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Problem 1

by Naomi Rosenberg

a).

Version 1: Explicitly constructing maps.

Claim 1. Z/𝑛Z⊗ Z/𝑚Z = Z/𝑑Z, where 𝑑 = 𝑔𝑐𝑑(𝑚,𝑛).

Proof. Consider the following diagram:

Z/𝑚Z× Z/𝑛Z Z/𝑑Z

Z/𝑑Z× Z/𝑑Z,

𝑓

𝛼
𝛽

where

𝛽 : Z/𝑚Z×Z/𝑛Z → Z/𝑑Z×Z/𝑑Z, (𝑘1+𝑚Z, 𝑘2+𝑛Z) ↦→ (𝑘1+𝑑Z, 𝑘2+𝑑Z), and

𝛼 : Z/𝑑Z× Z/𝑑Z → Z/𝑑Z, (𝑘1 + 𝑑Z, 𝑘2 + 𝑑Z) ↦→ 𝑘1𝑘2 + 𝑑Z.
Here, we used that 𝛽 is well-defined since 𝑑 is a divisor of both 𝑚, and n. Note
that 𝛽 is linear and 𝛼 is bilinear, thus the composition of 𝛼 and 𝛽 is bilinear. With
this in mind, define

𝑓 = 𝛼 ∘ 𝛽 : Z/𝑚Z× Z/𝑛Z → Z/𝑑Z, (𝑘1 +𝑚Z, 𝑘2 + 𝑛Z) ↦→ 𝑘1𝑘2 + 𝑑Z.
The map 𝑓 is surjective as a composition of two surjective maps and bilinear.
Indeed,

· (𝑘1 + 𝑘′1 +𝑚Z, 𝑘2 + 𝑛Z) ↦→ (𝑘1 + 𝑘′1)𝑘2 + 𝑑Z = 𝑘1𝑘2 + 𝑑Z + 𝑘′1𝑘2 + 𝑑Z =
𝑓(𝑘1+𝑚Z, 𝑘2+𝑛Z)+𝑓(𝑘′1+𝑚Z, 𝑘2+𝑛Z) and similar for the right argument,
and

· (𝜆𝑘1+𝑚Z, 𝑘2+𝑛Z) ↦→ (𝜆𝑘1)𝑘2+𝑑Z = 𝜆(𝑘1𝑘2)+𝑑Z = 𝜆𝑓(𝑘1+𝑚Z, 𝑘2+𝑛Z),
and analogously if 𝜆 appears on the right side.

Thus, by the universal property of the tensor product, there exists a (unique)
homomorphism 𝜙 : Z/𝑚Z⊗Z/𝑛Z → Z/𝑑Z, such that 𝑓 = 𝜙 ∘𝜇 (see figure below).

Z/𝑚Z× Z/𝑛Z Z/𝑑Z

Z/𝑚Z⊗ Z/𝑛Z.

𝑓

𝜇
𝜙

It is now sufficient to show that 𝜙 is an isomorphism. In order to prove this, we
are going to construct its inverse.
Note that Z/𝑑Z = ⟨[1]⟩, where we denote by [1] the equivalence class 1 + 𝑑Z of 1
in Z/𝑑Z.
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Define

𝜓 : Z/𝑑Z → Z/𝑚Z⊗ Z/𝑛Z, [1] ↦→ [1]⊗ [1].

We need to check that 𝜓 sends [0] = [𝑑] to 0 ∈ Z/𝑚Z ⊗ Z/𝑛Z. For this, we
need that Z is a principal ideal domain as this implies the existence of unique
elements 𝑢, 𝑣 ∈ Z such that 𝑑 = 𝑢𝑚+ 𝑣𝑛. Thus, 𝜓([0]) = 𝜓([𝑑]) = [𝑑]([1]⊗ [1]) =
[𝑢𝑚+𝑣𝑛]([1]⊗[1]) = [𝑢𝑚]⊗[1]+[1]⊗[𝑣𝑛] = [0]⊗[1]+[1]⊗[0] = [0] ∈ Z/𝑚Z⊗Z/𝑛Z.
Finally, we show that 𝜙 and 𝜓 are inverse to each other: For any [𝑘] ∈ Z/𝑑Z and
for every generator [𝑎]⊗ [𝑏] of Z/𝑚Z⊗ Z/𝑛Z, the following holds:

· 𝜙 ∘ 𝜓([𝑘]) = 𝜙([𝑘]([1]⊗ [1])) = 𝜙([𝑘]⊗ [1]) = [𝑘][1] = [𝑘], and
· 𝜓 ∘ 𝜙([𝑎]⊗ [𝑏]) = 𝜙([𝑎][𝑏]) = [𝑎][𝑏]([1]⊗ [1]) = [𝑎]⊗ [𝑏].

