Problem 1

by Naomi Rosenberg

a).

Version 1: Explicitly constructing maps.

Claim 1. $\mathbb{Z}/n\mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}/d\mathbb{Z}$, where d = gcd(m, n).

Proof. Consider the following diagram:

where

 $\beta: \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z}, \ (k_1 + m\mathbb{Z}, k_2 + n\mathbb{Z}) \mapsto (k_1 + d\mathbb{Z}, k_2 + d\mathbb{Z}), \text{ and} \\ \alpha: \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}, \ (k_1 + d\mathbb{Z}, k_2 + d\mathbb{Z}) \mapsto k_1k_2 + d\mathbb{Z}.$

Here, we used that β is well-defined since d is a divisor of both m, and n. Note that β is linear and α is bilinear, thus the composition of α and β is bilinear. With this in mind, define

 $f = \alpha \circ \beta : \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}, (k_1 + m\mathbb{Z}, k_2 + n\mathbb{Z}) \mapsto k_1k_2 + d\mathbb{Z}.$

The map f is surjective as a composition of two surjective maps and bilinear. Indeed,

- $\cdot (k_1 + k'_1 + m\mathbb{Z}, k_2 + n\mathbb{Z}) \mapsto (k_1 + k'_1)k_2 + d\mathbb{Z} = k_1k_2 + d\mathbb{Z} + k'_1k_2 + d\mathbb{Z} = f(k_1 + m\mathbb{Z}, k_2 + n\mathbb{Z}) + f(k'_1 + m\mathbb{Z}, k_2 + n\mathbb{Z})$ and similar for the right argument, and
- $(\lambda k_1 + m\mathbb{Z}, k_2 + n\mathbb{Z}) \mapsto (\lambda k_1)k_2 + d\mathbb{Z} = \lambda(k_1k_2) + d\mathbb{Z} = \lambda f(k_1 + m\mathbb{Z}, k_2 + n\mathbb{Z}),$ and analogously if λ appears on the right side.

Thus, by the universal property of the tensor product, there exists a (unique) homomorphism $\varphi : \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}$, such that $f = \varphi \circ \mu$ (see figure below).

It is now sufficient to show that φ is an isomorphism. In order to prove this, we are going to construct its inverse.

Note that $\mathbb{Z}/d\mathbb{Z} = \langle [1] \rangle$, where we denote by [1] the equivalence class $1 + d\mathbb{Z}$ of 1 in $\mathbb{Z}/d\mathbb{Z}$.

Define

$\psi: \mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}, \ [1] \mapsto [1] \otimes [1].$

We need to check that ψ sends [0] = [d] to $0 \in \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$. For this, we need that \mathbb{Z} is a principal ideal domain as this implies the existence of unique elements $u, v \in \mathbb{Z}$ such that d = um + vn. Thus, $\psi([0]) = \psi([d]) = [d]([1] \otimes [1]) =$ $[um+vn]([1] \otimes [1]) = [um] \otimes [1]+[1] \otimes [vn] = [0] \otimes [1]+[1] \otimes [0] = [0] \in \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$. Finally, we show that φ and ψ are inverse to each other: For any $[k] \in \mathbb{Z}/d\mathbb{Z}$ and for every generator $[a] \otimes [b]$ of $\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$, the following holds:

$$\varphi \circ \psi([k]) = \varphi([k]([1] \otimes [1])) = \varphi([k] \otimes [1]) = [k][1] = [k], \text{ and}$$

$$\cdot \ \psi \circ \varphi([a] \otimes [b]) = \varphi([a][b]) = [a][b]([1] \otimes [1]) = [a] \otimes [b].$$

Thus, ψ is indeed the inverse of φ and therefore, we can conclude that φ is an isomorphism.

