DR. LUKAS LEWARK ALGEBRAIC TOPOLOGY II PROBLEM SHEET 3 ETH ZÜRICH SPRING, 2024

COHOMOLOGY AND THE UNIVERSAL COEFFICIENT THEOREM

In your solutions, you may use (1)-(4) of Prop 4.14 (which were proven in the lecture). If you use (5)-(8) of Prop 4.14 (which were stated without proof in the lecture), you should prove them yourself.

Problem 1. Compute $\operatorname{Tor}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ for all $m, n \geq 0$.

Problem 2. Prove that for any abelian groups A, B **a**) Tor(A, B) is a torsion group; **b**) $\text{Tor}(A, \mathbb{Q}/\mathbb{Z})$ is isomorphic to the torsion subgroup T(A) of A.

Problem 3. Let $f: X \to Y$ be a continuous map.

a) Show that if $f_*: H_n(X; \mathbb{Z}) \to H_n(Y; \mathbb{Z})$ is an isomorphism for all n, then $f_*: H_n(X; M) \to H_n(Y; M)$ is an isomorphism for all n and all abelian groups M.

b) Prove that $f_*: H_n(X; \mathbb{Z}) \to H_n(Y; \mathbb{Z})$ is an isomorphism for all n if and only if f induces isomorphisms on homology with \mathbb{Q} and \mathbb{F}_p coefficients for all primes p. 0 = V usual 'd samind lies $0 = ({}^d\mathbb{I}'_V)$ on the $0 = \mathbb{Q} \otimes V$ if and \mathbb{P}_p coefficients for all primes p. (In the second se

Problem 4. a) Show that $H_n(X; \mathbb{Q}) \cong H_n(X; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$.

b) Prove that if $H_n(X;\mathbb{Z})$ and $H_{n-1}(X;\mathbb{Z})$ are finitely generated, then for a prime p, $H_n(X;\mathbb{F}_p)$ consists of

- an \mathbb{F}_p summand for each \mathbb{Z} summand of $H_n(X;\mathbb{Z})$;
- an \mathbb{F}_p summand for each $\mathbb{Z}/p^k\mathbb{Z}$ summand of $H_n(X;\mathbb{Z}), k \ge 1$;
- an \mathbb{F}_p summand for each $\mathbb{Z}/p^k\mathbb{Z}$ summand of $H_{n-1}(X;\mathbb{Z}), k \ge 1$.

Problem 5*. Construct a free resolution of $\mathbb{Z}/2\mathbb{Z}$ as $\mathbb{Z}/4\mathbb{Z}$ -module and compute

$$\operatorname{Tor}_{n}^{\mathbb{Z}/4\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}),\qquad\operatorname{Ext}_{\mathbb{Z}/4\mathbb{Z}}^{n}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$$

for all $n \ge 0$.

DR. LUKAS LEWARK ALGEBRAIC TOPOLOGY II PROBLEM SHEET 3 ETH ZÜRICH SPRING, 2024

Problem 6. For a path $\sigma: [0,1] \to S^1$, denote by $\tilde{\sigma}: [0,1] \to \mathbb{R}$ any lift to the covering $\mathbb{R} \to S^1, t \mapsto e^{2\pi i t}$. In other words, $e^{2\pi i \tilde{\sigma}(t)} = \sigma(t)$ for all $t \in [0,1]$.

a) Prove that sending σ to $\tilde{\sigma}(1) - \tilde{\sigma}(0)$ gives a well-defined 1-cochain with \mathbb{R} coefficients of S^1 , i.e. an element of $C^1(S^1; \mathbb{R})$; and that in fact, it is a 1-cocycle generating $H^1(S^1; \mathbb{R}) \cong \mathbb{R}$.

b) Similarly, prove that sending σ to $\lfloor \tilde{\sigma}(1) \rfloor - \lfloor \tilde{\sigma}(0) \rfloor$ defines a 1-cocycle generating $H^1(S^1; \mathbb{Z}) \cong \mathbb{Z}$. Here, $\lfloor x \rfloor$ of a real number x is the *floor* of x, i.e. the largest integer less than or equal to x.

Problem 7. Show that $H^1(X;\mathbb{Z})$ has no torsion.

Problem 8. Compute cellular cohomology with \mathbb{Z} and \mathbb{F}_2 coefficients of **a**) the *n*-dimensional torus $T^n = (S^1)^{\times n}$; **b**) the Klein bottle; **c**) the real projective space $\mathbb{R}P^n$.

Check in a), b), c) that your result is consistent with the universal coefficient theorem of cohomology.

Problem 9*. Describe the connecting homomorphism

$$\beta \colon H^{\bullet}(\mathbb{R}P^n; \mathbb{F}_2) \to H^{\bullet+1}(\mathbb{R}P^n; \mathbb{F}_2)$$

associated with the coefficient exact sequence $0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$.