Tensor products.

Remark. In this problem sheet, R is considered to be a commutative ring with 1 .
Problem 1. a) Compute $\mathbb{Z} /(n \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z} /(m \mathbb{Z})$.
b) Let M be an R-module and $J \subset R$ an ideal. Construct an isomorphism of R-modules

$$
(R / J) \otimes_{R} M \cong M / J M
$$

Problem 2. Let N be an R-module, and let

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

be a short exact sequence of R-modules.
a) [TENSOR PRODUCt is RIGHT EXACT] Show that the sequence

$$
M^{\prime} \otimes_{R} N \rightarrow M \otimes_{R} N \rightarrow M^{\prime \prime} \otimes_{R} N \rightarrow 0
$$

is exact.
b) $\left[\operatorname{Hom}_{R}\right.$-FUnCtors are left exact $]$ Let $\operatorname{Hom}_{R}(N, M)$ be the set of R homomorphisms from N to M. Endow $\operatorname{Hom}_{R}(N, M)$ with an R-module structure, and show that the sequences

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}\left(N, M^{\prime}\right) \longrightarrow \operatorname{Hom}_{R}(N, M) \longrightarrow \operatorname{Hom}_{R}\left(N, M^{\prime \prime}\right) \\
& 0 \rightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, N\right) \longrightarrow \operatorname{Hom}_{R}(M, N) \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime}, N\right)
\end{aligned}
$$

are exact.
c) For each of the three exact sequences in a) and b), find examples of R, M, M^{\prime}, $M^{\prime \prime}, N$ such that the exact sequence cannot be extended to a short exact sequence. Here, a short exact sequence is an exact sequence $0 \rightarrow * \rightarrow * \rightarrow * \rightarrow 0$.

Problem 3. [Hom_{R} and \otimes_{R} are adjoint] a) Let M, N and K be given R-modules. Show that there exists an isomorphism

$$
\operatorname{Hom}_{R}\left(M \otimes_{R} N, K\right) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, K)\right)
$$

that is natural in M, N and K. Naturality in M, for example, means that whenever we have a morphism $f: M \rightarrow M^{\prime}$ there is a commutative diagram

\[

\]

\mathbf{b}^{*}) Use this to solve Problem 1b) and Problem 2ab) one more time.

Problem 4. a) Let N be a free R-module, and let

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

be an exact sequence of R-modules. Show that the sequence

$$
0 \rightarrow M^{\prime} \otimes_{R} N \rightarrow M \otimes_{R} N \rightarrow M^{\prime \prime} \otimes_{R} N \rightarrow 0
$$

is exact.
b) For a short exact sequence of abelian groups

$$
0 \rightarrow F \rightarrow G \rightarrow H \rightarrow 0
$$

construct a long exact sequence of homology groups with coefficients

$$
\cdots \rightarrow H_{i}(X ; F) \rightarrow H_{i}(X ; G) \rightarrow H_{i}(X ; H) \rightarrow H_{i-1}(X ; F) \rightarrow \cdots
$$

c) Show that there are short exact sequences

$$
0 \rightarrow H_{i}(X ; \mathbb{Z}) /\left(n H_{i}(X ; \mathbb{Z})\right) \rightarrow H_{i}(X ; \mathbb{Z} /(n \mathbb{Z})) \rightarrow \operatorname{Tors}_{n}\left(H_{i-1}(X ; \mathbb{Z})\right) \rightarrow 0
$$

where $\operatorname{Tors}_{n}(G)$ is the kernel of the map $G \xrightarrow{n \cdot} G$.

Problem 5*. [Hilbert's third problem] a) Dissect ${ }^{1}$ a regular triangle of area 1 into a square of area 1.
Let P be a convex polytope with edge lengths l_{i} and edge dihedral angles α_{i}. Define Dehn's invariant of P

$$
\operatorname{Dehn}(P):=\sum l_{i} \otimes \alpha_{i} \in \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R} / \pi \mathbb{Q}
$$

b) Show that if P is split by a plane into P_{1} and P_{2}, then $\operatorname{Dehn}(P)=\operatorname{Dehn}\left(P_{1}\right)+$ $\operatorname{Dehn}\left(P_{2}\right)$. Deduce that if P can be dissected into P^{\prime} then $\operatorname{Dehn}(P)=\operatorname{Dehn}\left(P^{\prime}\right)$.
c) Express $\cos (n \varphi)$ as a polynomial of $\cos (\varphi)$. What is its leading coefficient? Deduce that $\arccos \left(\frac{1}{3}\right)$ is not a rational multiple of π.
d) Prove that a cube of volume 1 cannot be dissected into a regular tetrahedron of the same volume.

[^0]
[^0]: ${ }^{1}$ cut the triangle along straight lines into finitely many pieces to assemble a square

