Problem 1

by Naomi Rosenberg
a).

Version 1: Explicitly constructing maps.
Claim 1. $\mathbb{Z} / n \mathbb{Z} \otimes \mathbb{Z} / m \mathbb{Z}=\mathbb{Z} / d \mathbb{Z}$, where $d=\operatorname{gcd}(m, n)$.
Proof. Consider the following diagram:

where

$$
\begin{gathered}
\beta: \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z} \times \mathbb{Z} / d \mathbb{Z},\left(k_{1}+m \mathbb{Z}, k_{2}+n \mathbb{Z}\right) \mapsto\left(k_{1}+d \mathbb{Z}, k_{2}+d \mathbb{Z}\right), \text { and } \\
\alpha: \mathbb{Z} / d \mathbb{Z} \times \mathbb{Z} / d \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z},\left(k_{1}+d \mathbb{Z}, k_{2}+d \mathbb{Z}\right) \mapsto k_{1} k_{2}+d \mathbb{Z}
\end{gathered}
$$

Here, we used that β is well-defined since d is a divisor of both m, and n. Note that β is linear and α is bilinear, thus the composition of α and β is bilinear. With this in mind, define

$$
f=\alpha \circ \beta: \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z},\left(k_{1}+m \mathbb{Z}, k_{2}+n \mathbb{Z}\right) \mapsto k_{1} k_{2}+d \mathbb{Z}
$$

The map f is surjective as a composition of two surjective maps and bilinear. Indeed,
$\cdot\left(k_{1}+k_{1}^{\prime}+m \mathbb{Z}, k_{2}+n \mathbb{Z}\right) \mapsto\left(k_{1}+k_{1}^{\prime}\right) k_{2}+d \mathbb{Z}=k_{1} k_{2}+d \mathbb{Z}+k_{1}^{\prime} k_{2}+d \mathbb{Z}=$ $f\left(k_{1}+m \mathbb{Z}, k_{2}+n \mathbb{Z}\right)+f\left(k_{1}^{\prime}+m \mathbb{Z}, k_{2}+n \mathbb{Z}\right)$ and similar for the right argument, and
$\cdot\left(\lambda k_{1}+m \mathbb{Z}, k_{2}+n \mathbb{Z}\right) \mapsto\left(\lambda k_{1}\right) k_{2}+d \mathbb{Z}=\lambda\left(k_{1} k_{2}\right)+d \mathbb{Z}=\lambda f\left(k_{1}+m \mathbb{Z}, k_{2}+n \mathbb{Z}\right)$, and analogously if λ appears on the right side.
Thus, by the universal property of the tensor product, there exists a (unique) homomorphism $\varphi: \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z}$, such that $f=\varphi \circ \mu$ (see figure below).

It is now sufficient to show that φ is an isomorphism. In order to prove this, we are going to construct its inverse.
Note that $\mathbb{Z} / d \mathbb{Z}=\langle[1]\rangle$, where we denote by $[1]$ the equivalence class $1+d \mathbb{Z}$ of 1 in $\mathbb{Z} / d \mathbb{Z}$.

Define

$$
\psi: \mathbb{Z} / d \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}, \quad[1] \mapsto[1] \otimes[1]
$$

We need to check that ψ sends $[0]=[d]$ to $0 \in \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$. For this, we need that \mathbb{Z} is a principal ideal domain as this implies the existence of unique elements $u, v \in \mathbb{Z}$ such that $d=u m+v n$. Thus, $\psi([0])=\psi([d])=[d]([1] \otimes[1])=$ $[u m+v n]([1] \otimes[1])=[u m] \otimes[1]+[1] \otimes[v n]=[0] \otimes[1]+[1] \otimes[0]=[0] \in \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$. Finally, we show that φ and ψ are inverse to each other: For any $[k] \in \mathbb{Z} / d \mathbb{Z}$ and for every generator $[a] \otimes[b]$ of $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$, the following holds:

$$
\begin{aligned}
& \cdot \varphi \circ \psi([k])=\varphi([k]([1] \otimes[1]))=\varphi([k] \otimes[1])=[k][1]=[k] \text {, and } \\
& \cdot \psi \circ \varphi([a] \otimes[b])=\varphi([a][b])=[a][b]([1] \otimes[1])=[a] \otimes[b] .
\end{aligned}
$$

Thus, ψ is indeed the inverse of φ and therefore, we can conclude that φ is an isomorphism.

