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PROBLEM 1

by Viadimir Nowak

I want to thank Semyon for his insightful comments about my solution attempts
to the exercises. Throughout the following, we refer to the map h: S?"*t — CP"»
as the Hopf-fibration.

a).

Proof. Define the map:
0: D2 C C" = CP"™™ (20,...,20) &> 200 o+ zp: 1 — Z \zj\z

This is certainly a continuous map, given as the composition of maps
2n+2 +1 +2 7 +1
D" CVT 5 CMTY = CPYT

with 7 the canonical projection map. We notice that on S***! c D22
yields the Hopf-fibration, i.e. ¢(S*"*1) = CP" Cc CP™"!, meaning that ¢ induces
a map ¢: CP" U, D?>*2 — CP"*!. Therefore, in order to show that CP"+! =
CP" U, D?>"*2 it suffices to show that the induced map ¢ is a homeomorphism.
We remark that since the domain of the map ¢ is compact (as the quotient of a
compact space CP" LI D*"*2) and the codomain is Hausdorff, it is enough to show
that ¢ is bijective. More specifically, it suffices to show that ¢|p2.42 bijects onto
CP"! — CP", seeing as @|cpn: CP™ — ¢(CP") is bijective.

We first check surjectivity. Let [z{) ceer 2l z;HJ € CP"*! — CP", i.e. the last

n

entry fulfils 2], # 0. Let r == Z"H ‘z | and ¢ € S be the phase, such that

6 Z’n+1

T

by % and show that (z...,2,) € C"! defined through the system:

{1_23 0’21‘ ;QZ;LH

zj = ]Ogjgn

/

€ R.o. We then rescale the representative of the class [z): -+ : 2}, 2} 4]

in fact, has a solution in the interior of D?"*2. Through this system of equations,
we get a quadratic equation in the “variable” r of the form:

2 i
O=r e an E ‘zj|
2
:r2—67’—2‘zﬂ
Jj=0
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We then get that the only legal solution for r (since it has to be positive) is

r= B+V52+4Z?=0|23’2

5 and plugging this into the sum of squares, we get with g > 0:

n 4 7?7 Z,-
>l = Zoll
= (seyreasnlEr)
We conclude that ¢ maps the interior of D*"2 surjectively onto CP"*1 —CP". Now
we turn to the injectivity of ¢ restricted to D?"*2, where the calculation is of a sim-

ilar nature to the one performed for the surjectivity. Let (2o,...,2n),(2)...,2,) €
D?"2 guch that:

[20: ceet 2yt 1—Z|zj|2] = [Zé: Z?”L 1—Z|Z§-‘2] .
=0 =0

By the definition of the complex projective space, there exists a re’® € C — 0 such
that:

< 1.

)

. 2 2
ree (1= S0 l2) =1- X |4
remzjzzé-, 0<j<n

From the first part of the system of equations we can deduce that e = 1. We
thus end up with a quadratic equation in r of the form:

7’2—7’+Z‘z;-|2(7’—1):0.
=0

The only positive solution is 7 = 1 and we get the equality of points (2o, ..., 2,) =
(24 -..,2)), i.e. we also get injectivity. This concludes the proof. O
b).

Proof. From the previous exercise, we know that (for n > 1):
CP'=CP" 'y, D" =...~ (.- (CP'U, D*) U, D*) U, D°---) U, D*".

We remark that CP° = {x} is just the pointed space, meaning the homology
becomes:

M k=0
0 o/w
From the above construction, we see that a CW-structure on CP" is given through
n + 1 cells, one 0-cell CP? and n 2k-cells D? for 1 < k < n. Furthermore, by
Theorem 2.13 from lecture, we have HSW (CP"; M) == H, (C“V (CP") @ M) =

H, (CP™; M), meaning going through cellular homology gives us the same homology
w.r.t. coefficients M. We get the chain complex:

H;, (CP% M) = {

0— SV (CcPMeM L eV, (CPMeM % ... eV (CPY)eM L cSV (CPM@M — 0.

2
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As there are no cells in uneven dimensions, all uneven dimensions are trivial and
using that Z @ M = M we get:

M k even, and k < 2n

H, (CP™; M) = { . o

c).

Proof. We remark that the Hopf-fibration A is certainly a continuous and surjective
map. Astheopenset for [zo: ---: z,] € CP", take U; = {[29: ---: z,] € CP": z; # 0},
wherever the i-th entry is non-zero. Note that

W U) =S N {(20,.. ., 2,) €CMT =01 2 £ 0}

consists of all points on S?"*1 s.t. 2; # 0. Define a map:

i WHU;) — Uiy x S (20,00, 20) + ([ZO: cee zn],|z—i|) :
Zq
Its continuous inverse is given through:
, it oLz,
QﬁiSUiXSl—)h_l(Ui),([ZOI ez Loz ---:zn],e”)r—>€ (20, 1 ’Z).
\/1 + Zj:O,j;ﬁi |52
This concludes the proof. O
PROBLEM 2

by Sina Keller and Tristan Lovsin

2a). We know that RP™ = D n/N with ~ being the equivalence relation between
antipodal points on dD". Denote p: S® — D™ the projection map. * Now we
define hg:
hg: S" — RPh = D"/
[z]. x on the equator of S"
z+— ¢ p(x)  xin the left hemisphere
p(—z) x in the right hemisphere