Thus, 𝜓 is indeed the inverse of 𝜙 and therefore, we can conclude that 𝜙 is an
isomorphism.

□

Version 2: Using Problem 1.b). By Problem 1.b), for every ideal 𝐽 ⊆ 𝑅, there
exists an isomorphism (𝑅/𝐽)⊗𝑀 →𝑀/𝐽𝑀 with (𝑟 + 𝐽)⊗ 𝑥 ↦→ 𝑟𝑥+ 𝐽𝑀 .
Thus, setting 𝑅 = Z, 𝐽 = 𝑛Z, and 𝑀 = Z/𝑚Z yields

Z/𝑛Z⊗ Z/𝑚Z
1.b)∼= (Z/𝑚Z)/((𝑛Z)(Z/𝑚Z))
∼= (Z/𝑚Z)/((𝑛Z+𝑚Z)/𝑚Z)
∼= Z/(𝑛Z+𝑚Z)
∼= Z/𝑔𝑐𝑑(𝑚,𝑛)Z.

b). In the following, we are going to denote the equivalence classes in 𝑅/𝐽 by [.]
and the equivalence classes in 𝑀/𝐽𝑀 by {.}. Consider the following diagram:

𝑅/𝐽 ×𝑀 𝑀/𝐽𝑀

𝑅/𝐽 ⊗𝑀 ,

𝑓

𝜇
𝜙

where 𝑓 : 𝑅/𝐽 ×𝑀 → 𝑀/𝐽𝑀 , ([𝑟],𝑚) ↦→ {𝑟𝑚}. The map 𝑓 is surjective and
bilinear, thus, by the universal property of the tensor product, there exists a
(unique) homomorphism 𝜙 : 𝑅/𝐽 ⊗𝑀 → 𝑀/𝐽𝑀 . Therefore, in order to prove
the statement from the exercise, it is sufficient to find an inverse of 𝜙.
Define 𝜓 :𝑀 → 𝑅/𝐽 ⊗𝑀 , 𝑚 ↦→ [1]⊗𝑚 and note that 𝐽𝑀 ⊆ 𝑘𝑒𝑟(𝜓).
Hence, there exists a homomorphism 𝜓 : 𝑀/𝐽𝑀 → 𝑅/𝐽 ⊗𝑀 , {𝑚} ↦→ [1] ⊗𝑚
, which is precisely the inverse of 𝜙 (because 𝜙 ∘ 𝜓({𝑚}) = 𝜙([1] ⊗𝑚) = {𝑚},
and 𝜓 ∘ 𝜙(([𝑟],𝑚)) = 𝜓({𝑟𝑚}) = [1]⊗ 𝑟𝑚 = [𝑟]⊗𝑚) and consequently, 𝜙 is an
isomorphism.
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Exercise 2.

Let 0-M'-MeM"-O be a SES
.

of R-mod's

Let N be an R-module.

⑳Want to show that the induced
sequence

MON N "ONE O

is exact .

Exactness is equavalent to having an isanorphism

F

* MON-> MON
.

induced by BO.
J-m(x(1)

① Note that (B1) . (201) = BoxQ1 = G since Box
= 0

.

& N
=> ON"ON factors through J-((1)

*② Construct inverse to 0
. By the universal property, we need

a bilinear
map
I"XIE MON
J-m(x(1)

for (mi , n) c M" x I
,
let me M be st.

((m)= m" .

Define 4(min) = mOn. It is well-defined : if MEM is another
element s .

+
. B(m) -m"

.

by exactressof m -m = <(m') for some m'eM
S

-> men-mon = (m -m)n = x(m') n = 0
.

Be
i
My

& are inverse to each other
.

-

m(x(1)

5 - (B- 1)(man) = E(B(m)n) = men

*
· E(m" n) = B(m) On = m" n

.
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⑥ Consider first

0 -> Hemp (A ,M') = Homm(N ,
AS) * Homm(N ,

I")

①Note that M= Ker (B) .