Version 2: Using Problem 1.b). By Problem 1.b), for every ideal $J \subseteq R$, there exists an isomorphism $(R / J) \otimes M \rightarrow M / J M$ with $(r+J) \otimes x \mapsto r x+J M$. Thus, setting $R=\mathbb{Z}, J=n \mathbb{Z}$, and $M=\mathbb{Z} / m \mathbb{Z}$ yields

$$
\begin{aligned}
\mathbb{Z} / n \mathbb{Z} \otimes \mathbb{Z} / m \mathbb{Z} & \stackrel{1 . \mathfrak{b}}{\cong}(\mathbb{Z} / m \mathbb{Z}) /((n \mathbb{Z})(\mathbb{Z} / m \mathbb{Z})) \\
& \cong(\mathbb{Z} / m \mathbb{Z}) /((n \mathbb{Z}+m \mathbb{Z}) / m \mathbb{Z}) \\
& \cong \mathbb{Z} /(n \mathbb{Z}+m \mathbb{Z}) \\
& \cong \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z} .
\end{aligned}
$$

b). In the following, we are going to denote the equivalence classes in R / J by [.] and the equivalence classes in $M / J M$ by $\{$.$\} . Consider the following diagram:$

where $f: R / J \times M \rightarrow M / J M,([r], m) \mapsto\{r m\}$. The map f is surjective and bilinear, thus, by the universal property of the tensor product, there exists a (unique) homomorphism $\varphi: R / J \otimes M \rightarrow M / J M$. Therefore, in order to prove the statement from the exercise, it is sufficient to find an inverse of φ.
Define $\bar{\psi}: M \rightarrow R / J \otimes M, m \mapsto[1] \otimes m$ and note that $J M \subseteq \operatorname{ker}(\bar{\psi})$.
Hence, there exists a homomorphism $\psi: M / J M \rightarrow R / J \otimes M,\{m\} \mapsto[1] \otimes m$, which is precisely the inverse of φ (because $\varphi \circ \psi(\{m\})=\varphi([1] \otimes m)=\{m\}$, and $\psi \circ \varphi(([r], m))=\psi(\{r m\})=[1] \otimes r m=[r] \otimes m)$ and consequently, φ is an isomorphism.

Exercise 2.
Let $O \longrightarrow M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime} \longrightarrow 0$ be a SES of R-mods
Let N be an R-module
(a) Want to show that the induced sequence

$$
M_{R}^{\prime \otimes} N \xrightarrow{\alpha \otimes 1} M \underset{R}{\otimes} N \xrightarrow{\beta \otimes 1} M^{\prime \prime \otimes} N \longrightarrow 0
$$

Exactness is equavalout to holing an isomorphism
(1) Note that $(\beta \otimes \mathbb{1}) \cdot(\alpha \otimes \mathcal{1})=\beta \circ \alpha \otimes \mathbb{1}=0$ since $\beta \circ \alpha=0$ $\Longrightarrow M \otimes N \xrightarrow{\beta \otimes 1} M^{\prime \prime \otimes N \text { factors through } \frac{M \otimes N}{\operatorname{Im}(\alpha \otimes 1)} \text { (} M^{\frac{M}{2}} \text {. }}$
(2) Construct inverse to (Dy the universal property, we hoed a bilinear map $M^{\prime \prime} \times N \xrightarrow{\varphi} M \otimes N$
for $\left(m^{\prime \prime}, n\right) \in M^{\prime \prime} \times N$, let $m \in M$ be st.

$$
\beta(m)=m^{\prime \prime}
$$

Define $\varphi\left(m^{\prime \prime}, n\right)=m \otimes n$. It is well-defived. if $\tilde{m} \in M$ is another Gey exactness of $: \tilde{m}-m=\alpha\left(m^{\prime}\right)$ for some $m^{\prime} \in M^{\prime}$

$$
\Rightarrow \widetilde{m} \otimes n-m \otimes n=(\tilde{m}-m) \otimes n=\alpha\left(m^{\prime}\right) \otimes n=0
$$

