For each of the following two questions, select all correct answers. There is at least one correct answer, and possibly more than one. A fully correct answer gives one point, if there is one mistake, it gives $\frac{1}{2}$ point, and if there are two mistakes or more, it gives zero point.
(1) Let X be a normal topological space. Which of the following properties are true?
(a) Every $x \in X$ has a fundamental system of closed neighborhoods.
(b) If $a \neq b$ are points of X, then there is a continuous function $f: X \rightarrow \mathbf{C}$ such that $f(x)=1$ for all x in a neighborhood of a and $f(b)=i$.
(c) For all closed subsets A and B in X, there exists a continuous function $f: X \rightarrow$ $[-1,1]$ such that $f(x)=1$ for all $x \in A$ and $f(x)=-1$ for all $x \in B$.
(d) For all closed subset A and open set U in X with $U \cap A=\emptyset$, there exists a continuous function $f: X \rightarrow[-1,1]$ such that $f(x)=1$ for all $x \in A$ and $f(x)=-1$ for all $x \in U$.
(2) Let $X=[-1,1] \times[-1,1]$ with the product topology, and let \sim be the equivalence relation where

$$
(a, b) \sim(c, d) \text { if and only if } a^{2}+b^{2}=c^{2}+d^{2}
$$

Let $Y=X / \sim$ with the quotient topology and let $p: X \rightarrow Y$ be the projection. Which of the following properties are true?
(a) Y is compact.
(b) Y has four connected components.
(c) The subspace

$$
p\left(\left\{(x, y) \in X \mid-1 / 2 \leq x \leq 1 / 2, \quad x^{2}+y^{2}>1\right\}\right) \subset Y
$$ is connected.

(d) Y is not locally connected.