② Let feHtemp(N ,
M) be st

. Bolf) = c
. ·B

-> the composite Af>M-> I" is trivial

=> by the universal property of the karml fir-mlifts to : A-> Ker(B) = ****

③ Let fortomm(N ,
Mi de st

.
(f) = 0

.)=> the composite NMEA is trivial.

Sincea is injective ,
If has to be trivial.

-
en

*

Consider o -Harp)M" ,
N) & Hamp( ,

N)* Hamp(1',I

① Let fo Hamm (M ,I) be sit
.

<P(f) = 0

-

&I
·

=> the composite I'-eIESN is trivial f-

->
# E

-- iEA factors through
samen

the/rcko
1 ·
A

" f
"

&

=> f = f "op = B
*

(f")
.

B ·
e

② Let f-Homp(M" ,
A) be st

.

* (f) =0.

=> the composite IM"fe A is
.

Trivial
.

Since B is surjective
,

If has to be trivial
.
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① Consider the SES : 0 + 2/24*2/42- 2/22 +0.

↓ 2/2

0 - 2/22- 2/22= Ele* 10.

M
M↓ -

by**non-trivial
- the sea

ismeneshort exact.

Taking both Hom, (2/22, _
) & Homz) ,

2/22) ofO head bo

0 -> 2124 =9 212*-> 2/24 -0
↑
non-trivial

=> the
sea

ismotheree exact.
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Problem 3

by Noah Stäuble & Philip Sandt

We start by a well-celebrated relationship from commutative algebra. We have a
bijection (even an 𝑅-linear isomorphism)

(1) 𝜑 : Hom𝑅 (𝑀 ⊗𝑅 𝑁,𝐾) → Bil𝑅 (𝑀,𝑁 ;𝐾) ,

𝑓 ↦→ ((𝑚,𝑛) ↦→ 𝑓(𝑚⊗ 𝑛))

In order to know that this map is well-defined (i.e. that we land in the bilinear
maps) we can argue via the universal property of the tensor product. For the
bijectivity we provide an inverse

(2) 𝜓 : Bil𝑅 (𝑀,𝑁 ;𝐾) → Hom𝑅 (𝑀 ⊗𝑅 𝑁,𝐾)

that is obtained by sending 𝑔 to the map linearly extending

𝑚⊗ 𝑛 ↦→ 𝑔(𝑚,𝑛).

We check that 𝜑 is linear. Let 𝑎 ∈ 𝑅, 𝑓, 𝑔 ∈ Hom𝑅 (𝑀 ⊗𝑁,𝐾). Then, 𝜑 maps
𝑎𝑓+𝑔 to the map that sends (𝑚,𝑛) ∈𝑀×𝑁 to 𝑎𝑓(𝑚⊗𝑛)+𝑔(𝑚⊗𝑛). At the same
time, 𝑎𝜑(𝑓) + 𝜑(𝑔) is the map that sends (𝑚,𝑛) to 𝑎𝜑(𝑓)(𝑚,𝑛) + 𝜑(𝑔)(𝑚,𝑛) =
𝑎𝑓(𝑚⊗𝑛)+𝑔(𝑚⊗𝑛). Moreover, (𝜓 ∘𝜑)(𝑓) maps 𝑚⊗𝑛 to 𝜑(𝑓)(𝑚,𝑛) = 𝑓(𝑚⊗𝑛)
And, (𝜑 ∘ 𝜓)(ℎ) maps (𝑚,𝑛) to 𝜓(ℎ)(𝑚 ⊗ 𝑛) = ℎ(𝑚,𝑛) which implies that 𝜑, 𝜓
are mutually inverse, using that pure tensors generate the tensor product.
We are also going to use the result from commutative algebra that states that
there is an isomorphism

𝐹 : Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾)) → Bil𝑅 (𝑀,𝑁 ;𝐾)

such that
𝐹 (𝑓)(𝑚,𝑛) = 𝑓(𝑚)(𝑛)

with inverse
𝐺 : Bil𝑅 (𝑀,𝑁 ;𝐾) → Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾))

such that 𝐺(𝑔)(𝑚) is given by 𝑛 ↦→ 𝑔(𝑚,𝑛). By composing the two, we get an
isomorphism

𝐺 ∘ 𝜑 : Hom𝑅 (𝑀 ⊗𝑅 𝑁,𝐾) → Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾))

It remains to show that the isomorphism is natural. Following the example, we
start by showing that the isomorphism is natural in 𝑀 . For what follows, let
𝑀 ′, 𝑁 ′, 𝐾 ′ be 𝑅-modules. We denote for any map 𝑡 between functions between
𝑅-modules by 𝑡′ the map that does the same as 𝑡 but where the appropriate module
𝐴 has been replaced by 𝐴′.