$M^{\prime \otimes} N \xrightarrow{M_{R} N} \frac{\tilde{\operatorname{Im}(\alpha \otimes 1)}}{\operatorname{In}}$

$$
\begin{aligned}
& \widetilde{\varphi} \cdot(\beta \otimes \mathbb{1})(m \otimes n)=\widetilde{\varphi}(\beta(m) \otimes n)=m \otimes n \\
& \beta \otimes 1 \cdot \bar{\varphi}\left(m^{\prime \prime} \otimes n\right)=\beta(m) \otimes n=m^{\prime \prime} \otimes n
\end{aligned}
$$

(6) Consider first

$$
O \rightarrow \operatorname{Hom}_{R}\left(N ; M^{\prime}\right) \xrightarrow{\alpha_{*}} \operatorname{Hom}_{R}(N, M) \xrightarrow{\beta_{*}} \operatorname{Hom}_{R}\left(N, M^{\prime \prime}\right)
$$

(1) Note that $M^{\prime}=\operatorname{ker}(\beta)$
(a) Let $f \in \operatorname{Hom}_{R}(N, M)$ be st. $\beta_{*}(f)=0$. \Rightarrow the composite $N \xrightarrow{f} M \xrightarrow{\beta} M^{\prime \prime}$ is trivial
\Longrightarrow by the universal property of the kernel $f: N \rightarrow M$ lifts to $\widetilde{f}: N \longrightarrow \operatorname{ker}(\beta)=M^{\prime}$.
(3) Let $f \in \operatorname{Hom}_{R}\left(N, M^{\prime}\right)$ be st. $\alpha_{\infty}(f)=0$
\Longrightarrow the composite $N \xrightarrow{f} M^{\prime} \xrightarrow{\alpha} M$ is trivial Since α is injective, f has to be trivial
Consider $0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, N\right) \xrightarrow{\beta^{*}} \operatorname{Hom}_{R}(M, N) \xrightarrow{\alpha^{*}} \operatorname{Hom}_{R}\left(M^{\prime}, N\right)$
(1) Let $f \in \operatorname{Hom}_{R}(M, N)$ be st $\alpha^{*}(f)=0$
\Rightarrow the composite $M^{\prime \alpha} M \xrightarrow{f} N$ is trivial f for o
$\left(L^{\prime} N\right)^{8}$

(2) Let $f \in \operatorname{Hom}_{R}\left(M^{\prime \prime}, N\right)$ be st. $\beta^{*}(f)=0$
\Rightarrow the composite $M \xrightarrow{\beta} M^{\prime \prime} \xrightarrow{ } N$ is trivial.
Since β is surjective, f has to be trivial.
(c) Consider the SES: $0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$.
$\{\underset{2}{\otimes} \mathbb{2} / 22$
$0 \rightarrow 2 / 22 \rightarrow 2 / 22 \cong \mathbb{Z} / 2 \mathbb{C} \rightarrow 0$
nontrivial by (a)
\Rightarrow the sequence. is wot short exact

Taking lath $\mathrm{Hom}_{z}(2 / 22,-) \& \mathrm{Hom}_{2}(, 2 / 2<)$ of lead to

$$
\begin{aligned}
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \rightarrow & \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 \\
& { }_{\text {nontrivial }}
\end{aligned}
$$

\Rightarrow the sequence is not short exact.

Problem 3

by Noah Stäuble $£$ Philip Sandt

We start by a well-celebrated relationship from commutative algebra. We have a bijection (even an R-linear isomorphism)

$$
\begin{gather*}
\phi: \mathfrak{H o m}_{R}\left(M \otimes_{R} N, K\right) \rightarrow \mathfrak{B i l}_{R}(M, N ; K), \tag{1}\\
f \mapsto((m, n) \mapsto f(m \otimes n))
\end{gather*}
$$

In order to know that this map is well-defined (i.e. that we land in the bilinear maps) we can argue via the universal property of the tensor product. For the bijectivity we provide an inverse

$$
\begin{equation*}
\psi: \mathfrak{B i l}_{R}(M, N ; K) \rightarrow \mathfrak{H o m}_{R}\left(M \otimes_{R} N, K\right) \tag{2}
\end{equation*}
$$

