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(1) (a) The complex exponential map z 7→ exp(2πiz) is continuous, 1-periodic and
maps R to the unit circle C(0, 1) in C, so the first branch of ϕ maps [0, 1] to
C(i, 1) and the second branch maps [1, 2] to C(−i, 1) by the additive transla-
tions. We know both branches are continuous so we just need to check that ϕ
is well-defined at the common point of the domains of both branches, t = 1:
for the first branch we have ϕ(1) = i + exp(3

2
πi) = 0 and for the second we

have ϕ(1) = −i+ exp(πi
2
) = 0;

(b) we construct ϕ̃ as follows: let c ∈ X ′ be the equivalence class {0, 1, 2}, so that
X ′ = c∪

⋃
0<t<2,t̸=1{t}. Then for the triangular diagram to commute we must

have ϕ̃({t} = ϕ(t) and ϕ̃(c) = ϕ(i) for i = 0, 1, 2. We know that ϕ(1) = 0,

so our ϕ̃ is well-defined iff ϕ(0) = ϕ(2) = 0, which a check with the definition

immediately verifies (note how we just proved that ϕ̃ is, set-theoretically,
unique).
To prove continuity, notice that the quotient map p is a homeomorphism when
restricted to the open U = (0, 1)∪(1, 2), and that 0 /∈ ϕ(U) as the exponential
function is injective on both branches defining ϕ. So given V ⊂ Y open such
that c /∈ ϕ̃−1(V ), the latter satisfies p−1(ϕ̃−1(V )) = ϕ−1(V ) and hence is open;

if c ∈ ϕ̃−1(V ) then we have p−1(ϕ̃−1(V )) = {0, 1, 2} ∪ p−1(ϕ̃−1(V ) \ {c}), so
we just need to prove that the latter contains sets of the form (0, ϵ), (1 −
ϵ, 1 + ϵ), (2 − ϵ, 2). But then, as 0 /∈ ϕ(U), this follows from the fact that

p−1(ϕ̃−1(V ) \ {c}) = ϕ−1(V \ {0}), which is open as V \ {0} clearly is so in Y
(we have V = Y ∩D with someD ⊂ C open, so V \{0} = Y ∩(D∩(C−{0}))),
and must intersect any neighborhood of a point in ϕ−1(0) (as otherwise we’d
get such an open neighborhood N with ϕ(N) ∩ V = {0}; up to restricting
N we can make it so only one of {0, 1, 2} belongs to it, so that ϕ|N is a
homeomorphism and hence ϕ(N) is open, giving {0} ⊂ Y open, which is
clearly absurd);

(c) in the first point we proved ϕ̃ is continuous, but also (along with the first
observation of the second point) a bijection. Given U ′ ⊂ X ′ open, we have
p−1(U ′) open, so we just need to prove that ϕ is an open map as the triangle
commutes. This is true as the exponential is a homeomorphism on each
branch, and the image of a neighborhood of 1 is just the union of the left and
right parts of it, which is clearly still open as a subset of Y .

(2) (a) First, we need to show that the map described in the exercise is well defined,
that is, if (x, y) and (x′, y′) have the same class in Z ′ then pX(x) = pX(x

′)
and pY (y) = pY (y

′). But two pairs have the same class in Z ′ exactly when the
first coordinates are equivalent in X and the second ones are equivalent in Y ,

1
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which means precisely that they have the same projections in the respective
quotients. Note how these are logical equivalences, so we also proved that ϕ
is injective. Surjectivity is clear as the natural coordinate-wise map (pX , pY ) :
Z −→ X ′ × Y ′ is surjective and ϕ makes the diagram with (pX , pY ) and p
commute by definition.
For continuity, let V the preimage of an open set W under ϕ. Then, in virtue
of the quotient topology, we just need to prove that p−1(V ) is open, but by
the diagram described above we have p−1(V ) = (pX , pY )

−1(W ) which is open
as the map is continuous;

(b) (note the change of notation from the previous point) as the union of the
images is the image of the unions, we can clearly prove this for W ’s forming
a basis of the product topology, so let W = U × V with U ⊂ X, V ⊂ Y
open. By the commutativity we already used above, we have ϕ(p(W )) =
(pX , pY )(W ) = pX(U)× pY (V ), which is open since pX , pY are open;

(c) we already knew that ϕ was bijective and continuous, so we just need it to
be open. In virtue of the quotient topology, any open set T ⊂ Z ′ is of the
form p(W ) for some W ⊂ Z open (this is equivalent to saying that p−1(T ) is
open), so we are done by b).

(3) (a) We have that

q−1(q(∆)) = {(x, y) ∈ X×X : ∃z ∈ X : x ∼ z & y ∼ z} = {(x, y) ∈ X×X : x ∼ y} = Γ

by transitivity of the equivalence relation;

(b) as Γ = q−1(q(∆)) is closed this means that q(∆) = q(Γ) is closed in Y =
(X ×X)/ ≡ in virtue of the quotient topology; by Exercise 1 we know that
there is a bijection ϕ : Y −→ X ′×X ′ sending the class of (x, y) to (p(x), p(y)),
hence bijecting q(Γ) to {(p(x), p(x)) : x ∈ X}/ ≡ = ∆′. Since p is open we
have that ϕ(q(W )) is open for any W ⊂ X2 open, again by 1 b), so taking
W = Γc we get that ∆′c = ϕ(q(Γ))c = ϕ(q(W )) is open, giving the desired
claim;

(c) this is precisely point b) of the Exercise in the hint.