1. Let 𝑓 :𝑀 →𝑀 ′ a homomorphism. We define 𝑓* : Hom𝑅 (𝑀 ′ ⊗𝑁,𝐾) →
Hom𝑅 (𝑀 ⊗𝑁,𝐾) by pre-composing with 𝑓 in 𝑀 . I.e. by linearly extend-
ing the following relation on pure tensors:

𝑓*(𝑔)(𝑚⊗ 𝑛) = 𝑔(𝑓(𝑚)⊗ 𝑛), for 𝑔 ∈ Hom𝑅 (𝑀 ′ ⊗𝑁,𝐾) ,𝑚 ∈𝑀,𝑛 ∈ 𝑁
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Analogously, define 𝑓* : Hom𝑅 (𝑀 ′,Hom𝑅 (𝑁,𝐾)) → Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾)),
by linearly extending

𝑓*(𝑔)(𝑚)(𝑛) = 𝑔(𝑓(𝑚))(𝑛), for 𝑔 ∈ Hom𝑅 (𝑀 ′,Hom𝑅 (𝑁,𝐾)) ,𝑚 ∈𝑀,𝑛 ∈ 𝑁

Naturality is then equivalent to commutativity of the following diagram.

Hom𝑅 (𝑀 ⊗𝑁,𝐾) Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾))

Hom𝑅 (𝑀 ′ ⊗𝑁,𝐾) Hom𝑅 (𝑀 ′,Hom𝑅 (𝑁,𝐾))

𝐺∘𝜑

𝐺′∘𝜑′
𝑓* 𝑓*

Which we will prove by showing equality on pure tensors.
I.e. we want to show, that 𝐺 ∘ 𝜑 ∘ 𝑓*(𝑔)(𝑚)(𝑛) = 𝑓* ∘𝐺′ ∘ 𝜑′(𝑔)(𝑚)(𝑛),

for all homomorphisms 𝑔 ∈ Hom𝑅 (𝑀 ′ ⊗𝑁,𝐾) and elements 𝑚 ∈𝑀 and
𝑛 ∈ 𝑁 . Let us first consider the upper part of the diagram.

𝐺 ∘ 𝜑 ∘ 𝑓*(𝑔)(𝑚)(𝑛) = 𝐺(𝜑(𝑓*(𝑔)))(𝑚)(𝑛)

= 𝜑(𝑓*(𝑔))(𝑚,𝑛) = 𝑓*(𝑔)(𝑚⊗ 𝑛) = 𝑔(𝑓(𝑚)⊗ 𝑛)

In other words, for 𝑚 ∈ 𝑀 , 𝐺 ∘ 𝜑 ∘ 𝑓*(𝑔)(𝑚) is the morphism 𝑛 ↦→
(𝑔(𝑓(𝑚)⊗ 𝑛)) in Hom𝑅 (𝑁,𝐾). On the other hand.

𝑓* ∘𝐺′ ∘ 𝜑′(𝑔)(𝑚)(𝑛) = 𝑓*(𝐺
′(𝜑′(𝑔)))(𝑚)(𝑛)

= 𝐺′(𝜑′(𝑔))(𝑓(𝑚))(𝑛) = 𝜑′(𝑔)(𝑓(𝑚), 𝑛) = 𝑔(𝑓(𝑚)⊗ 𝑛)

resulting in the same morphism.
2. Let 𝑓 : 𝑁 → 𝑁 ′ a homomorphism. Define 𝑓* : Hom𝑅 (𝑀 ⊗𝑁 ′, 𝐾) →

Hom𝑅 (𝑀 ⊗𝑁,𝐾) linearly extending the following relation on pure tensors:

𝑓*(𝑔)(𝑚⊗ 𝑛) = 𝑔(𝑚⊗ 𝑓(𝑛)), for 𝑔 ∈ Hom𝑅 (𝑀 ⊗𝑁 ′, 𝐾) ,𝑚 ∈𝑀,𝑛 ∈ 𝑁

Analogously, define 𝑓* : Hom𝑅 (𝑀,Hom𝑅 (𝑁 ′, 𝐾)) → Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾)),
by linearly extending

