
TOPOLOGY SPRING 2024
SOLUTIONS SERIE 8

(1) (a) Using the same notation for the functions fn as in the example of the lecture
referenced in the hint, we can just take the sequence {f + ϵfn}n≥1 ⊂ B(f, ϵ),
which is again an infinite discrete closed subset as d(f + ϵfm, f + ϵfn) =
d(ϵfm, ϵfn) = 2ϵ, so the ball cannot be compact;

(b) if there was an f with such neighborhood U , U would contain an open ball
B(f, 2ϵ)◦ = {g ∈ X : d(f, g) < 2ϵ} and hence the closed ball B(f, ϵ), which
would then be compact as a closed subset of a compact set, hence an absurd
by the previous point.

(2) (a) Given x = (xi) ̸= y = (yi), there must exists j ∈ I such that xj ̸= yj, so
we can take Uj, Vj ⊂ Xj disjoint open neighborhoods of xj, yj respectively.
Then U =

∏
i Ui, V =

∏
i Vi with Ui = Vi = Xi for i ̸= j are disjoint open

neighborhoods of x, y respectively;

(b) since a basis B for the product topology on X is given by the sets of the form∏
i Ui with Ui ⊂ Xi open and Ui = Xi for all but finitely many i, a basis for

the subspace topology on Y is the intersection of the sets in B with Y , so
subsets of the form

∏
i Vi with Vi ⊂ Yi open (by definition of the subspace

topology) and Vi = Yi for all but finitely many i; a basis for the product
topology on Y is by definition the same, so we are done;

(c) let Y be as in the previous point and let πi : X −→ Xi be the natural
projection; the largest open that doesn’t intersect Y is Ȳ c =

⋃
i π

−1
i ((Y c

i )
◦),

as the subspace and product topologies on Y are the same. But then its
complement is

∏
i π

−1
i (Ȳi) =

∏
i Ȳi (this is purely set theoretical), so the two

subsets of the claim have the same complement and hence are equal;

(d) by the previous point we know
∏

i Ci =
∏

i C̄i =
∏

i Ci, so we are done;

(e) it suffices to take any infinite I, Xi = R ∀i and Ui = R+ ∀i. Then the product
U is not open as no element of the basis used above is contained in U ;

(f) the convergence of the sequence means that for each open neighborhood U of x
there is n such that xn ∈ U . So, if for each i ∈ I we take a fundamental system
of open neighborhoods {U i

f}f∈F of xi in Xi and apply this for U = π−1
i (U i

f ),
we precisely obtain that (xn,i) has to converge to xi as n tends to ∞. This
is also sufficient as we took fundamental systems of neighborhoods and so by
definition any U is a union of finite intersections of the π−1

i (U i
f )’s;

(g) let C be the connected component of x and Ci be the connected component
of xi in Xi; we proved that the product of connected sets is connected in
the previous Solutions sheet, so

∏
iCi ⊂ C. To finish, we just need to prove

that if πi(C) ⊂ Ci ∀i. But πi(C) is the image under a continuous map of a
1
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connected space and hence is connected; as it contains x, it is contained in
Ci by definition.

(3) (a) As d(x, y) =
∑

n≥1 2
−nan with an < 1, we have that d(x, y) <

∑
n≥1 2

−n = 1.
Clearly d is nonnegative and symmetric as a sum of nonnegative and sym-
metric quantities, and it is 0 when all summands are 0, so when dn(x, y) = 0
for all n, so x = y. To prove the triangle inequality we note that the functions
an = an(x, y) as defined above are distances, as we proved in Exercise 1 of
Serie 2, and hence satisfy the triangle inequality. But then, so does any linear
combination of them (even infinite, as the inequality is true term-by-term);

(b) say U ⊂ X is open in the product topology and fix x = (xn) ∈ U . Then
we can find a finite set S ⊂ Z+ and balls Bdk(xk, ϵk) for k ∈ S such that⋂

S p
−1
k (Bdk(xk, ϵk)) ⊂ U, where pk : X −→ Xk is the canonical projec-

tion. But then, setting M = minS 2
−k ϵk

1+ϵk
we immediately get Bd(x,M) ⊂⋂

S p
−1
k (Bdk(xk, ϵk)), so an open set for the product topology is open for d.