Version 2: Using Problem 1.b). By Problem 1.b), for every ideal $J \subseteq R$, there exists an isomorphism $(R/J) \otimes M \to M/JM$ with $(r+J) \otimes x \mapsto rx + JM$. Thus, setting $R = \mathbb{Z}$, $J = n\mathbb{Z}$, and $M = \mathbb{Z}/m\mathbb{Z}$ yields

$$\mathbb{Z}/n\mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z} \stackrel{\text{1.b)}}{\cong} (\mathbb{Z}/m\mathbb{Z})/((n\mathbb{Z})(\mathbb{Z}/m\mathbb{Z}))$$
$$\cong (\mathbb{Z}/m\mathbb{Z})/((n\mathbb{Z}+m\mathbb{Z})/m\mathbb{Z})$$
$$\cong \mathbb{Z}/(n\mathbb{Z}+m\mathbb{Z})$$
$$\cong \mathbb{Z}/gcd(m,n)\mathbb{Z}.$$

b). In the following, we are going to denote the equivalence classes in R/J by [.] and the equivalence classes in M/JM by {.}. Consider the following diagram:

where $f: R/J \times M \to M/JM$, $([r], m) \mapsto \{rm\}$. The map f is surjective and bilinear, thus, by the universal property of the tensor product, there exists a (unique) homomorphism $\varphi: R/J \otimes M \to M/JM$. Therefore, in order to prove the statement from the exercise, it is sufficient to find an inverse of φ .

Define $\overline{\psi}: M \to R/J \otimes M, m \mapsto [1] \otimes m$ and note that $JM \subseteq ker(\overline{\psi})$.

Hence, there exists a homomorphism $\psi : M/JM \to R/J \otimes M$, $\{m\} \mapsto [1] \otimes m$, which is precisely the inverse of φ (because $\varphi \circ \psi(\{m\}) = \varphi([1] \otimes m) = \{m\}$, and $\psi \circ \varphi(([r], m)) = \psi(\{rm\}) = [1] \otimes rm = [r] \otimes m$) and consequently, φ is an isomorphism.

Exercise 2. Let to 0 -> M' - , M - , M' - > 0 be a SES of R- mod's Let N be an R-module Exactness is equavalent to having an isomorphism $\begin{array}{cccc} \bigotimes & M \otimes N \xrightarrow{\cong} & M' \otimes N & \text{induced by } \mathcal{B} \otimes \mathcal{I} \\ & & & \\ & & \\ & &$ $Im(\omega \otimes 1i)$ (a) Note that $(\beta \otimes 1) \cdot (\alpha \otimes 1) = \beta \circ \alpha \otimes 1 = 0$ since $\beta \circ \alpha = 0$ $\implies M \otimes N \xrightarrow{\beta \otimes 1} M'' \otimes N$ factors through $\frac{M \otimes N}{R}$ $\exists m(\alpha \otimes 1)$ (2) Construct inverse to (2). By the universal property, we need a bilinear map $M'' \times N \xrightarrow{\varphi} M \otimes N$ Im(~@1i) for (m", n) ∈ M"×N, let m∈M be st $\beta(m) = m''$ Define $Q(m'',n) = m \otimes n$. It is well-defined if $\widetilde{m} \in M$ is another element st $B(\widetilde{m}) = m''$ by exactness of (m - m = x(m') for some m' CM $\widetilde{\mathsf{m}} \otimes \mathsf{n} - \mathsf{m} \otimes \mathsf{n} = (\widetilde{\mathsf{m}} - \mathsf{m}) \otimes \mathsf{n} = \mathsf{d}(\mathsf{m}') \otimes \mathsf{n} = \mathsf{O}$ $M \otimes N - \varphi$ $\rightarrow M \otimes N$ & 🐼 are impose to each other. Im(~@1) $\widetilde{\varphi} \cdot (\beta \otimes 1)(m \otimes n) = \widetilde{\varphi} (\beta(m) \otimes n) = m \otimes n$ $B\otimes \Delta \circ \mathcal{C}(m'\otimes n) = B(m) \otimes n = m''\otimes n$ 3