𝑓*(𝑔)(𝑚)(𝑛) = 𝑔(𝑚)(𝑓(𝑛)), for 𝑔 ∈ Hom𝑅 (𝑀,Hom𝑅 (𝑁 ′, 𝐾)) ,𝑚 ∈𝑀,𝑛 ∈ 𝑁
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To prove naturality in 𝑁 , consider the following diagram:

Hom𝑅 (𝑀 ⊗𝑁 ′, 𝐾 ′) Hom𝑅 (𝑀 ⊗𝑁,𝐾)

Hom𝑅 (𝑁 ′ ⊗𝑀,𝐾) Hom𝑅 (𝑁 ⊗𝑀,𝐾)

Hom𝑅 (𝑁 ′,Hom𝑅 (𝑀,𝐾)) Hom𝑅 (𝑁,Hom𝑅 (𝑀,𝐾))

Bil𝑅 (𝑀,𝑁 ;𝐾) Bil𝑅 (𝑀,𝑁 ;𝐾)

Hom𝑅 (𝑀,Hom𝑅 (𝑁 ′, 𝐾)) Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾))

𝜂𝜂

𝑓*

𝐺∘𝜑𝐺′∘𝜑′

𝑓
(1)
*

𝑓
(1)
*

𝜓(1)𝜓′(1)

𝜑(2)𝜑′(2)

𝑓*

Where by 𝜓(1) : Hom𝑅 (𝑁,Hom𝑅 (𝑀,𝐾)) → Bil𝑅 (𝑀,𝑁 ;𝐾), we denote
the morphism, which sends the first argument of a bilinear map to the
first argument of the nested Hom𝑅 (∙, ∙)’s - analogously 𝜓(2), 𝜑(1) and 𝜑(2),
where we implicitly use Bil𝑅 (𝑀,𝑁 ;𝐾) ∼= Bil𝑅 (𝑁,𝑀 ;𝐾). We will show
that the above diagram is commutative, by showing that all 3 squares
commute.
(a) To show that the upper square commutes, note that ”reversed” of the

tensor products are naturally isomorphic, for commutative 𝑅. I.e. for
𝐴,𝐵 𝑅-Modules, there exists a natural isomorphism

𝜂 : 𝐴⊗𝐵 → 𝐵 ⊗ 𝐴

Since Hom𝑅 (∙, 𝐾) is a functor, defining 𝜂 := Hom𝑅 (𝜂,𝐾) makes the
upper square commute.

(b) Commutativity in the middle square is exactly the statement of 1.
(c) For commutativity of the lower square, we simply check for 𝑔 : 𝑁 ′ →

Hom𝑅 (𝑀,𝐾), 𝑚 ∈𝑀 and 𝑛 ∈ 𝑁 .

𝑓*(𝜑
′(2)(𝜓′(1)(𝑔)))(𝑚)(𝑛) = 𝜑′(2)(𝜓′(1)(𝑔))(𝑚)(𝑓(𝑛))

= 𝜓′(1)(𝑔)(𝑓(𝑛),𝑚) = 𝑔(𝑓(𝑛)(𝑚)

= 𝑓 (1)
* (𝑔)(𝑛)(𝑚) = 𝜓(1)(𝑓 (1)

* (𝑔))(𝑚,𝑛)

= 𝜑(2)(𝜓(1)(𝑓 (1)
* (𝑔)))(𝑚)(𝑛).

3. The last piece of the puzzle is naturality in 𝐾. Let ℎ : 𝐾 → 𝐾 ′ be 𝑅-linear.
We obtain

ℎ* : Hom𝑅 (𝑀 ⊗𝑁,𝐾) → Hom𝑅 (𝑀 ⊗𝑁,𝐾 ′)

𝑞 ↦→ ℎ ∘ 𝑞

8
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and

ℎ* : Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾)) → Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾 ′))

𝑡 ↦→ (𝑚 ↦→ ℎ ∘ 𝑡(𝑚)) .

We want commutativity in the diagram beneath.

