Problem 1

by Vladimir Nowak

I want to thank Semyon for his insightful comments about my solution attempts to the exercises. Throughout the following, we refer to the map $h: S^{2 n+1} \rightarrow \mathbf{C} P^{n}$ as the Hopf-fibration.

a).

Proof. Define the map:

$$
\varphi: D^{2 n+2} \subset \mathbf{C}^{n+1} \rightarrow \mathbf{C} P^{n+1},\left(z_{0}, \ldots, z_{n}\right) \mapsto\left[z_{0}: \cdots: z_{n}: 1-\sum_{j=0}^{n}\left|z_{j}\right|^{2}\right]
$$

This is certainly a continuous map, given as the composition of maps

$$
D^{2 n+2} \hookrightarrow \mathbf{C}^{n+1} \rightarrow \mathbf{C}^{n+2} \xrightarrow{\pi} \mathbf{C} P^{n+1}
$$

with π the canonical projection map. We notice that on $S^{2 n+1} \subset D^{2 n+2}, \varphi$ yields the Hopf-fibration, i.e. $\varphi\left(S^{2 n+1}\right)=\mathbf{C} P^{n} \subset \mathbf{C} P^{n+1}$, meaning that φ induces a map $\hat{\varphi}: \mathbf{C} P^{n} \cup_{h} D^{2 n+2} \rightarrow \mathbf{C} P^{n+1}$. Therefore, in order to show that $\mathbf{C} P^{n+1} \cong$ $\mathbf{C} P^{n} \cup_{h} D^{2 n+2}$, it suffices to show that the induced map $\hat{\varphi}$ is a homeomorphism. We remark that since the domain of the map $\hat{\varphi}$ is compact (as the quotient of a compact space $\mathbf{C} P^{n} \sqcup D^{2 n+2}$) and the codomain is Hausdorff, it is enough to show that $\hat{\varphi}$ is bijective. More specifically, it suffices to show that $\left.\varphi\right|_{D^{2 n+2}}$ bijects onto $\mathbf{C} P^{n+1}-\mathbf{C} P^{n}$, seeing as $\left.\hat{\varphi}\right|_{\mathbf{C} P^{n}}: \mathbf{C} P^{n} \rightarrow \hat{\varphi}\left(\mathbf{C} P^{n}\right)$ is bijective.
We first check surjectivity. Let $\left[z_{0}^{\prime}: \cdots: z_{n}^{\prime}: z_{n+1}^{\prime}\right] \in \mathbf{C} P^{n+1}-\mathbf{C} P^{n}$, i.e. the last entry fulfils $z_{n+1}^{\prime} \neq 0$. Let $r:=\sqrt{\sum_{j=0}^{n+1}\left|z_{j}^{\prime}\right|^{2}}$ and $e^{i \alpha} \in S^{1}$ be the phase, such that $\frac{e^{i \alpha z_{n+1}^{\prime}}}{r} \in \mathbf{R}_{>0}$. We then rescale the representative of the class $\left[z_{0}^{\prime}: \cdots: z_{n}^{\prime}: z_{n+1}^{\prime}\right]$ by $\frac{e^{i \alpha}}{r}$ and show that $\left(z_{0} \ldots, z_{n}\right) \in \mathbf{C}^{n+1}$ defined through the system:

$$
\left\{\begin{array}{l}
1-\sum_{j=0}^{n}\left|z_{j}\right|^{2}=\frac{e^{i \alpha}}{r} z_{n+1}^{\prime} \\
z_{j}=\frac{e^{i \alpha}}{r} z_{j}^{\prime}, 0 \leq j \leq n
\end{array}\right.
$$

in fact, has a solution in the interior of $D^{2 n+2}$. Through this system of equations, we get a quadratic equation in the "variable" r of the form:

$$
\begin{aligned}
0 & =r^{2}-\left(e^{i \alpha} z_{n+1}^{\prime}\right) r-\sum_{j=0}^{n}\left|z_{j}^{\prime}\right|^{2} \\
& =r^{2}-\beta r-\sum_{j=0}^{n}\left|z_{j}^{\prime}\right|^{2}
\end{aligned}
$$

