Wahrscheinlichkeit und Statistik

Lösungen Serie 1

Version 2 (11. März 2024: Tippfehler in der Lösung von Aufgabe 1.1(1)(b): " $-3 \leq x \leq 1$ " wurde durch " $-3 \leq x<1$ " ausgebessert. Kleiner Tippfehler in Aufgabe 1.1(2) ausgebessert. Zusätzliche Erklärungen in der Lösung von Aufgabe 1.2(1). Die Notation wurde an die Vorlesung angepasst, wo Wahrscheinlichkeitsmasse typischerweise mit " $\mathrm{P}(\cdot)$ " anstatt mit " $\mathbb{P}[\cdot]$ " bezeichnet werden. Minimale Verbesserungen der Formulierungen und Formatierung.), Version 1 (7. März)
Bitte stellt Fragen in den Übungen und/oder im Forum.
Bitte stell sicher, dass du die Webseite https://kahoot.it/ in der Übung am 05. März öffnen kannst.
Freiwillige Abgabe bis 07. März 8:00. Nachher kann selbstständig mit dieser Lösung verglichen werden.
Aufgabe 1.1 (lim inf and limsup of sets)
Let $\left(A_{n}\right)$ be a sequence of events on a probability space ($\Omega, \mathcal{F}, \mathrm{P}$). Recall (from measure theory) the definitions

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} A_{n} & :=\bigcup_{n \geq 1} \bigcap_{m \geq n} A_{m} \\
\limsup _{n \rightarrow \infty} A_{n} & :=\bigcap_{n \geq 1} \bigcup_{m \geq n} A_{m}
\end{aligned}
$$

Intuition: $\lim \inf _{n \rightarrow \infty} A_{n}$ consists of the elements $\omega \in \Omega$ that appear in almost all ${ }^{1}$ sets A_{n}.
Intuition: $\lim \inf _{n \rightarrow \infty} A_{n}$ consists of the elements $\omega \in \Omega$ that appear in infinitely many sets A_{n}.
(1) If $\Omega=\mathbb{R}$, give the set $\lim \sup _{n \rightarrow \infty} A_{n}$ in the following three cases (please justify your answers):
(a) $A_{n}=[-1 / n, 3+1 / n]$
(b) $A_{n}=\left[-2-(-1)^{n}, 2+(-1)^{n+1}\right)$
(c) $A_{n}=p_{n} \mathbb{N}$, where $\left(p_{n}\right)_{n \geq 1}$ is the sequence of prime numbers and $p_{n} \mathbb{N}$ denotes the set of all multiples of p_{n}.
(2) Show that

$$
\mathrm{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right) \leq \limsup _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right) \leq \mathrm{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)
$$

Lösung 1.1

(1) Note that the set $\lim \sup _{n \rightarrow \infty} A_{n}$ represents the real numbers that appear in infinitely many sets A_{n} :
(a) We have $\lim \sup _{n \rightarrow \infty} A_{n}=[0,3]$.

First solution. Observe that for every $n \geq 1$:

$$
\bigcup_{m \geq n} A_{m}=[-1 / n, 3+1 / n] .
$$

We argue by double inclusion.
First, for every $m \geq n$ we have $[0,3] \subset A_{m}$, so $[0,3] \subset \bigcup_{m \geq n} A_{m}$, so $[0,3] \subset \bigcap_{n \geq 1} \bigcup_{m \geq n} A_{m}$. Second, if $x \in \bigcap_{n \geq 1} \bigcup_{m \geq n} A_{m}$, then for every $n \geq 1$ we have $-1 / n \leq x \leq 3+1 / n$ and by passing to the limit as $n \rightarrow \infty$ we get $0 \leq x \leq 3$. Thus $\bigcap_{n \geq 1} \bigcup_{m \geq n} A_{m} \subset[0,3]$.
Second solution. We argue by double inclusion. Clearly if $0 \leq x \leq 3$ then x belongs to infinitely many A_{n} 's (it actually belongs to all of them), so $[0,3] \subset \limsup _{n \rightarrow \infty} A_{n}$. Also, if $x \notin[0,3]$ that for n sufficiently large $x \notin A_{n}$, so x does not belong to infinitely many A_{n} 's. Thus $x \notin \lim \sup _{n \rightarrow \infty} A_{n}$. This shows that $\limsup _{n \rightarrow \infty} A_{n} \subset[0,3]$.