Hom𝑅 (𝑀 ⊗𝑁,𝐾) Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾))

Hom𝑅 (𝑀 ⊗𝑁,𝐾 ′) Hom𝑅 (𝑀,Hom𝑅 (𝑁,𝐾 ′))

𝐺∘𝜑

𝐺′∘𝜑′
ℎ* ℎ*

(a) ℎ* ∘ 𝐺 ∘ 𝜑: Let 𝑞 ∈ Hom𝑅 (𝑀 ⊗𝑁,𝐾). Then 𝑞1 := (𝐺 ∘ 𝜑)(𝑞) is
the map such that for all 𝑚 ∈ 𝑀 , 𝑞1(𝑚)(𝑛) = 𝑞(𝑚 ⊗ 𝑛). Similarly,
ℎ*𝑞1 is the homomorphism that satisfies for all 𝑚 ∈𝑀 : (ℎ*𝑞1)(𝑚) =
(𝑛 ↦→ (ℎ ∘ 𝑞1(𝑚)) (𝑛)). Hence the resulting element in the bottom right
module is given by the map that to any 𝑚 ∈𝑀 associates the linear
map 𝑛 ↦→ ℎ (𝑞1(𝑚)(𝑛)) = ℎ (𝑞(𝑚⊗ 𝑛)).

(b) 𝐺′ ∘ 𝜑′ ∘ ℎ*: Let 𝑞 ∈ Hom𝑅 (𝑀 ⊗𝑁,𝐾). Then 𝑞2 := ℎ*𝑞 is the map
defined on pure tensors by 𝑚⊗ 𝑛 ↦→ ℎ (𝑞(𝑚⊗ 𝑛)) ∈ 𝐾 ′. We compute
that (𝐺′ ∘ 𝜑′)(𝑞2) is the map that maps 𝑚 ∈𝑀 to the homomorphism

𝑛 ↦→ 𝑞2(𝑚⊗ 𝑛) = ℎ (𝑞(𝑚⊗ 𝑛)) .

We showed that the above diagram commutes, which concludes the proof.
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Problem 4

by Sina Keller and Tristan Lovsin

4a). Let’s restate the exercise again, but using 𝐹,𝐺 and 𝐻 for using the result
again in b).
Let

(3) 0 → 𝐹
𝛼−→ 𝐺

𝛽−→ 𝐻 → 0

be an exact sequence of 𝑅-Modules and 𝑁 a free 𝑅-Module.
We want to show that the sequence

(4) 0 → 𝐹 ⊗𝑅 𝑁
𝛼⊗𝑖𝑑𝑁−−−−→ 𝐺⊗𝑅 𝑁

𝛽⊗𝑖𝑑𝑁−−−−→ 𝐻 ⊗𝑅 𝑁 → 0

is exact.
We want to show the following things:

𝑖) 𝛼⊗ 𝑖𝑑𝑁 is injective
𝑖𝑖) 𝛽 ⊗ 𝑖𝑑𝑁 is surjective
𝑖𝑖𝑖) Im(𝛼⊗ 𝑖𝑑𝑁) = Ker(𝛽 ⊗ 𝑖𝑑𝑁)

proof of 𝑖). Since 𝑁 is free it has a basis. Let 𝒩 := { 𝑛1 | 𝑖 ∈ ℐ} be this
(potentially infinite) basis. Then we have an isomorphism 𝐹 ⊗𝑁 ∼=

⨁︀
𝑛∈𝒩 𝐹 and

we can write each element in 𝐹 ⊗𝑁 as a unique linear combination of 𝑓𝑖 ⊗ 𝑛𝑖 for
𝑛𝑖 ∈ 𝒩 .
So let

∑︀
𝑖∈ℐ 𝑓𝑖 ⊗ 𝑛𝑖 ∈ Ker(𝛼⊗ 𝑖𝑑𝑁) be arbitrary. Since 𝒩 is a basis only finitely

many 𝑓𝑖 are non zero and we can thus write
∑︀

𝑖∈𝒥 𝑓𝑖 ⊗ 𝑛𝑖 for some finite index set
𝒥 . Since it is in the kernel we have 𝛼⊗ 𝑖𝑑𝑁 (

∑︀
𝑖∈𝒥 𝑓𝑖⊗ 𝑛𝑖) =

∑︀
𝑖∈𝒥 𝛼(𝑓𝑖)⊗ 𝑛𝑖 = 0.