We then get that the only legal solution for r (since it has to be positive) is $r=\frac{\beta+\sqrt{\beta^{2}+4 \sum_{j=0}^{n}\left|z_{j}^{\prime}\right|^{2}}}{2}$ and plugging this into the sum of squares, we get with $\beta>0$:

$$
\sum_{j=0}^{n}\left|z_{j}\right|^{2}=\frac{4 \sum_{j=0}^{n}\left|z_{j}^{\prime}\right|}{\left(\beta+\sqrt{\beta^{2}+4 \sum_{j=0}^{n}\left|z_{j}^{\prime}\right|^{2}}\right)^{2}}<1
$$

We conclude that φ maps the interior of $D^{2 n+2}$ surjectively onto $\mathbf{C} P^{n+1}-\mathbf{C} P^{n}$. Now we turn to the injectivity of φ restricted to $D^{2 n+2}$, where the calculation is of a similar nature to the one performed for the surjectivity. Let $\left(z_{0}, \ldots, z_{n}\right),\left(z_{0}^{\prime} \ldots, z_{n}^{\prime}\right) \in$ $D^{2 n+2}$ such that:

$$
\left[z_{0}: \cdots: z_{n}: 1-\sum_{j=0}^{n}\left|z_{j}\right|^{2}\right]=\left[z_{0}^{\prime}: \cdots: z_{n}^{\prime}: 1-\sum_{j=0}^{n}\left|z_{j}^{\prime}\right|^{2}\right] .
$$

By the definition of the complex projective space, there exists a re $e^{i \alpha} \in \mathbf{C}-0$ such that:

$$
\left\{\begin{array}{l}
r e^{i \alpha}\left(1-\sum_{j=0}^{n}\left|z_{j}\right|^{2}\right)=1-\sum_{j=0}^{n}\left|z_{j}^{\prime}\right|^{2} \\
r e^{i \alpha} z_{j}=z_{j}^{\prime}, 0 \leq j \leq n
\end{array}\right.
$$

From the first part of the system of equations we can deduce that $e^{i \alpha}=1$. We thus end up with a quadratic equation in r of the form:

$$
r^{2}-r+\sum_{j=0}^{n}\left|z_{j}^{\prime}\right|^{2}(r-1)=0
$$

The only positive solution is $r=1$ and we get the equality of points $\left(z_{0}, \ldots, z_{n}\right)=$ $\left(z_{0}^{\prime} \ldots, z_{n}^{\prime}\right)$, i.e. we also get injectivity. This concludes the proof.
b).

Proof. From the previous exercise, we know that (for $n \geq 1$):

$$
\left.\mathbf{C} P^{n} \cong \mathbf{C} P^{n-1} \cup_{h} D^{2 n} \cong \cdots \cong\left(\cdots\left(\mathbf{C} P^{0} \cup_{h} D^{2}\right) \cup_{h} D^{4}\right) \cup_{h} D^{6} \cdots\right) \cup_{h} D^{2 n}
$$

We remark that $\mathbf{C} P^{0}=\{*\}$ is just the pointed space, meaning the homology becomes:

$$
H_{k}\left(\mathbf{C} P^{0} ; M\right)=\left\{\begin{array}{cc}
M & k=0 \\
0 & o / \mathrm{w}
\end{array}\right.
$$

From the above construction, we see that a CW-structure on $\mathbf{C} P^{n}$ is given through $n+1$ cells, one 0 -cell $\mathbf{C} P^{0}$ and $n 2 \mathrm{k}$-cells $D^{2 k}$ for $1 \leq k \leq n$. Furthermore, by Theorem 2.13 from lecture, we have $H_{\bullet}^{C W}\left(\mathbf{C} P^{n} ; M\right):=H_{\bullet}\left(C^{C W}\left(\mathbf{C} P^{n}\right) \otimes M\right) \cong$ $H_{\bullet}\left(\mathbf{C} P^{n} ; M\right)$, meaning going through cellular homology gives us the same homology w.r.t. coefficients M. We get the chain complex:
$0 \rightarrow C_{2 n}^{C W}\left(\mathbf{C} P^{n}\right) \otimes M \xrightarrow{d} C_{2 n-1}^{C W}\left(\mathbf{C} P^{n}\right) \otimes M \xrightarrow{d} \cdots C_{1}^{C W}\left(\mathbf{C} P^{n}\right) \otimes M \xrightarrow{d} C_{0}^{C W}\left(\mathbf{C} P^{n}\right) \otimes M \rightarrow 0$.