that is obtained by sending g to the map linearly extending

$$
m \otimes n \mapsto g(m, n) .
$$

We check that ϕ is linear. Let $a \in R, f, g \in \mathfrak{H o m}_{R}(M \otimes N, K)$. Then, ϕ maps $a f+g$ to the map that sends $(m, n) \in M \times N$ to $a f(m \otimes n)+g(m \otimes n)$. At the same time, $a \phi(f)+\phi(g)$ is the map that sends (m, n) to $a \phi(f)(m, n)+\phi(g)(m, n)=$ $a f(m \otimes n)+g(m \otimes n)$. Moreover, $(\psi \circ \phi)(f)$ maps $m \otimes n$ to $\phi(f)(m, n)=f(m \otimes n)$ And, $(\phi \circ \psi)(h)$ maps (m, n) to $\psi(h)(m \otimes n)=h(m, n)$ which implies that ϕ, ψ are mutually inverse, using that pure tensors generate the tensor product.
We are also going to use the result from commutative algebra that states that there is an isomorphism

$$
F: \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}(N, K)\right) \rightarrow \mathfrak{B i l}_{R}(M, N ; K)
$$

such that

$$
F(f)(m, n)=f(m)(n)
$$

with inverse

$$
G: \mathfrak{B i l}_{R}(M, N ; K) \rightarrow \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}(N, K)\right)
$$

such that $G(g)(m)$ is given by $n \mapsto g(m, n)$. By composing the two, we get an isomorphism

$$
G \circ \phi: \mathfrak{H o m}_{R}\left(M \otimes_{R} N, K\right) \rightarrow \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}(N, K)\right)
$$

It remains to show that the isomorphism is natural. Following the example, we start by showing that the isomorphism is natural in M. For what follows, let $M^{\prime}, N^{\prime}, K^{\prime}$ be R-modules. We denote for any map t between functions between R-modules by t^{\prime} the map that does the same as t but where the appropriate module A has been replaced by A^{\prime}.

1. Let $f: M \rightarrow M^{\prime}$ a homomorphism. We define $f_{*}: \mathfrak{H o m}_{R}\left(M^{\prime} \otimes N, K\right) \rightarrow$ $\mathfrak{H o m}{ }_{R}(M \otimes N, K)$ by pre-composing with f in M. I.e. by linearly extending the following relation on pure tensors:

$$
f_{*}(g)(m \otimes n)=g(f(m) \otimes n), \text { for } g \in \mathfrak{H o m}_{R}\left(M^{\prime} \otimes N, K\right), m \in M, n \in N
$$

Analogously, define $f_{*}: \mathfrak{H o m}_{R}\left(M^{\prime}, \mathfrak{H o m}_{R}(N, K)\right) \rightarrow \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}(N, K)\right)$, by linearly extending

$$
f_{*}(g)(m)(n)=g(f(m))(n), \text { for } g \in \mathfrak{H o m}_{R}\left(M^{\prime}, \mathfrak{H o m}_{R}(N, K)\right), m \in M, n \in N
$$

Naturality is then equivalent to commutativity of the following diagram.

$$
\begin{gathered}
\mathfrak{H o m}_{R}(M \otimes N, K) \xrightarrow{G \circ \phi} \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}(N, K)\right) \\
f_{*} \uparrow \\
\mathfrak{H o m}_{R}\left(M^{\prime} \otimes N, K\right) \xrightarrow{G_{*}^{\prime} \circ \phi^{\prime}} \mathfrak{H o m}_{R}\left(M^{\prime}, \mathfrak{H o m}_{R}(N, K)\right)
\end{gathered}
$$

Which we will prove by showing equality on pure tensors.
I.e. we want to show, that $G \circ \phi \circ f_{*}(g)(m)(n)=f_{*} \circ G^{\prime} \circ \phi^{\prime}(g)(m)(n)$, for all homomorphisms $g \in \mathfrak{H o m}_{R}\left(M^{\prime} \otimes N, K\right)$ and elements $m \in M$ and $n \in N$. Let us first consider the upper part of the diagram.

$$
\begin{array}{r}
G \circ \phi \circ f_{*}(g)(m)(n)=G\left(\phi\left(f_{*}(g)\right)\right)(m)(n) \\
=\phi\left(f_{*}(g)\right)(m, n)=f_{*}(g)(m \otimes n)=g(f(m) \otimes n)
\end{array}
$$

In other words, for $m \in M, G \circ \phi \circ f_{*}(g)(m)$ is the morphism $n \mapsto$ $(g(f(m) \otimes n))$ in $\mathfrak{H o m}_{R}(N, K)$. On the other hand.