We note that elements of the form 𝛼(𝑓𝑖)⊗𝑛𝑖 in 𝐺⊗𝑁 ∼=
⨁︀

𝑛∈𝒩 𝐺 also build unique
linear combinations of elements and thus

∑︀
𝑖∈𝒥 𝛼(𝑓𝑖)⊗𝑛𝑖 = 0 ⇐⇒ 𝛼(𝑓𝑖)⊗𝑛𝑖 = 0

∀𝑖. This means there are index sets 𝒜,ℬ with 𝒜 ∪ ℬ = 𝒥 such that 𝛼(𝑓𝑘) = 0 for
all 𝑘 ∈ 𝒜 and 𝑖𝑑𝑁 (𝑛𝑗) = 0 for all 𝑗 ∈ ℬ. Since 𝛼 is injective 𝛼(𝑓𝑘) = 0 ⇐⇒ 𝑓𝑘 = 0
and 𝑖𝑑𝑁(𝑛𝑗) = 0 ⇐⇒ 𝑛𝑗 = 0 1. Thus the preimage

∑︀
𝑖∈𝒥 𝑓𝑖 ⊗ 𝑛𝑖 = 0. Because

we took an arbitrary element in the kernel and showed that it is equal to zero we
conclude that 𝛼⊗ 𝑖𝑑𝑁 is injective.

□

proof of 𝑖𝑖) and 𝑖𝑖𝑖). This follows from Problem 2a). □

4b). We note that 𝐶𝑖(𝑋) is a free Z-Module and each abelian group is a Z-Module.
By using the fact that every 𝐶𝑖(𝑋) is free abelian and changing 𝑁 to 𝐶𝑖(𝑋) in
equation (4) in a) for every 𝑖 we obtain a SES of chain complexes

(5) 0 → 𝐹 ⊗Z 𝐶*(𝑋)
𝛼⊗𝑖𝑑𝐶*(𝑋)−−−−−−→ 𝐺⊗Z 𝐶*(𝑋)

𝛽⊗𝑖𝑑𝐶*(𝑋)−−−−−−→ 𝐻 ⊗Z 𝐶*(𝑋) → 0.

Using the LES-Theorem we obtain a LES

(6) · · · → 𝐻𝑛(𝑋;𝐹 )
𝛼*−→ 𝐻𝑛(𝑋;𝐺)

𝛽*−→ 𝐻𝑛(𝑋;𝐻)
𝜕*−→ . . .

1Since 𝑛𝑗 are basis elements 𝑛𝑗 ̸= 0 for all 𝑗 ∈ ℐ we are never in this case, but it was added
for the sake of completeness.
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4c). We remember that the sequence

(7) 0 → Z 𝑓−→ Z 𝑔−→ Z/𝑛Z → 0

is exact, with 𝑓 being the multiplication with 𝑛 and 𝑔 given by 1 ↦→ [1].
Now plugging this into the LES (6) we get from part b) the following LES:
(8)

. . .→ 𝐻𝑖(𝑋;Z)
𝑓*,𝑖−−→ 𝐻𝑖(𝑋;Z) 𝑔*−→ 𝐻𝑖(𝑋;Z/𝑛Z) 𝜕−→ 𝐻𝑖−1(𝑋;Z)

𝑓*,𝑖−1−−−→ 𝐻𝑖−1(𝑋;Z) −→ . . .

From any LES we can extract a SES in the following way:
Let

(9) . . .→ 𝐴
𝛽−→ 𝐵

𝛾−→ 𝐶
𝛿−→ 𝐷 −→ . . .

be a LES.
Then we get

(10) 0 → 𝐵/Im(𝛽)
𝛾−→ 𝐶

𝛿−→ Im(𝛿) → 0.

Since Im(𝛽) = Ker(𝛾), the induced map 𝛾 is an isomorphism between 𝐵/Im(𝛽)
and Im(𝛾) and therefore injective. Clearly 𝛿 maps surjectively onto its image,

therefore 𝛿 the map induced by 𝛿 is surjective. The exactness at 𝐶 follows from
the exactness at 𝐶 in the LES (9).
Now realize that 𝑓*,𝑖−1 is also the multiplication with 𝑛 and therefore Ker(𝑓*,𝑖−1)
is exactly Tors𝑛(𝐻𝑖−1(𝑋;Z)). Due to exactness we have:

(11) Im(𝜕) = Ker(𝑓*,𝑖−1) = Tors𝑛(𝐻𝑖−1(𝑋;Z)).

Using Im(𝑓*,𝑖) = 𝑛𝐻𝑖(𝑋;Z) and (11) we can extract the following SES from (8):

(12) 0 → 𝐻𝑖(𝑋;Z)/𝑛𝐻𝑖(𝑋;Z) → 𝐻𝑖(𝑋;Z/𝑛Z) → Tors𝑛(𝐻𝑖−1(𝑋;Z)) → 0.

Problem 5

no solutions for starred problems
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