To prove the converse, take U and x as above and some open ballBd(x, ϵ) ⊂ U .
Let N = 1 + ⌊− log2(ϵ)⌋ ≥ 1; as ϵ − 2−N = δ > 0, setting α = δ

(1−δ)N
(or

α = ∞ if δ = 1) we get that

d(x, y) <
N∑
k=1

2−k α

(1 + α)N
+

∑
n≥N+1

2−n ≤ α

1 + α
+ 2−N = δ + 2−N = ϵ,

and therefore
N⋂
k=1

p−1
k (Bdk(xk, α)) ⊂ Bd(x, ϵ) ⊂ U ;

(c) let (x(k))k∈N be a Cauchy sequence in X; from the definition we immediately
get that for any ϵ > 0 there is k = k(ϵ) such that, for any i, j > k and for

any n ≥ 1, dn(x
(i)
n ,x

(j)
n )

1+dn(x
(i)
n ,x

(j)
n )

< ϵ2n. This immediately implies that the sequence

of n-th coordinates (x
(k)
n )k∈N in Xn is Cauchy as for any δ > 0 we have

dn(x
(i)
n , x

(j)
n ) < δ for i, j > k = k( ϵ2n

1−ϵ2n
) (if ϵ2n ≥ 1 we simply get k = 0).

Hence it converges to some xn ∈ Xn. But then x = (xn)n≥1 is an element
of X, and so our original sequence converges to x since for any ϵ > 0 we
can find K ∈ N such that d(x, x(K)) < ϵ: just take as usual N ≥ 1 such that∑

n>N 2−n < ϵ, call δ their (positive) difference, and take K large enough that

all the N distances dn(xn, x
(k)
n ) for n = 1, ..., N are less than δ/N for k ≥ K

(such K exists because of the coordinate wise-convergence and the fact that
we are imposing the condition on finitely many coordinates);

(d) note the change of notation from the above point: now each superscript cor-
responds to a sequence of elements of X (whose index, along with the coor-
dinates, are subscripts), and not to a single element.
Let us proceed by induction. x(1) is already defined (it does not strictly satisfy
(3) as even if X1 is compact we’d need to extract a subsequence, so say we do
that); to extract x(N) from x(N−1) we need the additional condition that the
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sequence of the N -th coordinates converges. As the sequence (x
(N−1)
n )N (with

n varying) lives in XN which is compact, it admits a converging subsequence

(x
(N−1)
ni )N with i ∈ Z+; now we can just define x

(N)
j = x

(N−1)
nj and we are done.

Finally, the sequence (x
(N)
N )N≥1 is a (well-defined, by (2)) subsequence of

(xm) which converges by the same argument of c), since the sequences of its
coordinates converge by (3);

(e) this follows directly from d) and the equivalence of definitions of compactness
for metric spaces you saw in class.

(4) (a) We know that for any x2 ∈ X2 the maps ix2 : X1 −→ X, x 7→ (x, x2) are
homeomorphisms on the image, so since fx2 = f ◦ ix2 , fx2 is continuous as the
composition of continuous maps. The same argument works for gx1 ;

(b) sinceRn is Hausdorff, continuous functions have a unique limit as the variable
tends to a point, equal to the value of the function at that point. In our case,
f((0, 0)) = 0 but the limit taken along the line x = y is limt→0

t2

t2+t2
= 1

2
̸= 0,

so f is not continuous.
On the other hand, if x2 ̸= 0 then fx2(x) = xx2

x2+x2
2
is a formula that clearly

defines f for all x ∈ R, and is continuous as the product/composition of
elementary continuous functions; if x2 = 0 we get f(x) ≡ 0 which is also
continuous. As f is symmetric, the claim also holds for gx1 ;

(c) this is precisely the standard definition of continuity applied to gx1 at the
point x = x2;

(d) we know y − ϵ < f(x1, vi) < y + ϵ for i = 1, 2 by the previous point. Let
ui = f(x1, vi) and let di be the smallest of the two distances |ui − (y ± ϵ)| of
ui from the extremes of the interval; then, by the continuity of fvi at x = x1,
we get that for each η > 0 there is δ > 0 such that ui − η < f(x, vi) < ui + η
for all x1 − δ < x < x1 + δ, for i = 1, 2. This, applied to any η < mini(di)
gives the claim;

(e) with the above notation, as (x1, x2) was arbitrary, the claim is equivalent to
the following: for any ϵ > 0 there exists µ > 0 such that y−ϵ < f(x, t) < y+ϵ
for all (x, t) such that x1 − µ < x < x1 + µ, x2 − µ < t < x2 + µ. Take the
two inequalities obtained in d) for x ∈ (x1 − δ, x1 + δ); for any such x, by the
monotonicity hypothesis, we have y−ϵ < f(x, v1) ≤ f(x, t) ≤ f(x, v2) < y+ϵ
for any t ∈ (v1, v2): therefore, by taking µ = min(δ, x2 − v1, v2 − x2), we are
done.


