DR. LUKAS LEWARK ALGEBRAIC TOPOLOGY II SOLUTIONS SHEET 2 ETH ZÜRICH SPRING, 2024

Problem 1

by Vladimir Nowak

I want to thank Semyon for his insightful comments about my solution attempts to the exercises. Throughout the following, we refer to the map $h: S^{2n+1} \to \mathbb{C}P^n$ as the Hopf-fibration.

a).

Proof. Define the map:

$$\varphi \colon D^{2n+2} \subset \mathbf{C}^{n+1} \to \mathbf{C}P^{n+1}, (z_0, \dots, z_n) \mapsto \left[z_0 \colon \dots \colon z_n \colon 1 - \sum_{j=0}^n |z_j|^2 \right].$$

This is certainly a continuous map, given as the composition of maps

$$D^{2n+2} \hookrightarrow \mathbf{C}^{n+1} \to \mathbf{C}^{n+2} \xrightarrow{\pi} \mathbf{C} P^{n+1},$$

with π the canonical projection map. We notice that on $S^{2n+1} \subset D^{2n+2}$, φ yields the Hopf-fibration, i.e. $\varphi(S^{2n+1}) = \mathbb{C}P^n \subset \mathbb{C}P^{n+1}$, meaning that φ induces a map $\hat{\varphi} \colon \mathbb{C}P^n \cup_h D^{2n+2} \to \mathbb{C}P^{n+1}$. Therefore, in order to show that $\mathbb{C}P^{n+1} \cong \mathbb{C}P^n \cup_h D^{2n+2}$, it suffices to show that the induced map $\hat{\varphi}$ is a homeomorphism. We remark that since the domain of the map $\hat{\varphi}$ is compact (as the quotient of a compact space $\mathbb{C}P^n \sqcup D^{2n+2}$) and the codomain is Hausdorff, it is enough to show that $\hat{\varphi}$ is bijective. More specifically, it suffices to show that $\varphi|_{\hat{D}^{2n+2}}$ bijects onto $\mathbb{C}P^{n+1} - \mathbb{C}P^n$, seeing as $\hat{\varphi}|_{\mathbb{C}P^n} \colon \mathbb{C}P^n \to \hat{\varphi}(\mathbb{C}P^n)$ is bijective. We first check surjectivity. Let $[z'_0 \colon \cdots \coloneqq z'_n \colon z'_{n+1}] \in \mathbb{C}P^{n+1} - \mathbb{C}P^n$, i.e. the last entry fulfils $z'_{n+1} \neq 0$. Let $r \coloneqq \sqrt{\sum_{j=0}^{n+1} |z'_j|^2}$ and $e^{i\alpha} \in S^1$ be the phase, such that $\frac{e^{i\alpha}z'_{n+1}}{r} \in \mathbb{R}_{>0}$. We then rescale the representative of the class $[z'_0 \colon \cdots \coloneqq z'_n \colon z'_{n+1}]$ by $\frac{e^{i\alpha}}{r}$ and show that $(z_0 \ldots, z_n) \in \mathbb{C}^{n+1}$ defined through the system:

$$\begin{cases} 1 - \sum_{j=0}^{n} |z_j|^2 = \frac{e^{i\alpha}}{r} z'_{n+1} \\ z_j = \frac{e^{i\alpha}}{r} z'_j, \ 0 \le j \le n \end{cases};$$

in fact, has a solution in the interior of D^{2n+2} . Through this system of equations, we get a quadratic equation in the "variable" r of the form:

$$0 = r^{2} - \left(e^{i\alpha}z'_{n+1}\right)r - \sum_{j=0}^{n} |z'_{j}|^{2}$$
$$= r^{2} - \beta r - \sum_{j=0}^{n} |z'_{j}|^{2}.$$

Algebraic Topology II

;

We then get that the only legal solution for r (since it has to be positive) is $r = \frac{\beta + \sqrt{\beta^2 + 4\sum_{j=0}^n |z'_j|^2}}{2}$ and plugging this into the sum of squares, we get with $\beta > 0$: $\sum_{j=0}^n |z_j|^2 = \frac{4\sum_{j=0}^n |z'_j|}{\left(\beta + \sqrt{\beta^2 + 4\sum_{j=0}^n |z'_j|^2}\right)^2} < 1.$ We used be that we call be interval to interval D^{2n+2} we institude to CD^{n+1} . CD^n . Note