6 Cousidor first $\mathcal{O} \rightarrow \operatorname{Hom}_{\mathcal{R}}(\mathcal{N}, \mathcal{M}') \xrightarrow{\mathsf{K}_{\mathsf{M}}} \operatorname{Hom}_{\mathcal{R}}(\mathcal{N}, \mathcal{M}) \xrightarrow{\mathcal{D}_{\mathsf{X}}} \operatorname{Hom}_{\mathcal{R}}(\mathcal{N}, \mathcal{M}'')$ (Note that M'= ker (B) (a) Let $f \in Hom_p(N, M)$ be st. $\beta_*(f) = 0$. => the composite $N \xrightarrow{f} M \xrightarrow{B} M''$ is trivial \implies by the universal property of the kernel lifts to $\widehat{F}: \mathbb{N} \longrightarrow \ker(B) = M'$ 3 Let f & Homp (N, M') be st an(f) = 0 \Rightarrow the composite $N \stackrel{q}{\Rightarrow} M \stackrel{q}{\Rightarrow} M$ is trivial. Since a is injective, f has to be trivial Consider 0 - Homp (M", N) = Homp (M, N) - Homp (M', N) (1) Let $f \in Hom_{\mathcal{R}}(M, N)$ be st $\chi^{*}(f) = 0$ => the composite M -> M +> 15 is trivial > M +> 15 factors through $M = \frac{\pi}{r}$ canonical projection M" \Rightarrow f = f"· β = $\beta^{*}(f")$ (2) Let fe Hom_R(M", N) be st B*(f)=0 \Rightarrow the composite $M \xrightarrow{P} M' \xrightarrow{I'} N$ is trivial Since B is surjective, f has to be trivial. 4.

Consider the SES: $0 \rightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{*2} \mathbb{Z}/4\mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0$														•																					
•	$\left\{ \begin{array}{c} \bigotimes_{\mathcal{Z}} \mathcal{Z}/2\mathcal{Z} \end{array} \right\}$														•	•	•																		
•		•	•	•	•	•	•	•	•	•	•	•	•		ריר	Č					י גע	_	•		/`~	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•		•	. C)	^ /	⊈/• ↑	2 <u>//</u>		»	∠/2 1	<u>2</u>	•		→	/ <u>~</u> /8	24	• • •	<i>></i> ′	D .	•	•	•	•	•	•	•
•	•		•	•		•		•	•	•	. U	Din	-fr'	Vio	I R	•		64		<u>a</u>		•	•		•	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•			s.H is	~	se not	qui	uc sl	۹. ۱۰۰	- _	exc	zcf	-	•		•	•	•		•		•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
	Tal	ķι	La	60	fh	ŀ	łor	n M	(2/2	2,)	• (Z.	H	lov	ກ _ີ 2	(2/2	62)	of	A	6	le	مما	7	2 0	•	•	•	•	•
			Ç					2						*		÷	*					•													
•	•		•		Ć) -	_>	Z	/2	2 -	<u>م</u>		2	la.	22		~>	Ż,	/22 R	2 -	>	0	•			•	•	•		•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	,	'n the	on Se	-+-	r'iu Lena	10) 20)	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	is	r.c	21	sf	105	Ŧ	exo	ict	•	•	•	•	•	•	•	•	•	•
•			•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•			•	•	•	•	•	•	•	•	•	•
•	•	•		•	•		•	•	*	•	•	*		•	*	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	٠	•
•			•		•					•							•		•	•		•						•			•		•		
•	•		•	•	•	•	•	•	•	•		•	•		•	•	•		•			•			•			•		•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•			•	•	•	•		•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•			•		•	•			•		•			•	•	•	•	
٠	٠				•					٠												٠						•			•			·	
•	•		•	•	•		•		•	•		•	•		•	•	•		•	•		•			•	•		•		•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Problem 3

by Noah Stäuble & Philip Sandt

We start by a well-celebrated relationship from commutative algebra. We have a bijection (even an R-linear isomorphism)

(1)
$$\phi: \mathfrak{Hom}_R\left(M \otimes_R N, K\right) \to \mathfrak{Bil}_R\left(M, N; K\right),$$
$$f \mapsto \left((m, n) \mapsto f(m \otimes n)\right)$$

In order to know that this map is well-defined (i.e. that we land in the bilinear maps) we can argue via the universal property of the tensor product. For the bijectivity we provide an inverse

(2)
$$\psi : \mathfrak{Bil}_R(M, N; K) \to \mathfrak{Hom}_R(M \otimes_R N, K)$$

that is obtained by sending g to the map linearly extending

$$m \otimes n \mapsto g(m,n)$$

We check that ϕ is linear. Let $a \in R$, $f, g \in \mathfrak{Hom}_R(M \otimes N, K)$. Then, ϕ maps af+g to the map that sends $(m, n) \in M \times N$ to $af(m \otimes n) + g(m \otimes n)$. At the same time, $a\phi(f) + \phi(g)$ is the map that sends (m, n) to $a\phi(f)(m, n) + \phi(g)(m, n) = af(m \otimes n) + g(m \otimes n)$. Moreover, $(\psi \circ \phi)(f)$ maps $m \otimes n$ to $\phi(f)(m, n) = f(m \otimes n)$ And, $(\phi \circ \psi)(h)$ maps (m, n) to $\psi(h)(m \otimes n) = h(m, n)$ which implies that ϕ, ψ are mutually inverse, using that pure tensors generate the tensor product.

