Cohomology and the Universal Coefficient Theorem

In your solutions, you may use (1)-(4) of Prop 4.14 (which were proven in the lecture). If you use (5)-(8) of Prop 4.14 (which were stated without proof in the lecture), you should prove them yourself.

Problem 1. Compute $\operatorname{Tor}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ for all $m, n \geq 0$.

Problem 2. Prove that for any abelian groups A, B a) $\operatorname{Tor}(A, B)$ is a torsion group; b) $\operatorname{Tor}(A, \mathbb{Q} / \mathbb{Z})$ is isomorphic to the torsion subgroup $T(A)$ of A.

Problem 3. Let $f: X \rightarrow Y$ be a continuous map.
a) Show that if $f_{*}: H_{n}(X ; \mathbb{Z}) \rightarrow H_{n}(Y ; \mathbb{Z})$ is an isomorphism for all n, then $f_{*}: H_{n}(X ; M) \rightarrow H_{n}(Y ; M)$ is an isomorphism for all n and all abelian groups M.
b) Prove that $f_{*}: H_{n}(X ; \mathbb{Z}) \rightarrow H_{n}(Y ; \mathbb{Z})$ is an isomorphism for all n if and only if f induces isomorphisms on homology with \mathbb{Q} and \mathbb{F}_{p} coefficients for all primes p.

Problem 4. a) Show that $H_{n}(X ; \mathbb{Q}) \cong H_{n}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$.
b) Prove that if $H_{n}(X ; \mathbb{Z})$ and $H_{n-1}(X ; \mathbb{Z})$ are finitely generated, then for a prime $p, H_{n}\left(X ; \mathbb{F}_{p}\right)$ consists of

- an \mathbb{F}_{p} summand for each \mathbb{Z} summand of $H_{n}(X ; \mathbb{Z})$;
- an \mathbb{F}_{p} summand for each $\mathbb{Z} / p^{k} \mathbb{Z}$ summand of $H_{n}(X ; \mathbb{Z}), k \geqslant 1$;
- an \mathbb{F}_{p} summand for each $\mathbb{Z} / p^{k} \mathbb{Z}$ summand of $H_{n-1}(X ; \mathbb{Z}), k \geqslant 1$.

Problem 5*. Construct a free resolution of $\mathbb{Z} / 2 \mathbb{Z}$ as $\mathbb{Z} / 4 \mathbb{Z}$-module and compute

$$
\operatorname{Tor}_{n}^{\mathbb{Z} / 4 \mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}), \quad \operatorname{Ext}_{\mathbb{Z} / 4 \mathbb{Z}}^{n}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})
$$

for all $n \geq 0$.

Dr. Lukas Lewark Algebraic Topology II Problem Sheet 3 ETH Zürich

Problem 6. For a path $\sigma:[0,1] \rightarrow S^{1}$, denote by $\widetilde{\sigma}:[0,1] \rightarrow \mathbb{R}$ any lift to the covering $\mathbb{R} \rightarrow S^{1}, t \mapsto e^{2 \pi i t}$. In other words, $e^{2 \pi i \tilde{\sigma}(t)}=\sigma(t)$ for all $t \in[0,1]$.
a) Prove that sending σ to $\widetilde{\sigma}(1)-\widetilde{\sigma}(0)$ gives a well-defined 1 -cochain with \mathbb{R} coefficients of S^{1}, i.e. an element of $C^{1}\left(S^{1} ; \mathbb{R}\right)$; and that in fact, it is a 1-cocycle generating $H^{1}\left(S^{1} ; \mathbb{R}\right) \cong \mathbb{R}$.
b) Similarly, prove that sending σ to $\lfloor\widetilde{\sigma}(1)\rfloor-\lfloor\widetilde{\sigma}(0)\rfloor$ defines a 1-cocycle generating $H^{1}\left(S^{1} ; \mathbb{Z}\right) \cong \mathbb{Z}$. Here, $\lfloor x\rfloor$ of a real number x is the floor of x, i.e. the largest integer less than or equal to x.

Problem 7. Show that $H^{1}(X ; \mathbb{Z})$ has no torsion.

Problem 8. Compute cellular cohomology with \mathbb{Z} and \mathbb{F}_{2} coefficients of a) the n-dimensional torus $T^{n}=\left(S^{1}\right)^{\times n} ; \quad$ b) the Klein bottle; $\left.\mathbf{c}\right)$ the real projective space $\mathbb{R} P^{n}$.
Check in a), b), c) that your result is consistent with the universal coefficient theorem of cohomology.

Problem 9*. Describe the connecting homomorphism

$$
\beta: H^{\bullet}\left(\mathbb{R} P^{n} ; \mathbb{F}_{2}\right) \rightarrow H^{\bullet+1}\left(\mathbb{R} P^{n} ; \mathbb{F}_{2}\right)
$$

associated with the coefficient exact sequence $0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$.