$$
\begin{array}{r}
f_{*} \circ G^{\prime} \circ \phi^{\prime}(g)(m)(n)=f_{*}\left(G^{\prime}\left(\phi^{\prime}(g)\right)\right)(m)(n) \\
=G^{\prime}\left(\phi^{\prime}(g)\right)(f(m))(n)=\phi^{\prime}(g)(f(m), n)=g(f(m) \otimes n)
\end{array}
$$

resulting in the same morphism.
2. Let $f: N \rightarrow N^{\prime}$ a homomorphism. Define $f_{*}: \mathfrak{H o m}_{R}\left(M \otimes N^{\prime}, K\right) \rightarrow$ $\mathfrak{H o m}_{R}(M \otimes N, K)$ linearly extending the following relation on pure tensors:

$$
f_{*}(g)(m \otimes n)=g(m \otimes f(n)), \text { for } g \in \mathfrak{H o m}_{R}\left(M \otimes N^{\prime}, K\right), m \in M, n \in N
$$

Analogously, define $f_{*}: \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}\left(N^{\prime}, K\right)\right) \rightarrow \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}(N, K)\right)$, by linearly extending

$$
f_{*}(g)(m)(n)=g(m)(f(n)), \text { for } g \in \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}\left(N^{\prime}, K\right)\right), m \in M, n \in N
$$

To prove naturality in N, consider the following diagram:

Where by $\psi^{(1)}: \mathfrak{H o m}_{R}\left(N, \mathfrak{H o m}_{R}(M, K)\right) \rightarrow \mathfrak{B i l}_{R}(M, N ; K)$, we denote the morphism, which sends the first argument of a bilinear map to the first argument of the nested $\mathfrak{H o m}_{R}(\bullet, \bullet)$'s - analogously $\psi^{(2)}, \phi^{(1)}$ and $\phi^{(2)}$, where we implicitly use $\mathfrak{B i l}(M, N ; K) \cong \mathfrak{B i l}_{R}(N, M ; K)$. We will show that the above diagram is commutative, by showing that all 3 squares commute.
(a) To show that the upper square commutes, note that "reversed" of the tensor products are naturally isomorphic, for commutative R. I.e. for $A, B R$-Modules, there exists a natural isomorphism

$$
\bar{\eta}: A \otimes B \rightarrow B \otimes A
$$

Since $\mathfrak{H o m}_{R}(\bullet, K)$ is a functor, defining $\eta:=\mathfrak{H o m}_{R}(\bar{\eta}, K)$ makes the upper square commute.
(b) Commutativity in the middle square is exactly the statement of 1.
(c) For commutativity of the lower square, we simply check for $g: N^{\prime} \rightarrow$ $\mathfrak{H o m}_{R}(M, K), m \in M$ and $n \in N$.

$$
\begin{array}{r}
f_{*}\left(\phi^{(2)}\left(\psi^{\prime(1)}(g)\right)\right)(m)(n)=\phi^{\prime(2)}\left(\psi^{\prime(1)}(g)\right)(m)(f(n)) \\
=\psi^{\prime(1)}(g)(f(n), m)=g(f(n)(m) \\
=f_{*}^{(1)}(g)(n)(m)=\psi^{(1)}\left(f_{*}^{(1)}(g)\right)(m, n) \\
=\phi^{(2)}\left(\psi^{(1)}\left(f_{*}^{(1)}(g)\right)\right)(m)(n) .
\end{array}
$$

3. The last piece of the puzzle is naturality in K. Let $h: K \rightarrow K^{\prime}$ be R-linear. We obtain

$$
\begin{gathered}
h^{*}: \mathfrak{H o m}_{R}(M \otimes N, K) \rightarrow \mathfrak{H o m}_{R}\left(M \otimes N, K^{\prime}\right) \\
q \mapsto h \circ q
\end{gathered}
$$

and

$$
\begin{aligned}
& h^{*}: \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}(N, K)\right) \rightarrow \mathfrak{H o m}_{R}\left(M, \mathfrak{H o m}_{R}\left(N, K^{\prime}\right)\right) \\
& t \mapsto(m \mapsto h \circ t(m)) .
\end{aligned}
$$

We want commutativity in the diagram beneath.