We are also going to use the result from commutative algebra that states that there is an isomorphism

$$F:\mathfrak{Hom}_R(M,\mathfrak{Hom}_R(N,K))\to\mathfrak{Bil}_R(M,N;K)$$

such that

$$F(f)(m,n) = f(m)(n)$$

with inverse

$$G:\mathfrak{Bil}_R(M,N;K)\to\mathfrak{Hom}_R(M,\mathfrak{Hom}_R(N,K))$$

such that G(g)(m) is given by $n \mapsto g(m, n)$. By composing the two, we get an isomorphism

$$G \circ \phi : \mathfrak{Hom}_R \left(M \otimes_R N, K \right) \to \mathfrak{Hom}_R \left(M, \mathfrak{Hom}_R \left(N, K \right) \right)$$

It remains to show that the isomorphism is natural. Following the example, we start by showing that the isomorphism is natural in M. For what follows, let M', N', K' be R-modules. We denote for any map t between functions between R-modules by t' the map that does the same as t but where the appropriate module A has been replaced by A'.

1. Let $f: M \to M'$ a homomorphism. We define $f_*: \mathfrak{Hom}_R(M' \otimes N, K) \to \mathfrak{Hom}_R(M \otimes N, K)$ by pre-composing with f in M. I.e. by linearly extending the following relation on pure tensors:

$$f_*(g)(m \otimes n) = g(f(m) \otimes n), \text{ for } g \in \mathfrak{Hom}_R(M' \otimes N, K), m \in M, n \in N$$

Solutions Sheet 1

Analogously, define $f_* : \mathfrak{Hom}_R(M', \mathfrak{Hom}_R(N, K)) \to \mathfrak{Hom}_R(M, \mathfrak{Hom}_R(N, K))$, by linearly extending

$$f_*(g)(m)(n) = g(f(m))(n), \text{ for } g \in \mathfrak{Hom}_R(M', \mathfrak{Hom}_R(N, K)), m \in M, n \in N$$

Naturality is then equivalent to commutativity of the following diagram.

$$\mathfrak{Hom}_{R}\left(M\otimes N,K\right) \xrightarrow{G\circ\phi} \mathfrak{Hom}_{R}\left(M,\mathfrak{Hom}_{R}\left(N,K\right)\right)$$

$$f_{*} \uparrow \qquad \qquad \uparrow f_{*}$$

$$\mathfrak{Hom}_{R}\left(M'\otimes N,K\right) \xrightarrow{G'\circ\phi'} \mathfrak{Hom}_{R}\left(M',\mathfrak{Hom}_{R}\left(N,K\right)\right)$$

Which we will prove by showing equality on pure tensors.

I.e. we want to show, that $G \circ \phi \circ f_*(g)(m)(n) = f_* \circ G' \circ \phi'(g)(m)(n)$, for all homomorphisms $g \in \mathfrak{Hom}_R(M' \otimes N, K)$ and elements $m \in M$ and $n \in N$. Let us first consider the upper part of the diagram.

$$G \circ \phi \circ f_*(g)(m)(n) = G(\phi(f_*(g)))(m)(n)$$
$$= \phi(f_*(g))(m,n) = f_*(g)(m \otimes n) = g(f(m) \otimes n)$$

In other words, for $m \in M$, $G \circ \phi \circ f_*(g)(m)$ is the morphism $n \mapsto (g(f(m) \otimes n))$ in $\mathfrak{Hom}_R(N, K)$. On the other hand.

$$f_* \circ G' \circ \phi'(g)(m)(n) = f_*(G'(\phi'(g)))(m)(n)$$

= $G'(\phi'(g))(f(m))(n) = \phi'(g)(f(m), n) = g(f(m) \otimes n)$

resulting in the same morphism.