[^0]For the next questions, we will use the more "intuitive" approach of the second fact, based on the fact that the set $\lim \sup _{n \rightarrow \infty} A_{n}$ represents the real numbers that appear in infinitely many sets A_{n}.
(b) We have $\lim \sup _{n \rightarrow \infty} A_{n}=[-3,3)$. We show this equality between sets by double inclusion. Clearly, if $-3 \leq x<3$, then x belongs to infinitely many A_{n} 's (if $-1 \leq x<3, x \in A_{2 n+1}$ for every $n \geq 1$ and if $-3 \leq x<1$ then $x \in A_{2 n}$ for every $n \geq 1$), so $[-3,3) \subset \lim \sup _{n \rightarrow \infty} A_{n}$. If $x \notin[-3,3)$ than there is no n such that $x \in A_{n}$, so $x \notin \lim \sup _{n \rightarrow \infty} A_{n}$. This shows that $\limsup _{n \rightarrow \infty} A_{n} \subset[-3,3)$.
(c) We have $\lim \sup _{n \rightarrow \infty} A_{n}=\{0\}$. We show this equality between sets by double inclusion. Clearly $0 \in p_{n} \mathbb{N}$ for every $n \geq 1$, so $\{0\} \subset p_{n} \mathbb{N}$. Conversely, if $m \in \limsup _{n \rightarrow \infty} A_{n}$, then m is divisible by infinitely many prime numbers, which implies $m=0$. Thus $\limsup _{n \rightarrow \infty} A_{n} \subset\{0\}$.
(2) Recall from the lecture (Notizen 2 (Seite 11)) the following fact:

$$
\begin{equation*}
\text { if } B_{n} \subset B_{n+1} \text { for all } n \geq 1 \text {, then } \mathrm{P}\left(B_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathrm{P}\left(\bigcup_{m} B_{m}\right) . \tag{1}
\end{equation*}
$$

By (1) applied to the sequence $B_{n}=\bigcap_{m \geq n} A_{m}$ we get

$$
\mathrm{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(\bigcap_{m \geq n} A_{m}\right)
$$

For every $m^{\prime} \geq n$ we have $\bigcap_{m \geq n} A_{m} \subset A_{m^{\prime}}$, so $\mathrm{P}\left(\bigcap_{m \geq n} A_{m}\right) \leq \mathrm{P}\left(A_{m^{\prime}}\right)$ and hence $\mathrm{P}\left(\bigcap_{m \geq n} A_{m}\right) \leq$ $\inf _{m \geq n} \mathrm{P}\left(A_{m}\right)$. Therefore,

$$
\mathrm{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(\bigcap_{m \geq n} A_{m}\right) \leq \lim _{n \rightarrow \infty} \inf _{m \geq n} \mathrm{P}\left(A_{m}\right)
$$

and the right-hand side is exactly the definition of the inferior limit.
The middle inequality $\liminf _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right) \leq \lim \sup _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)$ of the statement is trivial.
On could show the final inequality as the first one, but we use the very useful complementation trick by applying the first inequality to the sequence $\left(A_{n}^{c}\right)$:

$$
\mathrm{P}\left(\liminf _{n \rightarrow \infty} A_{n}^{c}\right) \leq \liminf _{n \rightarrow \infty} \mathrm{P}\left(A_{n}^{c}\right)
$$

Then using the fact that $\liminf _{n \rightarrow \infty} A_{n}^{c}=\left(\limsup _{n \rightarrow \infty} A_{n}\right)^{c}$ and $\liminf _{n \rightarrow \infty}\left(-x_{n}\right)=-\lim \sup _{n \rightarrow \infty}\left(x_{n}\right)$, we thus have

$$
1-\mathrm{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right) \leq \mathrm{P}\left(\liminf _{n \rightarrow \infty} A_{n}^{c}\right) \leq \liminf _{n \rightarrow \infty} \mathrm{P}\left(A_{n}^{c}\right)=\liminf _{n \rightarrow \infty}\left(1-\mathrm{P}\left(A_{n}\right)\right)=1-\limsup _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right),
$$

and the result follows.
Aufgabe 1.2 A collection of sets \mathcal{A} is said to be a generating π-system of a σ-field \mathcal{F} if $\sigma(\mathcal{A})=\mathcal{F}$ and if \mathcal{A} is a π-system ${ }^{2}$.
(1) Show that $\mathcal{A}=\{[0, a]: a \in[0,1]\}$ is a π-system generating $\mathcal{B}([0,1])$.
(2) Prove that $\mathcal{A}^{\prime}=\left\{\left(-\infty, a_{1}\right] \times \cdots \times\left(-\infty, a_{d}\right]: a_{1}, \ldots, a_{d} \in \mathbb{R}\right\} \cup\left\{\mathbb{R}^{d}\right\}$ is a π-system generating the σ-algebra $\mathcal{B}\left(\mathbb{R}^{d}\right)$.