Algebraic Topology II

As there are no cells in uneven dimensions, all uneven dimensions are trivial and using that $\mathbf{Z} \otimes M \cong M$ we get:

$$
H_{k}\left(\mathbf{C} P^{n} ; M\right)=\left\{\begin{array}{cc}
M & k \text { even, and } k \leq 2 n \\
0 & \text { o/w }
\end{array} .\right.
$$

c).

Proof. We remark that the Hopf-fibration h is certainly a continuous and surjective map. As the open set for $\left[z_{0}: \cdots: z_{n}\right] \in \mathbf{C} P^{n}$, take $U_{i}:=\left\{\left[z_{0}: \cdots: z_{n}\right] \in \mathbf{C} P^{n}: z_{i} \neq 0\right\}$, wherever the i-th entry is non-zero. Note that

$$
h^{-1}\left(U_{i}\right)=S^{2 n+1} \cap\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbf{C}^{n+1}-0: z_{i} \neq 0\right\}
$$

consists of all points on $S^{2 n+1}$ s.t. $z_{i} \neq 0$. Define a map:

$$
\varphi_{i}: h^{-1}\left(U_{i}\right) \rightarrow U_{i} \times S^{1},\left(z_{0}, \ldots, z_{n}\right) \mapsto\left(\left[z_{0}: \cdots: z_{n}\right], \frac{z_{i}}{\left|z_{i}\right|}\right) .
$$

Its continuous inverse is given through:

$$
\psi_{i}: U_{i} \times S^{1} \rightarrow h^{-1}\left(U_{i}\right),\left(\left[z_{0}: \cdots z_{i-1}: 1: z_{i+1}: \cdots: z_{n}\right], e^{i t}\right) \mapsto \frac{e^{i t}\left(z_{0}, \ldots, 1, \ldots, z_{n}\right)}{\sqrt{1+\sum_{j=0, j \neq i}^{n}\left|z_{j}\right|^{2}}} .
$$

This concludes the proof.

Problem 2

by Sina Keller and Tristan Lovsin

2a). We know that $\mathbb{R} P^{n} \cong D^{n} / \sim$ with \sim being the equivalence relation between antipodal points on ∂D^{n}. Denote $p: S^{n} \rightarrow D^{n}$ the projection map. ${ }^{1}$ Now we define $h_{\mathbb{R}}$:

$$
\begin{array}{rl}
h_{\mathbb{R}}: S^{n} & \longrightarrow \mathbb{R} P^{n} \cong D^{n} / \sim \\
x & x \begin{cases}{[x]_{\sim}} & x \text { on the equator of } S^{n} \\
p(x) & x \text { in the left hemisphere } \\
p(-x) & x \text { in the right hemisphere }\end{cases}
\end{array}
$$

In order to show that $h_{\mathbb{R}}$ is a covering, we need to show that there exists a discrete fibre $F:=S^{0}=\{-1,1\}$, such that for any $x \in \mathbb{R} P^{n}$ there exists a neighbourhood \tilde{U} of x and a homeomorphism φ such that the following diagram commutes:

[^0]

In order to determine a useful neighborhood, we will distinguish two cases: one where $h_{\mathbb{R}}^{-1}(x)$ is on the equator of S^{n} and the other where that is not the case.
If $h_{\mathbb{R}}^{-1}(x)$ is not on the equator, then let $\tilde{U}_{x}:=h_{\mathbb{R}}\left(S^{n} \backslash\left\{\left(x_{0}, \ldots, x_{n}\right) \in S^{n} \mid x_{0}=0\right\}\right)$ and if $h_{\mathbb{R}}^{-1}(x)$ is on the equator, then let