2. Let $f : N \to N'$ a homomorphism. Define $f_* : \mathfrak{Hom}_R(M \otimes N', K) \to \mathfrak{Hom}_R(M \otimes N, K)$ linearly extending the following relation on pure tensors:

$$f_*(g)(m \otimes n) = g(m \otimes f(n)), \text{ for } g \in \mathfrak{Hom}_R(M \otimes N', K), m \in M, n \in N$$

Analogously, define $f_* : \mathfrak{Hom}_R(M, \mathfrak{Hom}_R(N', K)) \to \mathfrak{Hom}_R(M, \mathfrak{Hom}_R(N, K))$, by linearly extending

$$f_*(g)(m)(n) = g(m)(f(n)), \text{ for } g \in \mathfrak{Hom}_R(M, \mathfrak{Hom}_R(N', K)), m \in M, n \in N$$

To prove naturality in N, consider the following diagram:

$$\begin{split} \mathfrak{Hom}_{R}\left(M\otimes N',K'\right) & \xrightarrow{f_{*}} \mathfrak{Hom}_{R}\left(M\otimes N,K\right) \\ & \downarrow^{\eta} & \downarrow^{\eta} \\ \mathfrak{Hom}_{R}\left(N'\otimes M,K\right) & \xrightarrow{f_{*}^{(1)}} \mathfrak{Hom}_{R}\left(N\otimes M,K\right) \\ & \downarrow^{G'\circ\phi'} & \downarrow^{G\circ\phi} \\ \mathfrak{Hom}_{R}\left(N',\mathfrak{Hom}_{R}\left(M,K\right)\right) & \xrightarrow{f_{*}^{(1)}} \mathfrak{Hom}_{R}\left(N,\mathfrak{Hom}_{R}\left(M,K\right)\right) \\ & \downarrow^{\psi'^{(1)}} & \downarrow^{\psi^{(1)}} \\ \mathfrak{Bil}_{R}\left(M,N;K\right) & \mathfrak{Bil}_{R}\left(M,N;K\right) \\ & \downarrow^{\phi'^{(2)}} & \downarrow^{\phi^{(2)}} \\ \mathfrak{Hom}_{R}\left(M,\mathfrak{Hom}_{R}\left(N',K\right)\right) & \xrightarrow{f_{*}} \mathfrak{Hom}_{R}\left(M,\mathfrak{Hom}_{R}\left(N,K\right)\right) \end{split}$$

Where by $\psi^{(1)}$: $\mathfrak{Hom}_R(N, \mathfrak{Hom}_R(M, K)) \to \mathfrak{Bil}_R(M, N; K)$, we denote the morphism, which sends the first argument of a bilinear map to the first argument of the nested $\mathfrak{Hom}_R(\bullet, \bullet)$'s - analogously $\psi^{(2)}, \phi^{(1)}$ and $\phi^{(2)}$, where we implicitly use $\mathfrak{Bil}_R(M, N; K) \cong \mathfrak{Bil}_R(N, M; K)$. We will show that the above diagram is commutative, by showing that all 3 squares commute.

(a) To show that the upper square commutes, note that "reversed" of the tensor products are naturally isomorphic, for commutative R. I.e. for A, B R-Modules, there exists a natural isomorphism

$$\bar{\eta}: A \otimes B \to B \otimes A$$

Since $\mathfrak{Hom}_R(\bullet, K)$ is a functor, defining $\eta := \mathfrak{Hom}_R(\bar{\eta}, K)$ makes the upper square commute.

- (b) Commutativity in the middle square is exactly the statement of 1.
- (c) For commutativity of the lower square, we simply check for $g: N' \to \mathfrak{Hom}_R(M, K), m \in M$ and $n \in N$.

$$f_*(\phi'^{(2)}(\psi'^{(1)}(g)))(m)(n) = \phi'^{(2)}(\psi'^{(1)}(g))(m)(f(n))$$

= $\psi'^{(1)}(g)(f(n), m) = g(f(n)(m))$
= $f_*^{(1)}(g)(n)(m) = \psi^{(1)}(f_*^{(1)}(g))(m, n)$
= $\phi^{(2)}(\psi^{(1)}(f_*^{(1)}(g)))(m)(n).$

