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PROBLEM 1

by Naomi Rosenberg

a).

Version 1: Ezplicitly constructing maps.
Claim 1. Z/nZ ® Z/mZ = Z/dZ, where d = gcd(m,n).

Proof. Consider the following diagram:

Z7/dZ x 7.]dZ,
where
B:ZL/mLXL/nl — L]dZ X L]dZ, (ki +mZ, ke +nZ) — (k1 +dZ, ko +dZ), and

a:Z)d7 X L]dZ — Z.]dZ, (ki + dZ, ko + dZ) — kiko + dZ.
Here, we used that (3 is well-defined since d is a divisor of both m, and n. Note

that 3 is linear and « is bilinear, thus the composition of o and f is bilinear. With
this in mind, define

f = Qo 6 : Z/mZ X Z/nZ — Z/dZ, (k‘l —I—mZ, ko +TLZ) — kiky + dZ.
The map f is surjective as a composition of two surjective maps and bilinear.
Indeed,

- (k1 + Ky +mZ, ke +nZ) — (ki + kY ke + dZ = kko + dZ + Kk + dZ =
f(k1+mZ, ka+nZ)+ f (k] +mZ, ks +nZ) and similar for the right argument,
and

- (Ney+mZy ko+nZ) — (Aky)ka+dZ = N kika)+dZ = Nf (ki +mZ, ko+nZ),
and analogously if A appears on the right side.

Thus, by the universal property of the tensor product, there exists a (unique)
homomorphism ¢ : Z/mZ ® Z/nZ — 7./dZ, such that f = o p (see figure below).

Z/mZ x Z)nZ —L— 7,47
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Z/mZ ® L/nZ.

It is now sufficient to show that ¢ is an isomorphism. In order to prove this, we
are going to construct its inverse.

Note that Z/dZ = ([1]), where we denote by [1] the equivalence class 1+ dZ of 1
in Z/dZ.
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Define

U Z)d7 — Z)mZ Q@ Z/nZ, [1] — [1] @ [1].

We need to check that ¢ sends [0] = [d] to 0 € Z/mZ ® Z/nZ. For this, we
need that Z is a principal ideal domain as this implies the existence of unique
elements u,v € Z such that d = um + vn. Thus, ¥([0]) = ¥([d]) = [d]([1] ® [1]) =
[um~+ovn]([1]@[1]) = [um]|®[1]+[1]®@[vn| = [0]@[1]4+[1]®[0] = [0] € Z/mZRZ/nZ.
Finally, we show that ¢ and v are inverse to each other: For any [k] € Z/dZ and
for every generator [a] ® [b] of Z/mZ & Z/nZ, the following holds:

o (k) = (k1] © [1])) = o([k] @ [1]) = [K][1] = [k], and

- o p([a] @ [b]) = ¢([a][b]) = [a][b]([1] @ [1]) = [a] @ [0].
Thus, ¢ is indeed the inverse of ¢ and therefore, we can conclude that ¢ is an
isomorphism.

g

Version 2: Using Problem 1.b). By Problem 1.b), for every ideal J C R, there
exists an isomorphism (R/J) @ M — M/JM with (r + J) ® x +— rz + JM.
Thus, setting R = Z, J = nZ, and M = Z/mZ yields

Z/nZ @ L]/ mZ %“)(Z/mZ)/((nZ)(Z/mZ))
= (Z/mZ)]((nZ + mZ)/mZ)
= Z/(nZ + mZ)
= 7/gcd(m,n)Z.

b). In the following, we are going to denote the equivalence classes in R/J by []
and the equivalence classes in M/JM by {.}. Consider the following diagram:

R/Jx M —L— M/JM

R/J® M,

where f: R/J x M — M/JM, ([r],m) — {rm}. The map f is surjective and
bilinear, thus, by the universal property of the tensor product, there exists a
(unique) homomorphism ¢ : R/J @ M — M/JM. Therefore, in order to prove
the statement from the exercise, it is sufficient to find an inverse of .

Define ¢ : M — R/J ® M, m + [1] ® m and note that JM C ker(¢).

Hence, there exists a homomorphism ¢ : M/JM — R/J @ M, {m} — [1]@m
, which is precisely the inverse of ¢ (because ¢ o ¥({m}) = p([1] ® m) = {m},
and 1 o p(([r],m)) = Y({rm}) = [1] ® rm = [r] ® m) and consequently, ¢ is an
isomorphism.
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Exercise 2.
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PROBLEM 3
by Noah Stdauble € Philip Sandt

We start by a well-celebrated relationship from commutative algebra. We have a
bijection (even an R-linear isomorphism)

(1) ¢ : Homp (M @5 N, K) — Bilg (M, N; K)

fr=((m,n) = f(m@n))
In order to know that this map is well-defined (i.e. that we land in the bilinear
maps) we can argue via the universal property of the tensor product. For the
bijectivity we provide an inverse

(2) b Bily (M, N; K) — Homp (M @5 N, K)
that is obtained by sending ¢ to the map linearly extending

m®n+— g(m,n).
We check that ¢ is linear. Let a € R, f,g € $Homr (M ® N, K). Then, ¢ maps
af+g to the map that sends (m,n) € M x N to af(m®n)+g(m®n). At the same
time, a¢(f) + ¢(g) is the map that sends (m,n) to ad(f)(m,n) + ¢(g)(m,n) =
af (m@n)+g(men). Moreover, (106)(f) maps m@n to o(f)(m, n) = f(m&n)
And, (¢ o9)(h) maps (m,n) to ¢(h)(m ®n) = h(m,n) which implies that ¢,
are mutually inverse, using that pure tensors generate the tensor product.

