Dr. Lukas Lewark	Algebraic Topology II	Problem Sheet 6
ETH Zürich		Spring, 2024

MANIFOLDS AND ORIENTATIONS

Problem 1. Given the sequence of groups $\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 2} \cdots$ where each map is multiplication by 2, describe the direct limit of this sequence.

Problem 2. Let X be the union of a directed set of subspaces U_{α} with the property that each compact set in X is contained in some U_{α} . Prove that the natural map

 $\lim H_i(U_\alpha; G) \to H_i(X; G)$

is an isomorphism for all i and G.

Problem 3. Show that $H^0_c(X;G) \cong 0$ if X is path-connected and noncompact.

Problem 4. Compute $H_c^{\bullet}(X; \mathbb{Z})$, where X is **a**) $\mathbb{R}^n \setminus \{0\}$; **b***) the open Möbius band.

Problem 5. Let $\varphi \colon S^n \hookrightarrow S^{n+1}$ be a continuous injective map. Prove that the complement has two connected components.