$$
\tilde{U}_{x}:=h_{\mathbb{R}}\left(S^{n} \backslash\left\{\left(x_{0}, \ldots, x_{n}\right) \in S^{n} \mid\left\langle y,\left(x_{0}, \ldots, x_{n}\right)\right\rangle=0 \forall y \in h_{\mathbb{R}}^{-1}(x)\right\}\right),
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard scalar product in \mathbb{R}^{n}.
Now let $x \in \mathbb{R} P^{n}$ and $\tilde{U}_{x} \subset \mathbb{R} P^{n}$ the open neighborhood we just defined. If $h_{\mathbb{R}}^{-1}(x)$ is not on the equator we denote U_{x} the right hemisphere and U_{-x} the left hemisphere and if $h_{\mathbb{R}}^{-1}(x)$ is on the equator, then let $U_{x}:=\left\{\left(x_{0}, \ldots, x_{n}\right) \in S^{n} \mid\right.$ $\left.\left\langle x,\left(x_{0}, 0, \ldots, 0\right)\right\rangle \geq 0\right\}$ and $U_{-x}:=\left\{\left(x_{0}, \ldots, x_{n}\right) \in S^{n} \mid\left\langle-x,\left(x_{0}, 0, \ldots, 0\right)\right\rangle \geq 0\right\}$. Then $h_{\mathbb{R}}^{-1}\left(\tilde{U}_{x}\right)=U_{x} \bigsqcup U_{-x}$ for both versions of \tilde{U}_{x}. We define φ for both versions as

$$
\begin{aligned}
\varphi: U_{x} \bigsqcup U_{-x} & \longrightarrow \tilde{U}_{x} \times S^{0} \\
& z \longmapsto \begin{cases}([z], 1) & \Longleftrightarrow z \in U_{x} \\
([z],-1) & \Longleftrightarrow z \in U_{-x}\end{cases}
\end{aligned}
$$

and ψ for both versions as

$$
\begin{aligned}
\psi: \tilde{U}_{x} \times S^{0} & \longrightarrow U_{x} \bigsqcup U_{-x} \\
\quad([z], y) & \longmapsto y z
\end{aligned}
$$

Let $y \in U_{x}$ and $-y \in U_{-x}$, then

$$
\left.\begin{array}{c}
\psi(\varphi(y))=\psi([y], 1)=y \\
\psi(\varphi(-y))=\psi([y],-1)=-y
\end{array}\right\}=\operatorname{id}_{h_{\mathbb{R}}^{-1}\left(\tilde{U}_{x}\right)} \text { and }
$$

Therefore we have found an homeomorphism between $\tilde{U} \times S^{0}$ and $h_{\mathbb{R}}^{-1}(\tilde{U})$ and have a covering as desired.

2b). We choose the disc presentation of $\mathbb{R} P^{n+1} \cong D^{n+1} / \sim$ with $x \sim y$ iff $x=y$ or $x=-y \forall x, y \in \partial D^{n+1}$. In $\mathbb{R} P^{n} \cup_{h_{\mathbb{R}}} D^{n+1}$ we have that $x \sim h_{\mathbb{R}}(x)=[x]=$ $h_{\mathbb{R}}(-x) \sim x$ and thus $x \sim y$ iff $x=y$ or $x=-y \forall x, y \in \partial D^{n+1}$, obtaining $\mathbb{R} P^{n} \cup_{h_{\mathbb{R}}} D^{n+1} \cong D^{n+1} / \sim \cong \mathbb{R} P^{n+1}$ as desired.

2c). $\mathbb{R} P^{n} / \mathbb{R} P^{n-1} \cong\left(\mathbb{R} P^{n-1} \cup_{h_{\mathbb{R}}} D^{n}\right) / \mathbb{R} P^{n-1} \cong D^{n} / \sim \cong S^{n}$ where $x \backsim y$ iff $x, y \in \partial D^{n}$.
Now we compute the degree of the map $\pi \circ h_{\mathbb{R}}$ with π denoting the projection from $\mathbb{R} P^{n}$ to $\mathbb{R} P^{n} / \mathbb{R} P^{n-1}$. Since $\pi \circ h_{\mathbb{R}}$ is a smooth map from S^{n} to S^{n} we know from Algebraic Topology I that

$$
\operatorname{deg}\left(\pi \circ h_{\mathbb{R}}\right)=\sum_{j=1}^{k} \mathcal{E}_{q_{j}}\left(\pi \circ h_{\mathbb{R}}\right)
$$

where $\mathcal{E}_{q_{j}}\left(\pi \circ h_{\mathbb{R}}\right)$ is the local degree of $\pi \circ h_{\mathbb{R}}$ at q_{j} with $q_{j} \in \pi \circ h_{\mathbb{R}}^{-1}(p)$ for some regular value $p \in S^{n}$.
Let $p \in S^{n}$ be arbitrary and fixed. Then $\pi \circ h_{\mathbb{R}}^{-1}(p)=\{-p, p\}$. Clearly $\mathcal{E}_{p}\left(\pi \circ h_{\mathbb{R}}\right)=$ 1 , as $\pi \circ h_{\mathbb{R}}$ acts like the identity in a small neighbourhood of p. Furthermore, $\mathcal{E}_{-p}\left(\pi \circ h_{\mathbb{R}}\right)=(-1)^{n+1}$ as $\pi \circ h_{\mathbb{R}}$ acts as the antipodal map in a small neighbourhood of $-p$. Thus we have