We are also going to use the result from commutative algebra that states that
there is an isomorphism

F:9ompg (M, Homg (N, K)) — Bilg (M, N; K)
such that
F(f)(m,n) = f(m)(n)
with inverse
G : Bily (M, N; K) — Hompg (M, Hompg (N, K))
such that G(g)(m) is given by n — g(m,n). By composing the two, we get an
isomorphism

Go¢:Homgr (M @r N, K) — Homg (M, Homg (N, K))

It remains to show that the isomorphism is natural. Following the example, we
start by showing that the isomorphism is natural in M. For what follows, let
M', N', K’ be R-modules. We denote for any map ¢ between functions between
R-modules by t' the map that does the same as t but where the appropriate module
A has been replaced by A’.
1. Let f: M — M’ a homomorphism. We define f, : Homg (M'® N, K) —
$Homp (M ® N, K) by pre-composing with f in M. Le. by linearly extend-
ing the following relation on pure tensors:

fo(g)(m@n) = g(f(m)®@n), for g € Hompg (M @ N,K),m € M,n € N

6
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Analogously, define f. : HHompg (M, Homg (N, K)) — Homg (M, Homg (N, K)),
by linearly extending

f<(g)(m)(n) = g(f(m))(n), for g € Homgr (M', Homg (N, K)),m e M,n e N

Naturality is then equivalent to commutativity of the following diagram.

Somg (M @ N, K) —25 Homp (M, Homg (N, K))

w] 2

Somg (M @ N, K) <% gompy (M, Homg (N, K))

Which we will prove by showing equality on pure tensors.

L.e. we want to show, that Go ¢ o f.(g)(m)(n) = f. o G' o ¢'(g)(m)(n),
for all homomorphisms g € $omg (M’ ® N, K) and elements m € M and
n € N. Let us first consider the upper part of the diagram.

Go o f(g)(m)(n) = G(o(f(g)))(m)(n)
= ¢(f(9))(m,n) = fulg)(m@n) = g(f(m) @n)

In other words, for m € M, G o ¢ o f.(g)(m) is the morphism n
(9(f(m)®mn)) in Hompg (N, K). On the other hand.

resulting in the same morphism.
2. Let f : N — N’ a homomorphism. Define f, : Homr (M @ N, K) —
Hompg (M ® N, K) linearly extending the following relation on pure tensors:

fo(g)m@n) =g(m® f(n)), for g € Homp (M @ N',K),me M,ne N

Analogously, define f, : Hompg (M, Hompg (N, K)) — Hompg (M, Hompg (N, K)),
by linearly extending

f(g)(m)(n) = g(m)(f(n)), for g € Homp (M, Homp (N', K)) ,m € M,n € N

7
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To prove naturality in N, consider the following diagram:

Homp (M @ N, K') — 4 Homp (M @ N, K)

n n

~ ) ~

Homp (N'@ M, K) ——— $Homz (N @ M, K)

G'og/ Gog¢
i W i
Hompg (N, Homg (M, K)) —— Hompg (N, Homg (M, K))

P’ A
Bilp (M, N; K) Bilp (M, N; K)
&' (2 e

~ ~

Hompg (M, Homg (N, K)) LN Homp (M, Homg (N, K))

Where by v : Homg (N, Homg (M, K)) — Bilg (M, N; K), we denote
the morphism, which sends the first argument of a bilinear map to the
first argument of the nested $omp, (e, ®)’s - analogously ¥?, ¢ and ¢
where we implicitly use Bilg (M, N; K) = Bilg (N, M; K). We will show
that the above diagram is commutative, by showing that all 3 squares
commute.
(a) To show that the upper square commutes, note that "reversed” of the
tensor products are naturally isomorphic, for commutative R. l.e. for
A, B R-Modules, there exists a natural isomorphism

N:A®B—>B®A

Since Homp (o, K) is a functor, defining 7 := Hompg (77, K) makes the
upper square commute.
(b) Commutativity in the middle square is exactly the statement of 1.

(c¢) For commutativity of the lower square, we simply check for g : N —
Homg (M, K), me M and n € N.

Fo(@P @D (g)) (m)(n) = ¢'P (M (g))(m)(f(n))
= 'D(g)(f(n),m) = g(f(n)(m)

= fM(g)(n)(m) = W (fV(g))
= WD (fM(g)))(m)(n).