Lösung 1.2

(1) The system of sets is stable under intersections since $[0, a] \cap[0, b]=[0, a \wedge b] \in \mathcal{A}$ for $a, b \in[0,1]$. Hence \mathcal{A} is a π-system on $[0,1]$.

[^1]To see that \mathcal{A} generates $\mathcal{B}([0,1])$, note first that for each $a \in[0,1]$ we have $[0, a] \in \mathcal{B}([0,1])$ since $[0, a]$ is closed in $[0,1]$. Hence $\mathcal{A} \subset \mathcal{B}([0,1])$ and thus $\sigma(\mathcal{A}) \subset \mathcal{B}([0,1])$. Conversely, if $U \subset[0,1]$ is open, then it is a countable union of sets of the form $[0, a]$ or $(a, b]=[0, b] \backslash[0, a]$ with $a, b \in[0,1]$, i.e.,

$$
U=\bigcup_{\substack{n \geq 0,: \\\left[0,2^{-n}\right] \subset U}}\left[0,2^{-n}\right] \cup \bigcup_{\substack{n \geq 0, k \in 2^{-n} \mathbb{Z}: \\ k+\left(-2^{-n}, 0\right] \subset U}}\left(k+\left(-2^{-n}, 0\right]\right) \in \sigma(\mathcal{A}) .
$$

This yields the reverse inclusion $\mathcal{B}([0,1]) \subset \sigma(\mathcal{A})$.
(2) The system is stable under intersections since for $a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d} \in \mathbb{R}$ we have

$$
\begin{aligned}
& \left(\left(-\infty, a_{1}\right] \times \cdots \times\left(-\infty, a_{d}\right]\right) \cap\left(\left(-\infty, b_{1}\right] \times \cdots \times\left(-\infty, b_{d}\right]\right) \\
& \quad=\left(-\infty, a_{1} \wedge b_{1}\right] \times \cdots \times\left(-\infty, a_{d} \wedge b_{d}\right] \in \mathcal{A}^{\prime}
\end{aligned}
$$

Hence \mathcal{A}^{\prime} is a π-system on \mathbb{R}^{d}.
To see that \mathcal{A}^{\prime} generates $\mathcal{B}\left(\mathbb{R}^{d}\right)$, note that

$$
\left(-\infty, a_{1}\right] \times \cdots \times\left(-\infty, a_{d}\right]=\bigcap_{n \geq 1}\left(-\infty, a_{1}+1 / n\right) \times \cdots \times\left(-\infty, a_{d}+1 / n\right)
$$

and that all the sets in the intersection are open. This implies that $\mathcal{A}^{\prime} \subset \mathcal{B}\left(\mathbb{R}^{d}\right)$. Conversely, fix an open set $U \subset \mathbb{R}^{d}$. First of all, one uses the definition of \mathcal{A}^{\prime} to see that $\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{d}, b_{d}\right] \in \sigma\left(\mathcal{A}^{\prime}\right)$ whenever $a, b \in \mathbb{R}^{d}$. Hence

$$
U=\bigcup_{\substack{n \geq 0, k \in 2^{-n} \mathbb{Z}^{d}: \\ k+\left(-2^{-n}, 0\right]^{d} \subset U}}\left(k+\left(-2^{-n}, 0\right]^{d}\right) \in \sigma\left(\mathcal{A}^{\prime}\right)
$$

Since the open set U was arbitrary, we get $\mathcal{B}\left(\mathbb{R}^{d}\right) \subset \sigma\left(\mathcal{A}^{\prime}\right)$ as required.

Aufgabe 1.3 (Questions and operations on σ-fields)

(1) Is the set of all open sets of \mathbb{R} a σ-field?
(2) For every $n \geq 0$, define on \mathbb{N} the σ-field $\mathcal{F}_{n}=\sigma(\{\{0\},\{1\}, \ldots,\{n\}\})$. Show that the sequence of σ-fields $\left(\mathcal{F}_{n}, n \geq 0\right)$ is non-decreasing but that $\bigcup_{n \geq 0} \mathcal{F}_{n}$ is not a σ-field.
Hint: argue by contradiction and use the subset of even integers.
(3) We throw two coins. To model the outcome, we use the probability space $\Omega=\{00,01,10,11\}$ equipped with the σ-field $\mathcal{P}(\Omega)$. Let P be the probability measure on Ω corresponding to the case where the two coins are fair and are thrown independently. Let Q be the probability measure on Ω corresponding to the case where the second coin is rigged and always gives the same result as the first one. Show that the set $\{A \in \mathcal{P}(\Omega): \mathrm{P}(A)=\mathrm{Q}(A)\}$ is not a σ-field (this gives in particular an example of a Dynkin system which is not a σ-field).
(4) Let $(E \times F, \mathcal{A})$ be a measured space and $\pi: E \times F \longrightarrow E$ the canonical projection defined by $\pi(x, y)=x$. Is the set $\mathcal{A}_{E}:=\{\pi(A), A \in \mathcal{A}\}$ always a σ-field?
(5) Let (E, \mathcal{A}) be a measurable space. Let \mathcal{C} be a collection of subsets of E, and fix $B \in \sigma(\mathcal{C})$. Alexandra says: there always exists a countable collection $\mathcal{D} \subset \mathcal{C}$ such that $B \in \sigma(\mathcal{D})$. Is she correct?