$$
\operatorname{deg}\left(\pi \circ h_{\mathbb{R}}\right)=1+(-1)^{n+1}= \begin{cases}0 & \text { if } n \text { is even } \\ 2 & \text { if } n \text { is odd }\end{cases}
$$

2d). We choose the standard CW-complex on $\mathbb{R} P^{n}$ with $1 p$-cell in each dimension $p \leq n$ and 0 otherwise.
For $M=\mathbb{Z}$ we obtain

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \ldots
$$

if n is even and

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \ldots
$$

if n is odd. This yields

$$
H_{p}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & \text { if } p=n \text { where } n \text { is odd or } p=0 \\ \mathbb{Z}_{2} & \text { if } 0<p \leq n-1 \text { and } p \text { is odd } \\ 0 & \text { if } p>n \text { or } 0<p \leq n \text { and } p \text { is even }\end{cases}
$$

For $M=\mathbb{Z}_{2}$ we have

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z}_{2} \xrightarrow{2} \mathbb{Z}_{2} \xrightarrow{0} \mathbb{Z}_{2} \xrightarrow{2} \ldots
$$

if n is even and

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z}_{2} \xrightarrow{0} \mathbb{Z}_{2} \xrightarrow{2} \mathbb{Z}_{2} \xrightarrow{0} \ldots
$$

if n is odd. However $2 \equiv 0$ in \mathbb{Z}_{2} and thus we have

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z}_{2} \xrightarrow{0} \mathbb{Z}_{2} \xrightarrow{0} \mathbb{Z}_{2} \xrightarrow{0} \ldots
$$

regardless of n. Hence

$$
H_{p}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\operatorname{Ker}\left(d_{p}\right) / \operatorname{Im}\left(d_{p+1}\right) \cong \begin{cases}\mathbb{Z}_{2} / 0=\mathbb{Z}_{2} & \text { if } p \leq n \\ 0 & \text { if } p>n\end{cases}
$$

Problem 3

by Maria Morariu

a). We prove the statement using the naturality of the Gysin long exact sequence. Take an arbitrary map $f: \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{m}$ and let $p_{n}: S^{n} \rightarrow \mathbb{R} P^{n}, p_{m}: S^{m} \rightarrow \mathbb{R} P^{m}$ be the usual two-coverings. We have a map $f \circ p_{n}: S^{n} \rightarrow \mathbb{R} P^{m}$ and the fundamental group of S^{n} is trivial $(n>1)$, so by the lifting property of covers, there exists a function $g: S^{n} \rightarrow S^{m}$ such that $p_{m} \circ g=f \circ p_{n}$.
The Gysin LES gives the following commutative diagram, with exact rows:

$$
\begin{aligned}
& \cdots \longrightarrow H_{p}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \xrightarrow{T_{*}} H_{p}\left(S^{n} ; \mathbb{Z} / 2\right) \xrightarrow{p_{n, *}} H_{p}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \xrightarrow{\partial} H_{p-1}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \longrightarrow \cdots \\
& \downarrow_{f_{*}} \downarrow_{g_{*}}^{\downarrow_{*}} \\
& \cdots \rightarrow H_{p}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \xrightarrow{T_{*}^{\prime}} H_{p}\left(S^{m} ; \mathbb{Z} / 2\right) \xrightarrow{p_{m, *}} H_{p}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \xrightarrow{\partial^{\prime}} H_{p-1}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \rightarrow \cdots
\end{aligned}
$$