(a) $h^{*} \circ G \circ \phi$: Let $q \in \mathfrak{H o m}_{R}(M \otimes N, K)$. Then $q_{1}:=(G \circ \phi)(q)$ is the map such that for all $m \in M, q_{1}(m)(n)=q(m \otimes n)$. Similarly, $h^{*} q_{1}$ is the homomorphism that satisfies for all $m \in M:\left(h^{*} q_{1}\right)(m)=$ $\left(n \mapsto\left(h \circ q_{1}(m)\right)(n)\right)$. Hence the resulting element in the bottom right module is given by the map that to any $m \in M$ associates the linear $\operatorname{map} n \mapsto h\left(q_{1}(m)(n)\right)=h(q(m \otimes n))$.
(b) $G^{\prime} \circ \phi^{\prime} \circ h^{*}$: Let $q \in \mathfrak{H o m}_{R}(M \otimes N, K)$. Then $q_{2}:=h^{*} q$ is the map defined on pure tensors by $m \otimes n \mapsto h(q(m \otimes n)) \in K^{\prime}$. We compute that $\left(G^{\prime} \circ \phi^{\prime}\right)\left(q_{2}\right)$ is the map that maps $m \in M$ to the homomorphism

$$
n \mapsto q_{2}(m \otimes n)=h(q(m \otimes n)) .
$$

We showed that the above diagram commutes, which concludes the proof.

Problem 4

by Sina Keller and Tristan Lovsin

4a). Let's restate the exercise again, but using F, G and H for using the result again in b).
Let

$$
\begin{equation*}
0 \rightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \rightarrow 0 \tag{3}
\end{equation*}
$$

be an exact sequence of R-Modules and N a free R-Module.
We want to show that the sequence

$$
\begin{equation*}
0 \rightarrow F \otimes_{R} N \xrightarrow{\alpha \otimes i d_{N}} G \otimes_{R} N \xrightarrow{\beta \otimes i d_{N}} H \otimes_{R} N \rightarrow 0 \tag{4}
\end{equation*}
$$

is exact.
We want to show the following things:
i) $\alpha \otimes i d_{N}$ is injective
ii) $\beta \otimes i d_{N}$ is surjective
iii) $\operatorname{Im}\left(\alpha \otimes i d_{N}\right)=\operatorname{Ker}\left(\beta \otimes i d_{N}\right)$
proof of i). Since N is free it has a basis. Let $\mathcal{N}:=\left\{n_{1} \mid i \in \mathcal{I}\right\}$ be this (potentially infinite) basis. Then we have an isomorphism $F \otimes N \cong \bigoplus_{n \in \mathcal{N}} F$ and we can write each element in $F \otimes N$ as a unique linear combination of $f_{i} \otimes n_{i}$ for $n_{i} \in \mathcal{N}$.
So let $\sum_{i \in \mathcal{I}} f_{i} \otimes n_{i} \in \operatorname{Ker}\left(\alpha \otimes i d_{N}\right)$ be arbitrary. Since \mathcal{N} is a basis only finitely many f_{i} are non zero and we can thus write $\sum_{i \in \mathcal{J}} f_{i} \otimes n_{i}$ for some finite index set \mathcal{J}. Since it is in the kernel we have $\alpha \otimes i d_{N}\left(\sum_{i \in \mathcal{J}} f_{i} \otimes n_{i}\right)=\sum_{i \in \mathcal{J}} \alpha\left(f_{i}\right) \otimes n_{i}=0$. We note that elements of the form $\alpha\left(f_{i}\right) \otimes n_{i}$ in $G \otimes N \cong \bigoplus_{n \in \mathcal{N}} G$ also build unique linear combinations of elements and thus $\sum_{i \in \mathcal{J}} \alpha\left(f_{i}\right) \otimes n_{i}=0 \Longleftrightarrow \alpha\left(f_{i}\right) \otimes n_{i}=0$ $\forall i$. This means there are index sets \mathcal{A}, \mathcal{B} with $\mathcal{A} \cup \mathcal{B}=\mathcal{J}$ such that $\alpha\left(f_{k}\right)=0$ for all $k \in \mathcal{A}$ and $i d_{N}\left(n_{j}\right)=0$ for all $j \in \mathcal{B}$. Since α is injective $\alpha\left(f_{k}\right)=0 \Longleftrightarrow f_{k}=0$ and $i d_{N}\left(n_{j}\right)=0 \Longleftrightarrow n_{j}=0{ }^{1}$. Thus the preimage $\sum_{i \in \mathcal{J}} f_{i} \otimes n_{i}=0$. Because we took an arbitrary element in the kernel and showed that it is equal to zero we conclude that $\alpha \otimes i d_{N}$ is injective.
proof of ii) and $i i i$). This follows from Problem 2a).
4b). We note that $C_{i}(X)$ is a free \mathbb{Z}-Module and each abelian group is a \mathbb{Z}-Module. By using the fact that every $C_{i}(X)$ is free abelian and changing N to $C_{i}(X)$ in equation (4) in a) for every i we obtain a SES of chain complexes