Lösung 1.3

(1) No, because the complement of $(-\infty, 0)$ is not open.
(2) The fact that the sets are non-decreasing comes from the fact that if $\mathcal{A} \subset \mathcal{B}$, then $\sigma(\mathcal{A}) \subset \sigma(\mathcal{B})$. Set

$$
\mathcal{F}=\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n}
$$

and assume that \mathcal{F} is a σ-field. We have

$$
\{2 n\} \in \mathcal{F}_{2 n} \subset \mathcal{F} \quad \text { and } \quad 2 \mathbb{N}=\bigcup_{n \geq 0}\{2 n\}
$$

Therefore, $2 \mathbb{N} \in \mathcal{F}$ i.e. there exists $n_{0} \in \mathbb{N}$ such that $2 \mathbb{N} \in \mathcal{F}_{n_{0}}$. But the only sets of $\mathcal{F}_{n_{0}}$ which have infinitely many elements are of the form $\mathbb{N} \backslash A$, where A is a subset of $\left\{0,1, \ldots, n_{0}\right\}$. Indeed, elements
of \mathcal{F}_{n} are of the form A or $A \cup\{n+1, n+2, \ldots\}$ with $A \subset\{0,1, \ldots, n\}$ (to see it, one checks that such elements form a σ-field containing $\{1\},\{2\}, \ldots,\{n\}$, and that conversely any σ-field containing $\{1\},\{2\}, \ldots,\{n\}$ contains all elements of this type).
This gives a contradiction.
(3) We equip Ω with the σ-field $\mathcal{P}(\Omega)$. The probability measures P and Q are given by

$$
\mathrm{P}(00)=\mathrm{P}(01)=\mathrm{P}(10)=\mathrm{P}(11)=\frac{1}{4}, \quad \mathrm{Q}(00)=\mathrm{Q}(11)=\frac{1}{2}
$$

Then $\{A \in \Omega: \mathrm{P}(A)=\mathrm{Q}(A)\}$ is equal to

$$
\{\{00,01\},\{00,10\},\{11,01\},\{11,10\}, \varnothing, \Omega\},
$$

which is not a σ-field since it is not stable by intersections.
(4) Take $E=F=\{0,1\}$ and consider the σ-field \mathcal{F} generated by the element $(0,0) \in E \times F$. It is clear that

$$
\mathcal{F}=\{\varnothing, E \times F,\{(0,0)\}, E \times F \backslash\{(0,0)\}\} .
$$

We check that $\mathcal{F}_{E}=\{\varnothing,\{0\}, E\}$, which is not a σ-field.
(5) Alexandra is correct. Indeed, set

$$
\mathcal{G}=\{B \in \sigma(\mathcal{C}) ; \exists \mathcal{D} \subset \mathcal{C} \text { countable such that } B \in \sigma(\mathcal{D})\}
$$

Let us show that \mathcal{G} is a σ-field.
It is clear that $E \in \mathcal{G}$.
If $A \in \mathcal{G}$, then there exists $\mathcal{D} \subset \mathcal{C}$ countable such that $A \in \sigma(\mathcal{D})$, so $A^{c} \in \sigma(\mathcal{D})$: we have $A^{c} \in \mathcal{G}$.
If $\left(A_{n}\right) \subset \mathcal{G}$, then for every n there exists $\mathcal{D}_{n} \subset \mathcal{C}$ countable such that $A_{n} \in \sigma\left(\mathcal{D}_{n}\right)$, so $\cup_{n} A_{n} \in \sigma(\mathcal{D})$, where $\mathcal{D}:=\cup_{n} D_{n} \subset \mathcal{C}$ is countable (being a countable union of countable sets): we have $\cup_{n} A_{n} \in \mathcal{G}$. We conclude that \mathcal{G} is a σ-field.
But $\mathcal{C} \subset \mathcal{G}$, which implies that $\sigma(\mathcal{C}) \subset \sigma(\mathcal{G})=\mathcal{G} \subset \sigma(\mathcal{C})$, hence the result.
Remark. One could be led to think that $\sigma(\mathcal{C})$ can be explicitly constructed from \mathcal{C} by adding all the countable unions of elements of \mathcal{C} and of their complements, and then by iterating infinitely many times. In general, the result obtained in such a way can be strictly smaller than $\sigma(\mathcal{C})$.