3. The last piece of the puzzle is naturality in K. Let $h:K\to K'$ be R-linear. We obtain

$$\begin{split} h^*:\mathfrak{Hom}_R\left(M\otimes N,K\right)\to\mathfrak{Hom}_R\left(M\otimes N,K'\right)\\ q\mapsto h\circ q \end{split}$$

and

$$h^*: \mathfrak{Hom}_R(M, \mathfrak{Hom}_R(N, K)) \to \mathfrak{Hom}_R(M, \mathfrak{Hom}_R(N, K'))$$
$$t \mapsto (m \mapsto h \circ t(m)).$$

We want commutativity in the diagram beneath.

$$\begin{split} \mathfrak{Hom}_R\left(M\otimes N,K\right) & \xrightarrow{G\circ\phi} \mathfrak{Hom}_R\left(M,\mathfrak{Hom}_R\left(N,K\right)\right) \\ & \stackrel{h^*}{\downarrow} & \stackrel{h^*}{\downarrow} \\ \mathfrak{Hom}_R\left(M\otimes N,K'\right) & \xrightarrow{G'\circ\phi'} \mathfrak{Hom}_R\left(M,\mathfrak{Hom}_R\left(N,K'\right)\right) \end{split}$$

- (a) $h^* \circ G \circ \phi$: Let $q \in \mathfrak{Hom}_R(M \otimes N, K)$. Then $q_1 := (G \circ \phi)(q)$ is the map such that for all $m \in M$, $q_1(m)(n) = q(m \otimes n)$. Similarly, h^*q_1 is the homomorphism that satisfies for all $m \in M : (h^*q_1)(m) =$ $(n \mapsto (h \circ q_1(m))(n))$. Hence the resulting element in the bottom right module is given by the map that to any $m \in M$ associates the linear map $n \mapsto h(q_1(m)(n)) = h(q(m \otimes n))$.
- (b) $G' \circ \phi' \circ h^*$: Let $q \in \mathfrak{Hom}_R(M \otimes N, K)$. Then $q_2 := h^*q$ is the map defined on pure tensors by $m \otimes n \mapsto h(q(m \otimes n)) \in K'$. We compute that $(G' \circ \phi')(q_2)$ is the map that maps $m \in M$ to the homomorphism

 $n \mapsto q_2(m \otimes n) = h\left(q(m \otimes n)\right).$

We showed that the above diagram commutes, which concludes the proof.

Problem 4

by Sina Keller and Tristan Lovsin

4a). Let's restate the exercise again, but using F, G and H for using the result again in b).

0

Let

(3)
$$0 \to F \xrightarrow{\alpha} G \xrightarrow{\rho} H \to 0$$

be an exact sequence of R-Modules and N a free R-Module. We want to show that the sequence

(4)
$$0 \to F \otimes_R N \xrightarrow{\alpha \otimes id_N} G \otimes_R N \xrightarrow{\beta \otimes id_N} H \otimes_R N \to 0$$

is exact.

We want to show the following things:

- i) $\alpha \otimes id_N$ is injective
- *ii*) $\beta \otimes id_N$ is surjective
- *iii*) $\operatorname{Im}(\alpha \otimes id_N) = \operatorname{Ker}(\beta \otimes id_N)$

proof of i). Since N is free it has a basis. Let $\mathcal{N} := \{ n_1 \mid i \in \mathcal{I} \}$ be this (potentially infinite) basis. Then we have an isomorphism $F \otimes N \cong \bigoplus_{n \in \mathcal{N}} F$ and we can write each element in $F \otimes N$ as a unique linear combination of $f_i \otimes n_i$ for $n_i \in \mathcal{N}$.

So let $\sum_{i\in\mathcal{I}} f_i \otimes n_i \in \operatorname{Ker}(\alpha \otimes id_N)$ be arbitrary. Since \mathcal{N} is a basis only finitely many f_i are non zero and we can thus write $\sum_{i\in\mathcal{J}} f_i \otimes n_i$ for some finite index set \mathcal{J} . Since it is in the kernel we have $\alpha \otimes id_N(\sum_{i\in\mathcal{J}} f_i \otimes n_i) = \sum_{i\in\mathcal{J}} \alpha(f_i) \otimes n_i = 0$. We note that elements of the form $\alpha(f_i) \otimes n_i$ in $G \otimes N \cong \bigoplus_{n\in\mathcal{N}} G$ also build unique linear combinations of elements and thus $\sum_{i\in\mathcal{J}} \alpha(f_i) \otimes n_i = 0 \iff \alpha(f_i) \otimes n_i = 0$ $\forall i$. This means there are index sets \mathcal{A}, \mathcal{B} with $\mathcal{A} \cup \mathcal{B} = \mathcal{J}$ such that $\alpha(f_k) = 0$ for all $k \in \mathcal{A}$ and $id_N(n_j) = 0$ for all $j \in \mathcal{B}$. Since α is injective $\alpha(f_k) = 0 \iff f_k = 0$ and $id_N(n_j) = 0 \iff n_j = 0^{-1}$. Thus the preimage $\sum_{i\in\mathcal{J}} f_i \otimes n_i = 0$. Because we took an arbitrary element in the kernel and showed that it is equal to zero we conclude that $\alpha \otimes id_N$ is injective.