$$
\begin{equation*}
0 \rightarrow F \otimes_{\mathbb{Z}} C_{*}(X) \xrightarrow{\alpha \otimes i d_{C_{*}(X)}} G \otimes_{\mathbb{Z}} C_{*}(X) \xrightarrow{\beta \otimes i d_{C_{*}(X)}} H \otimes_{\mathbb{Z}} C_{*}(X) \rightarrow 0 \tag{5}
\end{equation*}
$$

Using the LES-Theorem we obtain a LES

$$
\begin{equation*}
\cdots \rightarrow H_{n}(X ; F) \xrightarrow{\alpha_{*}} H_{n}(X ; G) \xrightarrow{\beta_{*}} H_{n}(X ; H) \xrightarrow{\partial_{*}} \ldots \tag{6}
\end{equation*}
$$

[^0]4c). We remember that the sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{Z} / n \mathbb{Z} \rightarrow 0 \tag{7}
\end{equation*}
$$

is exact, with f being the multiplication with n and g given by $1 \mapsto[1]$.
Now plugging this into the LES (6) we get from part b) the following LES:
$\ldots \rightarrow H_{i}(X ; \mathbb{Z}) \xrightarrow{f_{*, i}} H_{i}(X ; \mathbb{Z}) \xrightarrow{g_{*}} H_{i}(X ; \mathbb{Z} / n \mathbb{Z}) \xrightarrow{\partial} H_{i-1}(X ; \mathbb{Z}) \xrightarrow{f_{*, i-1}} H_{i-1}(X ; \mathbb{Z}) \rightarrow \ldots$
From any LES we can extract a SES in the following way:
Let

$$
\begin{equation*}
\ldots \rightarrow A \xrightarrow{\beta} B \xrightarrow{\gamma} C \xrightarrow{\delta} D \rightarrow \ldots \tag{9}
\end{equation*}
$$

be a LES.
Then we get

$$
\begin{equation*}
0 \rightarrow B / \operatorname{Im}(\beta) \xrightarrow{\tilde{q}} C \xrightarrow{\tilde{\delta}} \operatorname{Im}(\delta) \rightarrow 0 . \tag{10}
\end{equation*}
$$

Since $\operatorname{Im}(\beta)=\operatorname{Ker}(\gamma)$, the induced map $\tilde{\gamma}$ is an isomorphism between $B / \operatorname{Im}(\beta)$ and $\operatorname{Im}(\gamma)$ and therefore injective. Clearly δ maps surjectively onto its image, therefore $\tilde{\delta}$ the map induced by δ is surjective. The exactness at C follows from the exactness at C in the LES (9).
Now realize that $f_{*, i-1}$ is also the multiplication with n and therefore $\operatorname{Ker}\left(f_{*, i-1}\right)$ is exactly $\operatorname{Tors}_{n}\left(H_{i-1}(X ; \mathbb{Z})\right)$. Due to exactness we have:

$$
\begin{equation*}
\operatorname{Im}(\partial)=\operatorname{Ker}\left(f_{*, i-1}\right)=\operatorname{Tors}_{n}\left(H_{i-1}(X ; \mathbb{Z})\right) \tag{11}
\end{equation*}
$$

Using $\operatorname{Im}\left(f_{*, i}\right)=n H_{i}(X ; \mathbb{Z})$ and (11) we can extract the following SES from (8):

$$
\begin{equation*}
0 \rightarrow H_{i}(X ; \mathbb{Z}) / n H_{i}(X ; \mathbb{Z}) \rightarrow H_{i}(X ; \mathbb{Z} / n \mathbb{Z}) \rightarrow \operatorname{Tors}_{n}\left(H_{i-1}(X ; \mathbb{Z})\right) \rightarrow 0 \tag{12}
\end{equation*}
$$

Problem 5

no solutions for starred problems

[^0]: ${ }^{1}$ Since n_{j} are basis elements $n_{j} \neq 0$ for all $j \in \mathcal{I}$ we are never in this case, but it was added for the sake of completeness.