3. The last piece of the puzzle is naturality in K. Let h : K — K’ be R-linear.
We obtain

h*: Homp (M @ N, K) — Homp (M @ N, K')

(m,n)

qg+— hog

8
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and
h* : $Hompg (M, Homg (N, K)) — Hompg (M, Homg (N, K'))
t— (m— hot(m)).
We want commutativity in the diagram beneath.

Homp (M @ N, K) —%5 $omp (M, Hompg (N, K))

g I

Somp (M @ N, K') % Homp (M, Homg (N, K'))

(a) h* o G o ¢: Let ¢ € Homz (M @ N, K). Then ¢ := (G o ¢)(q) is
the map such that for all m € M, ¢;(m)(n) = g(m ® n). Similarly,
h*q is the homomorphism that satisfies for all m € M : (h*q)(m) =
(n+— (hogi(m))(n)). Hence the resulting element in the bottom right
module is given by the map that to any m € M associates the linear
map n = h(gi(m)(n)) = h(g(m @ n)).

(b) G' o ¢’ o h*: Let ¢ € Homr (M ® N, K). Then g, := h*q is the map
defined on pure tensors by m @ n — h(¢(m ®@n)) € K'. We compute
that (G’ 0 ¢')(g2) is the map that maps m € M to the homomorphism

n= g(m@n) = h(g(men)).

We showed that the above diagram commutes, which concludes the proof.
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PROBLEM 4
by Sina Keller and Tristan Lovsin

4a). Let’s restate the exercise again, but using F, G and H for using the result
again in b).
Let

(3) 0-F56S a0

be an exact sequence of R-Modules and N a free R-Module.
We want to show that the sequence

(4) 0= F@pN 22 Gop N 2% Hop N -0

1s exact.
We want to show the following things:
i) a ®idy is injective
i1) B ® idy is surjective
ii1) Im(a ® idy) = Ker(5 ® idy)

proof of i). Since N is free it has a basis. Let N := { ny | ¢ € Z} be this
(potentially infinite) basis. Then we have an isomorphism FF @ N =2 &, _,, F and
we can write each element in F*® N as a unique linear combination of f; ® n; for
n; € N

So let Y °..7 fi @ n; € Ker(a ® idy) be arbitrary. Since A is a basis only finitely
many f; are non zero and we can thus write ), ; f; ® n; for some finite index set
J . Since it is in the kernel we have a ® idn (D _,c 7 fi @ ni) = D, a(fi) @y = 0.
We note that elements of the form a(f;) ®n; in GO N = @, .\, G also build unique
linear combinations of elements and thus » .., a(fi) ®n; =0 <= a(f;)®@n; =0
Vi. This means there are index sets A, B with AU B = J such that a(f;) = 0 for
all k € Aand idy(n;) = 0 for all j € B. Since « is injective a(fy) =0 <= f, =0
and idy(n;) =0 <= n; =0 '. Thus the preimage > ics fi®n; = 0. Because
we took an arbitrary element in the kernel and showed that it is equal to zero we

conclude that o ® idy is injective.
O

proof of ii) and tit). This follows from Problem 2a). 0

4b). We note that C;(X) is a free Z-Module and each abelian group is a Z-Module.
By using the fact that every C;(X) is free abelian and changing N to C;(X) in
equation (4) in a) for every i we obtain a SES of chain complexes

a®id, id
(5) 0 F oy Cu(X) 2500, gy 0, (x) 2200,

Using the LES-Theorem we obtain a LES
(6) o Ho (X F) 25 Ho(X;G) 2 Ho (X H) 2

H &7 C.(X) — 0.

ISince n; are basis elements n; # 0 for all j € T we are never in this case, but it was added
for the sake of completeness.

10
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4c). We remember that the sequence
(7) 052525 7/mZ 0

is exact, with f being the multiplication with n and g given by 1 — [1].
Now plugging this into the LES (6) we get from part b) the following LES:

(8)
o Hi(XZ) T H(XZ) S Hi(XZ/nZ) S Ho (X Z) 2578 H (X 2) — .

From any LES we can extract a SES in the following way:

Let

(9) o ASBL S D
be a LES.

Then we get

(10) 0 — B/Im(8) 2 C & m(8) — 0.

Since Im(f) = Ker(), the induced map ¥ is an isomorphism between B/Im([)
and Im(y) and therefore injective. Clearly § maps surjectively onto its image,
therefore § the map induced by § is surjective. The exactness at C follows from
the exactness at C' in the LES (9).

Now realize that f.;; is also the multiplication with n and therefore Ker(f, ;1)
is exactly Tors, (H;_1(X;Z)). Due to exactness we have:

(11) Im(0) = Ker(f,,;—1) = Tors, (H;—1(X;Z)).

Using Im(f.;) = nH;(X;Z) and (11) we can extract the following SES from (8):
(12)  0— H{(X;2Z)/nH{(X;Z) — H;(X;Z/nZ) — Tors,(H;_1(X;Z)) — 0.

PROBLEM 5

no solutions for starred problems
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