In order to show that hg is a covering, we need to show that there exists a discrete
fibre F' := S° = {—1,1}, such that for any x € RP™ there exists a neighbourhood

U of x and a homeomorphism ¢ such that the following diagram commutes:

'The projection is defined in the following way. We look at S™ := {x € R"*! ||z|| = 1} and
D" = {z € R""! ||z|| < 1} as subspaces of R"*1. Then p(zo,...,2n) = (0,21,...,2,).

3
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In order to determine a useful neighborhood, we will distinguish two cases: one
where hz'() is on the equator of S™ and the other where that is not the case.

If hz' () is not on the equator, then let U, == hg(S™\ {(x0, ..., zn) € S™ | 19 = 0})
and if hy'(z) is on the equator, then let

U, = he(S™\ {(z0, ..., 20) € S" | (y, (20, ..., 2,)) = 0 Vy € hg'(2)}),

where (-, -) denotes the standard scalar product in R™.

Now let 2 € RP" and U, C RP" the open neighborhood we just defined. If
hg'(z) is not on the equator we denote U, the right hemisphere and U_, the left
hemisphere and if hz'(z) is on the equator, then let U, == {(zo,...,z,) € S™ |
(x,(20,0,...,0)) >0} and U_, == {(xo,...,2,) € S™ | (—z, (20,0,...,0)) > 0}.
Then hg'(U,) = U, | |U_, for both versions of U,. We define ¢ for both versions
as

Q: Uzl_lU_x —>ﬁ$ x S0

([z],1) = zel,
S {([4,-1) — el

and ¢ for both versions as
ViU, x §*— U, | U,
([],y) — yz
Let y € U, and —y € U_,, then
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Therefore we have found an homeomorphism between U x S° and hﬂgl(U ) and
have a covering as desired.

n+1
2b). We choose the disc presentation of RP"! = D +/N with x ~yiff x =y
or x = —y Vr,y € D", In RP" Uy, D" we have that z ~ hg(z) = [z] =
hg(—z) ~ x and thus  ~ y iff z = y or # = —y Va,y € dD™, obtaining

n+1
RP" Uy, D = D" = RPrtt as desired.

4
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%Dnm%S”Wherexmyiﬁ

2c). RP" 4 pn1 = (RP™1 Upy D")/R
x,y € 0D".

Now we compute the degree of the map m o hg with 7 denoting the projection
from RP™ to RP"/RP"!. Since 7 o hg is a smooth map from S™ to S™ we know

from Algebraic Topology I that

Pn—l

k

deg(m o hg) = Z Eq;(m o hg)

Jj=1

where &, (7 o hg) is the local degree of 7o hg at g; with ¢; € 7 o hz'(p) for some
regular value p € S".
Let p € S™ be arbitrary and fixed. Then wohg'(p) = {—p,p}. Clearly &,(rohg) =
1, as m o hg acts like the identity in a small neighbourhood of p. Furthermore,
E_p(mohg) = (—1)"*! as mohg acts as the antipodal map in a small neighbourhood
of —p. Thus we have

0 1if n is even
deg(mohg) =1+ (-1) {2 if n is odd

2d). We choose the standard CW-complex on RP™ with 1 p-cell in each dimension
p <n and 0 otherwise.
For M = 7 we obtain

o023 72%73

if n is even and

--—>O—>Z£>ZE>Z£>...

if n is odd. This yields
Z  if p=mn where n is odd or p =0
H,(RP™“Z) = (Zy i10<p<n-—1andp isodd
0 ifp>nor0<p<nandpiseven

For M = 7Z, we have

if n is even and
0 2 0
e = 0= 2o >y = Lo — ...

if n is odd. However 2 = 0 in Z, and thus we have

regardless of n. Hence

HP(RPH, Zg) — Ker(dp)/lm(d

p+1)

N Lojy =17, itp<n
0 ifp>n
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PROBLEM 3
by Maria Morariu

a). We prove the statement using the naturality of the Gysin long exact sequence.
Take an arbitrary map f: RP" — RP™ and let p,: S™ — RP", p,,: S™ — RP™
be the usual two-coverings. We have a map fop,: S™ — RP™ and the fundamental
group of S™ is trivial (n > 1), so by the lifting property of covers, there exists a
function g: S™ — S™ such that p,, 0o g = f o p,.

