Dr. Lukas Lewark	Algebraic Topology II	Problem Sheet 4
ETH Zürich		Spring, 2024

COHOMOLOGY AND CUP-PRODUCT

Problem 1. Using the evaluation map ev: $H^n(X; M) \to \operatorname{Hom}_{\mathbb{Z}}(H_n(X), M)$ and its relative version, find the relation between the connecting homomorphisms $\partial \colon H_{n+1}(X, A; M) \to H_n(A; M)$ and $\delta \colon H^n(A; M) \to H^{n+1}(X, A; M)$.

Problem 2. Using Δ -complexes and simplicial (co-)homology, compute the cohomology rings with coefficients in \mathbb{Z} and in \mathbb{F}_2 of **a**) the Klein bottle K; **b**) the projective plane $\mathbb{R}P^2$.

Problem 3. Compute the cohomology ring with coefficients in \mathbb{Z} for the closed orientable surface M_g of genus $g \ge 2$, using the quotient map from M_g to the wedge sum of g tori shown below (figure from Hatcher).

Problem 4. Show that $\mathbb{C}P^2$ and $S^2 \vee S^4$ are not homotopy equivalent.

Definition (Lusternik–Schnirelmann category). The Lusternik–Schnirelmann category of a topological space X is the smallest integer $k \ge 1$ such that there exists an open cover $\{U_i\}_{i=1}^k$ of X with nullhomotopic inclusions $U_i \hookrightarrow X$.

Problem 5. a) Show that the Lusternik–Schnirelmann category of X is bounded from below by the maximal length of a non-zero product of positive degree elements in $H^{\bullet}(X)$. In other words, if $\alpha_1 \smile \cdots \smile \alpha_k \neq 0$ for some $\alpha_i \in H^{n_i}(X)$ with $n_i \geq 1$, then the Lusternik–Schnirelmann category of X is at least k + 1.

Compute the Lusternik–Schnirelmann category of **b**) the sphere S^n ; **c**) the projective space $\mathbb{C}P^n$; **d**) the *n*-dimensional torus T^n .

HINT FOR **b**). Let $p: \mathbb{R}^n \xrightarrow{(t_1, \dots, t_n) \mapsto (e^{2\pi\sqrt{-1}t_1}, \dots, e^{2\pi\sqrt{-1}t_n})} T^n$ be the universal covering. Choose $a_0 < \dots < a_n \in [0, 1]$. Show that the charts $U_k \coloneqq p(\{(t_1, \dots, t_n) \in \mathbb{R}^n \mid a_k < t_i < a_k + 1, \text{ for all } i\})$ for $0 \le k \le n$ give the required covering of T^n .