As in the lecture, we get the following diagrams with exact rows:
For $2 \leq p \leq m-1$ (1):

$$
\begin{aligned}
& 0 \longrightarrow H_{p}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \longrightarrow H_{p-1}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \longrightarrow 0 \\
& \downarrow_{f_{*, p}} \downarrow_{f_{*, p-1}} \\
& 0 \longrightarrow H_{p}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \longrightarrow H_{p-1}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \longrightarrow 0
\end{aligned}
$$

and (2):

$$
\begin{aligned}
& 0 \longrightarrow H_{m}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \xrightarrow{T_{*}} H_{m}\left(S^{n} ; \mathbb{Z} / 2\right) \xrightarrow{p_{n, *}} H_{m}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \xrightarrow{\partial} H_{m-1}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \longrightarrow 0 \\
& \downarrow_{f_{*, m}} \downarrow^{g_{*}} \downarrow_{f_{*, m}} \downarrow_{f_{*, m-1}} \\
& 0 \rightarrow H_{m}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \xrightarrow{T_{t}^{\prime}} H_{m}\left(S^{m} ; \mathbb{Z} / 2\right) \xrightarrow{p_{m, *}} H_{m}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \xrightarrow{\partial^{\prime}} H_{m-1}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \longrightarrow 0
\end{aligned}
$$

Now m and n are different, so $H_{m}\left(S^{n}\right)=0$. Thus, commutativity of the first square in (2) implies $T_{*}^{\prime} \circ f_{*, m}=0$. By the lecture, $H_{p}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \cong H_{p}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2$ for all $p \leq m$. By exactness T_{*}^{\prime} is injective, so we have $f_{*, m}=0$.
Now ∂ and ∂^{\prime} are surjective homomorphisms $\mathbb{Z} / 2 \rightarrow \mathbb{Z} / 2$, so they are isomorphisms. Thus commutativity of the last square in (2), together with $f_{*, m}=0$ give $f_{*, m-1}=0$. Now exactness of the rows in diagram (1) shows that the horizontal maps are isomorphisms. Inductively, this gives $f_{*, p}=0$ for all $1 \leq p \leq m$. In particular, $f_{*, 1}=0$, which is what we wanted to show.
b). Assume that $\mathbb{R} P^{m}$ was a retract of $\mathbb{R} P^{n}$, i.e. there exists a continuous map $r: \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{m}$, such that the canonical inclusion $i: \mathbb{R} P^{m} \rightarrow \mathbb{R} P^{n}$ satisfies $r \circ i=i d_{\mathbb{R} P^{m}}$.
By functoriality, this implies $r_{*} \circ i_{*}=i d_{H_{p}(\mathbb{R} P m ; \mathbb{Z} / 2)}, \forall p \geq 2$. In particular, $r_{*}: H_{1}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \rightarrow H_{1}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right)$ is a surjection. However, a) implies that this map is zero. By the lecture, the homology groups are non-zero, so this is a contradiction. Therefore $\mathbb{R} P^{m}$ cannot be a retract of $\mathbb{R} P^{n}$.

Exercise 4. (Sheet 2)
(a) Define $f: \mathbb{R} P^{2} \rightarrow S^{2}$ to be the quotient map

$$
\mathbb{R} P^{2} \longrightarrow \mathbb{R} P^{2} / \mathbb{R} P^{1} \cong S^{2}
$$

\Longrightarrow The interior of the 2-cell maps homeomorphically onto the 2-cell.
\Rightarrow The induced map on cell complexes

$$
\begin{aligned}
& C_{0}^{c w}\left(\mathbb{R} P^{2} ; \mathbb{F}_{2}\right): \mathbb{F}_{2} \rightarrow \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{\prime} \\
&{ }^{1} \\
& C_{0}^{c w}\left(S^{2} ; \mathbb{F}_{2}\right): \mathbb{F}_{2} \rightarrow 0 \rightarrow \mathbb{F}_{2}
\end{aligned}
$$

(6) Consider $\quad f: \mathbb{R} P^{2} \longrightarrow S^{2}$
constant map: $\mathbb{R} P^{2} \longrightarrow\{n\} \in S^{2}$
the induced maps $H_{2}\left(\mathbb{R P} ; \mathbb{F}_{2}\right) \overbrace{0}^{\overbrace{*}=i d} H_{2}\left(S^{2} ; \mathbb{F}_{2}\right)$

$$
\begin{aligned}
& H_{1}\left(\mathbb{R} P^{2} ; \mathbb{R}\right) \xrightarrow{\downarrow} H_{1}\left(S^{2} ; \pi\right) \cong 0
\end{aligned}
$$

