}(\epsilon)\right\rfloor \geq 1$; as $\epsilon-2^{-N}=\delta>0$, setting $\alpha=\frac{\delta}{(1-\delta) N}$ (or $\alpha=\infty$ if $\delta=1$) we get that

$$
d(x, y)<\sum_{k=1}^{N} 2^{-k} \frac{\alpha}{(1+\alpha) N}+\sum_{n \geq N+1} 2^{-n} \leq \frac{\alpha}{1+\alpha}+2^{-N}=\delta+2^{-N}=\epsilon
$$

and therefore

$$
\bigcap_{k=1}^{N} p_{k}^{-1}\left(B_{d_{k}}\left(x_{k}, \alpha\right)\right) \subset B_{d}(x, \epsilon) \subset U
$$

(c) let $\left(x^{(k)}\right)_{k \in \mathbf{N}}$ be a Cauchy sequence in X; from the definition we immediately get that for any $\epsilon>0$ there is $k=k(\epsilon)$ such that, for any $i, j>k$ and for any $n \geq 1, \frac{d_{n}\left(x_{n}^{(i)}, x_{n}^{(j)}\right)}{1+d_{n}\left(x_{n}^{(i)}, x_{n}^{(j)}\right)}<\epsilon 2^{n}$. This immediately implies that the sequence of n-th coordinates $\left(x_{n}^{(k)}\right)_{k \in \mathbf{N}}$ in X_{n} is Cauchy as for any $\delta>0$ we have $d_{n}\left(x_{n}^{(i)}, x_{n}^{(j)}\right)<\delta$ for $i, j>k=k\left(\frac{\epsilon 2^{n}}{1-\epsilon 2^{n}}\right)$ (if $\epsilon 2^{n} \geq 1$ we simply get $k=0$). Hence it converges to some $x_{n} \in X_{n}$. But then $x=\left(x_{n}\right)_{n \geq 1}$ is an element of X, and so our original sequence converges to x since for any $\epsilon>0$ we can find $K \in \mathbf{N}$ such that $d\left(x, x^{(K)}\right)<\epsilon$: just take as usual $N \geq 1$ such that $\sum_{n>N} 2^{-n}<\epsilon$, call δ their (positive) difference, and take K large enough that all the N distances $d_{n}\left(x_{n}, x_{n}^{(k)}\right)$ for $n=1, \ldots, N$ are less than δ / N for $k \geq K$ (such K exists because of the coordinate wise-convergence and the fact that we are imposing the condition on finitely many coordinates);
(d) note the change of notation from the above point: now each superscript corresponds to a sequence of elements of X (whose index, along with the coordinates, are subscripts), and not to a single element.
Let us proceed by induction. $x^{(1)}$ is already defined (it does not strictly satisfy (3) as even if X_{1} is compact we'd need to extract a subsequence, so say we do that); to extract $x^{(N)}$ from $x^{(N-1)}$ we need the additional condition that the
sequence of the N-th coordinates converges. As the sequence $\left(x_{n}^{(N-1)}\right)_{N}$ (with n varying) lives in X_{N} which is compact, it admits a converging subsequence $\left(x_{n_{i}}^{(N-1)}\right)_{N}$ with $i \in \mathbf{Z}^{+}$; now we can just define $x_{j}^{(N)}=x_{n_{j}}^{(N-1)}$ and we are done. Finally, the sequence $\left(x_{N}^{(N)}\right)_{N \geq 1}$ is a (well-defined, by (2)) subsequence of $\left(x_{m}\right)$ which converges by the same argument of c), since the sequences of its coordinates converge by (3);
(e) this follows directly from d) and the equivalence of definitions of compactness for metric spaces you saw in class.
(a) We know that for any $x_{2} \in X_{2}$ the maps $i_{x_{2}}: X_{1} \longrightarrow X, x \mapsto\left(x, x_{2}\right)$ are homeomorphisms on the image, so since $f_{x_{2}}=f \circ i_{x_{2}}, f_{x_{2}}$ is continuous as the composition of continuous maps. The same argument works for $g_{x_{1}}$;
(b) since \mathbf{R}^{n} is Hausdorff, continuous functions have a unique limit as the variable tends to a point, equal to the value of the function at that point. In our case, $f((0,0))=0$ but the limit taken along the line $x=y$ is $\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2}+t^{2}}=\frac{1}{2} \neq 0$, so f is not continuous.
On the other hand, if $x_{2} \neq 0$ then $f_{x_{2}}(x)=\frac{x x_{2}}{x^{2}+x_{2}^{2}}$ is a formula that clearly defines f for all $x \in \mathbf{R}$, and is continuous as the product/composition of elementary continuous functions; if $x_{2}=0$ we get $f(x) \equiv 0$ which is also continuous. As f is symmetric, the claim also holds for $g_{x_{1}}$;
(c) this is precisely the standard definition of continuity applied to $g_{x_{1}}$ at the point $x=x_{2}$;
(d) we know $y-\epsilon<f\left(x_{1}, v_{i}\right)<y+\epsilon$ for $i=1,2$ by the previous point. Let $u_{i}=f\left(x_{1}, v_{i}\right)$ and let d_{i} be the smallest of the two distances $\left|u_{i}-(y \pm \epsilon)\right|$ of u_{i} from the extremes of the interval; then, by the continuity of $f_{v_{i}}$ at $x=x_{1}$, we get that for each $\eta>0$ there is $\delta>0$ such that $u_{i}-\eta<f\left(x, v_{i}\right)<u_{i}+\eta$ for all $x_{1}-\delta<x<x_{1}+\delta$, for $i=1,2$. This, applied to any $\eta<\min _{i}\left(d_{i}\right)$ gives the claim;
(e) with the above notation, as $\left(x_{1}, x_{2}\right)$ was arbitrary, the claim is equivalent to the following: for any $\epsilon>0$ there exists $\mu>0$ such that $y-\epsilon<f(x, t)<y+\epsilon$ for all (x, t) such that $x_{1}-\mu<x<x_{1}+\mu, x_{2}-\mu<t<x_{2}+\mu$. Take the two inequalities obtained in d) for $x \in\left(x_{1}-\delta, x_{1}+\delta\right)$; for any such x, by the monotonicity hypothesis, we have $y-\epsilon<f\left(x, v_{1}\right) \leq f(x, t) \leq f\left(x, v_{2}\right)<y+\epsilon$ for any $t \in\left(v_{1}, v_{2}\right)$: therefore, by taking $\mu=\min \left(\delta, x_{2}-v_{1}, v_{2}-x_{2}\right)$, we are done.