proof of ii) and iii). This follows from Problem 2a).

4b). We note that $C_i(X)$ is a free Z-Module and each abelian group is a Z-Module. By using the fact that every $C_i(X)$ is free abelian and changing N to $C_i(X)$ in equation (4) in a) for every *i* we obtain a SES of chain complexes

(5)
$$0 \to F \otimes_{\mathbb{Z}} C_*(X) \xrightarrow{\alpha \otimes id_{C_*(X)}} G \otimes_{\mathbb{Z}} C_*(X) \xrightarrow{\beta \otimes id_{C_*(X)}} H \otimes_{\mathbb{Z}} C_*(X) \to 0.$$

Using the LES-Theorem we obtain a LES

$$(6) \qquad \cdots \to H_n(X;F) \xrightarrow{\alpha_*} H_n(X;G) \xrightarrow{\beta_*} H_n(X;H) \xrightarrow{\partial_*} \cdots$$

¹Since n_j are basis elements $n_j \neq 0$ for all $j \in \mathcal{I}$ we are never in this case, but it was added for the sake of completeness.

Solutions Sheet 1

4c). We remember that the sequence

(7)
$$0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{Z}/n\mathbb{Z} \to 0$$

is exact, with f being the multiplication with n and g given by $1 \mapsto [1]$. Now plugging this into the LES (6) we get from part b) the following LES: (8)

$$\dots \to H_i(X;\mathbb{Z}) \xrightarrow{f_{*,i}} H_i(X;\mathbb{Z}) \xrightarrow{g_*} H_i(X;\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\partial} H_{i-1}(X;\mathbb{Z}) \xrightarrow{f_{*,i-1}} H_{i-1}(X;\mathbb{Z}) \to \dots$$

From any LES we can extract a SES in the following way: Let

(9)
$$\dots \to A \xrightarrow{\beta} B \xrightarrow{\gamma} C \xrightarrow{\delta} D \to \dots$$

be a LES.

Then we get

(10)
$$0 \to B/\mathrm{Im}(\beta) \xrightarrow{\gamma} C \xrightarrow{\delta} \mathrm{Im}(\delta) \to 0.$$

Since $\operatorname{Im}(\beta) = \operatorname{Ker}(\gamma)$, the induced map $\tilde{\gamma}$ is an isomorphism between $B/\operatorname{Im}(\beta)$ and $\operatorname{Im}(\gamma)$ and therefore injective. Clearly δ maps surjectively onto its image, therefore $\tilde{\delta}$ the map induced by δ is surjective. The exactness at C follows from the exactness at C in the LES (9).

Now realize that $f_{*,i-1}$ is also the multiplication with n and therefore $\text{Ker}(f_{*,i-1})$ is exactly $\text{Tors}_n(H_{i-1}(X;\mathbb{Z}))$. Due to exactness we have:

(11)
$$\operatorname{Im}(\partial) = \operatorname{Ker}(f_{*,i-1}) = \operatorname{Tors}_n(H_{i-1}(X;\mathbb{Z})).$$

Using $\operatorname{Im}(f_{*,i}) = nH_i(X;\mathbb{Z})$ and (11) we can extract the following SES from (8): (12) $0 \to H_i(X;\mathbb{Z})/nH_i(X;\mathbb{Z}) \to H_i(X;\mathbb{Z}/n\mathbb{Z}) \to \operatorname{Tors}_n(H_{i-1}(X;\mathbb{Z})) \to 0.$

Problem 5

no solutions for starred problems