The Gysin LES gives the following commutative diagram, with exact rows:

. — H,(RP™Z/2) = H,(S"Z/2) ™3 H,(RP™Z/2) % H, |(RP"Z/2) — ---

Js J» s

s H(RP™Z)2) B H (5™ 2/2) P8 H (RP™Z/2) %5 Hy_((RP™ Z/2) — -

As in the lecture, we get the following diagrams with exact rows:
For2<p<m-—1(1):

0 —— H,(RP"Z/2) — H, {(RP";Z/2) — 0

lf*,p lf*,pfl

0 —— H,(RP™Z/2) —— H, 1«(RP™Z/2) —— 0
and (2):
0 — Hn(RP™Z/2) =5 H,,(S"2Z/2) 5 H,,(RP"Z/2) % H,,_,(RP";Z/2) — 0

lf*,’m l * lf*,m lf*,m—l

0 — H,(RP™Z/2) LN H,,(S™7Z/2) N H,,(RP™ 7/2) N Hy, 1 (RP™7Z/2) — 0

Now m and n are different, so H,,(S™) = 0. Thus, commutativity of the first square

in (2) implies 7} o f, ,, = 0. By the lecture, H,(RP™;Z/2) = H,(RP™,Z/2) = 7Z/2

for all p < m. By exactness T} is injective, so we have f.,, = 0.

Now 0 and @' are surjective homomorphisms Z/2 — Z/2, so they are isomorphisms.

Thus commutativity of the last square in (2), together with f. ,, = 0 give f,,,—1 = 0.

Now exactness of the rows in diagram (1) shows that the horizontal maps are
isomorphisms. Inductively, this gives f,, = 0 for all 1 < p < m. In particular,

f+1 =0, which is what we wanted to show.

b). Assume that RP™ was a retract of RP™, i.e. there exists a continuous map
r: RP" — RP™, such that the canonical inclusion 2: RP™ — RP" satisfies
roj = idRPm.

By functoriality, this implies 7, o i, = idy,®rpmz/2), VP > 2. In particular,
ro: Hi(RP";Z/2) — Hi(RP™;Z/2) is a surjection. However, a) implies that
this map is zero. By the lecture, the homology groups are non-zero, so this is a
contradiction. Therefore RP™ cannot be a retract of RP".
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Exercise 4. (Shauk &)
@ Dfe £ RO L7 bo e twe quobient ynap
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—> The jekeior of dhe 2-call amaps &wmepmo\rgh&enll@ onto the o-cefl.
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Iie 2
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o.lu\‘)cuas K same isomas apliisan



ALGEBRAIC ToPoOLOGY II SOLUTIONS SHEET 2

PROBLEM 5

by Noah Stdauble € Philip Sandt

A Borsuk-Ulam type statement does not hold for the Torus S; x S; - there exists
a continuous function S' x S' — R? where no antipodal points have the same
image. To see this, consider the following counter example

@:Slel—mS’l‘—)]RZ
(1)

(s,t) > s> s
® is continuous and satisfies the following property: if (s,t) and (—s, —t) have the
same image, then this image is s and —s at the same time, so it is zero, hence

P(s,t) =s=0€ R

But 0 is not in S' so we cannot have antipodal points mapping to the same point.
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PROBLEM 6

by Naomi Rosenberg

Fix n € N. Let UZS Ui be a covering of S™ with closed sets Uy. Without loss of
generality, assume that Uy, does not contain any antipodal points for k € {1,...,n};
otherwise the claim from the exercise is already satisfied.

Our goal is to construct a map f : S™ — R"”, to then apply the Borsuk-Ulam The-
orem in order to deduce that there exists a point x € S™ satisfying f(z) = f(—=z),
and to then notice that both, x and —x, have to be contained in Uj;.

We start by defining
fr: 8" =R, fr(x) =d(x,Uy) = inf d(z,y),
yeUy

for every k € {1,...,n}, where we denote by d the Euclidean distance on R™. We
claim that f; is continuous. Indeed, d is continuous and for every z,y € S", the
following holds:

fi(r) = d(x,Uy) = uiengk(d(fv, u))
< inf (d(z,y) +d(y,u) = d(z,y) + d(y, Ux) = d(z,y) + fe(y),

ueUy

and analogously f(y) < d(x,y) + fi(x). Thus, |fu(x) — fi(y)| < d(x,y). Hence,
fr is 1-Lipschitz and therefore continuous.
Next, we define the function f as follows:

f:8" =R f(z)=(fi(z),..., fo(x)).
Since f is continuous in every component, it is continuous on its whole domain.
Thus, we can conclude with the Borsuk-Ulam Theorem that there exists an element
x € 8" satisfying f(z) = f(—=x). In particular, by the definition of f, x satisfies
d(x,Ug) = fe(z) = fu(—2x) = d(—=z,Uy) for every k € {1,...,n}. By assumption,
U}, does not contain any antipodal points, thus Uy cannot contain both, x and —x.
In fact, neither x, nor —x can be contained in U,. Indeed, if x € U, then
0 =d(x,Uy) = d(—=z,Uy) and therefore —x € Uy, which is a contradiction.
Since the above holds for every k € {1,...n, }, z and —z are contained in none of
the Uy’s for k € {1,...,n}.
Taking into account that UZS Uy is a covering of S™, the above implies that
x,—x € Ugy1. This concludes the proof since consequently, = and y are in the
same set from the covering.
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