(4) Let us call 0Y ∈ Y the class of Z.
(a) pX is the identity, so it’s open;

(b) pY is the identity on the open R \Z, which gives the first case; moreover, pY
is constantly 0Y over Z, giving the second;

(c) for example we have pY ((−1/2, 1/2)) = (−1/2, 0) ∪ (0, 1/2) ∪ {0Y } which is
not open as its preimage (−1/2, 1/2) ∪ (Z− {0}) is not open in R. To prove
the map is closed we just need to prove that p−1

Y (pY (C)) is closed for C ⊂ R
closed, in virtue of the quotient topology, and this follows directly from b) as
Z ⊂ R is closed;

(d) clearly a fundamental system of neighborhoods (FSN) of a point in a (finite-
)product space (why finite?) is given by the product of a FSN for each
coordinate, so we just need to prove that pY (

⋃
Z(n− ϵn, n+ ϵn)) is a FSN for
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0Y . Since sets of the form
⋃

Z(n−ϵn, n+ϵn) are open, pY -stable by b) and for
each open U ⊃ Z in R there is such a set contained in U (the FSN property),
we get the desired claim in virtue of the definition of the quotient topology;

(e) again by definition of the quotient topology, to find such a FSN we can simply
apply p (technically p×(=), but there is a natural homeomorphism) to a FS of
stable open neighborhoods for the preimage of p(0, 0). But this is just Z ∈ R2

with the subspace topology (not {0} × Z with the product topology!), to be
precise taken on the y-axis. Now, the preimage of the given system is just
the union of arbitrarily small open squares around each integer, so indeed
a collection of pY -stable, open supersets of p−1(p(0, 0)) satisfying the FSN
property, and we are done;

(f) if it was, then the image of a FSN as in e) would be contained in some FSN
as in d). Taking U as the former with δn = 1/n, n ̸= 0 and arbitrary δ0 and
ϵn’s, gives ϕ(U) ⊂

⋃
n ̸=0(−1/n, 1/n) × pY ((n − ϵn, n + ϵn)), which is clearly

not contained in any FSN as in d) as those have a fixed positive range δ for
the first coordinate;

(g) Y ′ would be a bouquet of countably many circles and Z ′ a bouquet fo count-
ably many cylinders.

(5) (a) As in Exercise 2 we observe that we can prove openness of p on a basis for
the euclidean topology. But since for any x ∈ Rn there is a neighborhood
U ∋ x such that p|U is injective (we will prove it in the next point), p is a
homeomorphism on the image on U , and so it is open.
Note preliminarly that, as a discrete set in Rn, Hn,k is closed. Let ek+1, ..., en
be the canonical basis vectors not involved in the quotient and let S ⊂ Rn be
their span, which is isomorphic to Rn−k. Then the graph of the equivalence
relation is homeomorphic to Rn−k×H2

n,k (with the topologies induced by Rn)
as for any pair (x, y) in the graph there is a single s ∈ S such that x ∼ s, so
the association (x, y) 7→ (s, x− s, y − x) is bijective (from (s, t, u) we recover
(x, y) as (s+ t, s+ t+ u)), continuous and open (s is given by a projection).
So extending this map to a map R2ntoR3n with the same formula and s again
given by projection onto S of the first factor, we obtain that the graph is
closed as it is homeomorphic to the above product, which is closed as all of
its factors are.
Exercise 3, d) immediately gives that Xn,k is Hausdorff.

(b) C is the closed hypercube of sidelength 1
2
in Rn, so it is compact. The differ-

ence of two distinct elements y, z ∈ C is a vector each of whose components
(in the canonical basis) is |yi − zi| ≤ |yi − xi|+ |xi − zi| ≤ 1

2
, so it cannot lie

in S, as all nonzero vectors in S have at least one component larger than 1.
Therefore, p is injective on C;

(c) we know that Xn,k is connected (as a quotient of a connected space) and
Hausdorff, so we just need to prove that for every w ∈ Xn,k, there is some
open neighborhood W of w which is homeomorphic to an open subset of some
euclidean space. But, as observed in a), this follows from the fact that for
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any x ∈ Rn there is a neighborhood of x on which p is injective, and hence
an homeomorphism on the image (so we start from w, take x as any of its
preimages, and the argument precisely gives us the homeomorphism between
some W ∋ w and an open of Rn);

(d) let us adopt the notation of Exercise 2 as follows: X = Rk, Y = Rn−k and ∼X

be the same relation of this Exercise but just on Rk and ∼Y be the equality
relation. Then in the notation of Exercise 2 we have Z = X × Y = Rn

and that ∼ is precisely our relation (here the key, as in a), is that two vectors
outside the span of the first k basis vector cannot be equivalent), so Z ′ ≃ Xn.k.
Since pX is open (it is identical to proving that p is open) and pY is too as
the identity, by Exercise 2 we get that Xn,k ≃ X ′ ×Rn−k.
Therefore, we just need to construct a homeomoprhism Rk/Hk −→ (S1)

k.
But observe that we can again apply Exercise 2 to, say, X = R and Y = Rk−1

with the equivalence relations again given by the canonical basis lattice, as
we obtain the same relation on the product space by linear independence, so
we can reduce the proof to the case k = 1, i.e. R/Z ≃ S1, which is clearly
true.