Aufgabe 1.4 Let (E, \mathcal{E}, μ) be a measured space with μ finite. Let \mathcal{A} be a collection of subsets such that:
(a) $E \in \mathcal{A}$
(b) if $A \in \mathcal{A}$, then $A^{c} \in \mathcal{A}$
(c) if $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{A}$
(d) $\sigma(\mathcal{A})=\mathcal{E}$.

The goal of this exercise is to show that for every $E \in \mathcal{E}$, for every $\epsilon>0$ there exists $A \in \mathcal{A}$ such that $\mu(E \Delta A) \leq \epsilon .^{3}$ To this end, set $\mathcal{S}=\{E \in \mathcal{E}: \forall \epsilon>0, \exists A \in \mathcal{A}: \mu(E \Delta A) \leq \epsilon\}$.
(1) Show that \mathcal{S} is stable by finite unions.
(2) Show that \mathcal{S} is a σ-field (for stability by countable unions, justify that one may assume that the events are pairwise disjoint).

Lösung 1.4

(1) Take $A, B \in \mathcal{S}$. Fix $\epsilon>0$ and consider $A^{\prime}, B^{\prime} \in \mathcal{A}$ such that $\mu\left(A \Delta A^{\prime}\right) \leq \epsilon$ and $\mu\left(B \Delta B^{\prime}\right) \leq \epsilon$. But $(A \cup B) \Delta\left(A^{\prime} \cup B^{\prime}\right) \subset\left(A \Delta A^{\prime}\right) \cup\left(B \Delta B^{\prime}\right)$, so $\mu\left((A \cup B) \Delta\left(A^{\prime} \cup B^{\prime}\right)\right) \leq 2 \epsilon$.
(2) First of all, $E \in \mathcal{S}$ since $E \in \mathcal{A}$.

The class \mathcal{S} is stable by complementation since $E \Delta A=E^{c} \Delta A^{c}$ and \mathcal{A} is stable by complementation. Let us show that \mathcal{S} is stable by countable union. Thanks to question (1), we can consider a sequence $\left(A_{n}\right)$ of disjoint elements of \mathcal{S}. Fix $\epsilon>0$ and consider $A_{n}^{\prime} \in \mathcal{A}$ such that $\mu\left(A_{n} \Delta A_{n}^{\prime}\right) \leq \epsilon 2^{-n}$ for every $n \geq 1$. There exists N such that $\mu\left(\bigcup_{j \geq N+1} A_{j}\right) \leq \varepsilon / 2$ (since the $\left(A_{i}\right)$ are disjoint). Set $A^{\prime}:=\bigcup_{j=1}^{N} A_{j}^{\prime} \in \mathcal{A}$. Since

$$
\left(\bigcup_{k \geq 1} A_{k}\right) \Delta A^{\prime} \subset \bigcup_{j=1}^{N}\left(A_{j} \Delta A_{j}^{\prime}\right) \cup \bigcup_{k \geq N+1} A_{k},
$$

we are done.

[^2]Wenn du Feedback zur Serie hast, schreibe bitte in das Forum (oder eine Mail an Jakob Heiss).

[^0]: ${ }^{1}$ Almost all means "all except finitely many exceptions". An equivalent definition of the \lim inf is $\liminf _{n \rightarrow \infty} A_{n}=$ $\left\{\omega \in \Omega \mid \exists n \geq 1: \forall m \geq n: \omega \in A_{m}\right\}$.

[^1]: ${ }^{2}$ In Notizen 2 (Seite 6) we have defined that \mathcal{A} is a π-system, iff it is closed under finite intersections (meaning that for every $A, B \in \mathcal{A}$ we have $A \cap B \in \mathcal{A})$.

[^2]: ${ }^{3}$ In Notizen 2 (Seite 24), we have visualized the symmetric difference $X \Delta Y=(X \cup Y) \backslash(X \cap Y)=(X \backslash Y) \cup(Y \backslash X)$. Note that intuitively $\mu(E \Delta A) \leq \epsilon$ means that A is a good approximation of E.