Problem 5

by Noah Stäuble \& Philip Sandt
A Borsuk-Ulam type statement does not hold for the Torus $S_{1} \times S_{1}$ - there exists a continuous function $S^{1} \times S^{1} \rightarrow \mathbb{R}^{2}$ where no antipodal points have the same image. To see this, consider the following counter example

$$
\begin{align*}
\Phi: S_{1} \times S_{1} & \rightarrow S_{1} \hookrightarrow \mathbb{R}^{2} \\
(s, t) & \mapsto s \mapsto s \tag{1}
\end{align*}
$$

Φ is continuous and satisfies the following property: if (s, t) and $(-s,-t)$ have the same image, then this image is s and $-s$ at the same time, so it is zero, hence

$$
\Phi(s, t)=s=0 \in \mathbb{R}^{2} .
$$

But 0 is not in S^{1} so we cannot have antipodal points mapping to the same point.

Problem 6

by Naomi Rosenberg

Fix $n \in \mathbb{N}$. Let $\bigcup_{k=1}^{n+1} U_{k}$ be a covering of S^{n} with closed sets U_{k}. Without loss of generality, assume that U_{k} does not contain any antipodal points for $k \in\{1, \ldots, n\}$; otherwise the claim from the exercise is already satisfied.

Our goal is to construct a map $f: S^{n} \rightarrow \mathbb{R}^{n}$, to then apply the Borsuk-Ulam Theorem in order to deduce that there exists a point $x \in S^{n}$ satisfying $f(x)=f(-x)$, and to then notice that both, x and $-x$, have to be contained in U_{k+1}.

We start by defining

$$
f_{k}: S^{n} \rightarrow \mathbb{R}, f_{k}(x):=d\left(x, U_{k}\right):=\inf _{y \in U_{k}} d(x, y),
$$

for every $k \in\{1, \ldots, n\}$, where we denote by d the Euclidean distance on \mathbb{R}^{n}. We claim that f_{k} is continuous. Indeed, d is continuous and for every $x, y \in S^{n}$, the following holds:

$$
\begin{aligned}
f_{k}(x)=d\left(x, U_{k}\right) & =\inf _{u \in U_{k}}(d(x, u)) \\
\leq & \inf _{u \in U_{k}}(d(x, y)+d(y, u))=d(x, y)+d\left(y, U_{k}\right)=d(x, y)+f_{k}(y)
\end{aligned}
$$

and analogously $f_{k}(y) \leq d(x, y)+f_{k}(x)$. Thus, $\left|f_{k}(x)-f_{k}(y)\right| \leq d(x, y)$. Hence, f_{k} is 1-Lipschitz and therefore continuous.
Next, we define the function f as follows:

$$
f: S^{n} \rightarrow \mathbb{R}^{n}, f(x):=\left(f_{1}(x), \ldots, f_{n}(x)\right) .
$$

Since f is continuous in every component, it is continuous on its whole domain. Thus, we can conclude with the Borsuk-Ulam Theorem that there exists an element $x \in S^{n}$ satisfying $f(x)=f(-x)$. In particular, by the definition of f, x satisfies $d\left(x, U_{k}\right)=f_{k}(x)=f_{k}(-x)=d\left(-x, U_{k}\right)$ for every $k \in\{1, \ldots, n\}$. By assumption, U_{k} does not contain any antipodal points, thus U_{k} cannot contain both, x and $-x$. In fact, neither x, nor $-x$ can be contained in U_{k}. Indeed, if $x \in U_{k}$, then $0=d\left(x, U_{k}\right)=d\left(-x, U_{k}\right)$ and therefore $-x \in U_{k}$, which is a contradiction.
Since the above holds for every $k \in\{1, \ldots n\},$,$x and -x$ are contained in none of the U_{k} 's for $k \in\{1, \ldots, n\}$.
Taking into account that $\bigcup_{k=1}^{n+1} U_{k}$ is a covering of S^{n}, the above implies that $x,-x \in U_{k+1}$. This concludes the proof since consequently, x and y are in the same set from the covering.

[^0]: ${ }^{1}$ The projection is defined in the following way. We look at $S^{n}:=\left\{x \in \mathbb{R}^{n+1},\|x\|=1\right\}$ and $D^{n}:=\left\{x \in \mathbb{R}^{n+1},\|x\| \leq 1\right\}$ as subspaces of \mathbb{R}^{n+1}. Then $p\left(x_{0}, \ldots, x_{n}\right)=\left(0, x_{1}, \ldots, x_{n}\right)$.