We conclude that φ maps the interior of D^{2n+2} surjectively onto $\mathbb{C}P^{n+1}-\mathbb{C}P^n$. Now we turn to the injectivity of φ restricted to \mathring{D}^{2n+2} , where the calculation is of a similar nature to the one performed for the surjectivity. Let $(z_0, \ldots, z_n), (z'_0, \ldots, z'_n) \in \mathring{D}^{2n+2}$ such that:

$$\left[z_0: \dots: z_n: 1 - \sum_{j=0}^n |z_j|^2\right] = \left[z'_0: \dots: z'_n: 1 - \sum_{j=0}^n |z'_j|^2\right].$$

By the definition of the complex projective space, there exists a $re^{i\alpha} \in \mathbf{C} - 0$ such that:

$$\begin{cases} re^{i\alpha} \left(1 - \sum_{j=0}^{n} |z_j|^2 \right) = 1 - \sum_{j=0}^{n} |z'_j|^2 \\ re^{i\alpha} z_j = z'_j, \ 0 \le j \le n \end{cases}$$

From the first part of the system of equations we can deduce that $e^{i\alpha} = 1$. We thus end up with a quadratic equation in r of the form:

$$r^{2} - r + \sum_{j=0}^{n} |z'_{j}|^{2} (r-1) = 0.$$

The only positive solution is r = 1 and we get the equality of points $(z_0, \ldots, z_n) = (z'_0 \ldots, z'_n)$, i.e. we also get injectivity. This concludes the proof.

Proof. From the previous exercise, we know that (for $n \ge 1$):

$$\mathbf{C}P^n \cong \mathbf{C}P^{n-1} \cup_h D^{2n} \cong \cdots \cong \left(\cdots \left(\mathbf{C}P^0 \cup_h D^2\right) \cup_h D^4\right) \cup_h D^6 \cdots\right) \cup_h D^{2n}$$

We remark that $\mathbf{C}P^0 = \{*\}$ is just the pointed space, meaning the homology becomes:

$$H_k\left(\mathbf{C}P^0; M\right) = \begin{cases} M & k = 0\\ 0 & \text{o/w} \end{cases}$$

From the above construction, we see that a CW-structure on $\mathbb{C}P^n$ is given through n+1 cells, one 0-cell $\mathbb{C}P^0$ and n 2k-cells D^{2k} for $1 \leq k \leq n$. Furthermore, by Theorem 2.13 from lecture, we have $H^{CW}_{\bullet}(\mathbb{C}P^n; M) := H_{\bullet}(\mathbb{C}^{CW}(\mathbb{C}P^n) \otimes M) \cong H_{\bullet}(\mathbb{C}P^n; M)$, meaning going through cellular homology gives us the same homology w.r.t. coefficients M. We get the chain complex:

$$0 \to C_{2n}^{CW}(\mathbf{C}P^n) \otimes M \xrightarrow{d} C_{2n-1}^{CW}(\mathbf{C}P^n) \otimes M \xrightarrow{d} \cdots C_1^{CW}(\mathbf{C}P^n) \otimes M \xrightarrow{d} C_0^{CW}(\mathbf{C}P^n) \otimes M \to 0.$$

As there are no cells in uneven dimensions, all uneven dimensions are trivial and using that $\mathbf{Z} \otimes M \cong M$ we get:

$$H_k(\mathbb{C}P^n; M) = \begin{cases} M & k \text{ even, and } k \leq 2n \\ 0 & o/w \end{cases} .$$

c).

Proof. We remark that the Hopf-fibration h is certainly a continuous and surjective map. As the open set for $[z_0: \cdots: z_n] \in \mathbb{C}P^n$, take $U_i := \{[z_0: \cdots: z_n] \in \mathbb{C}P^n: z_i \neq 0\}$, wherever the i-th entry is non-zero. Note that

$$h^{-1}(U_i) = S^{2n+1} \cap \{(z_0, \dots, z_n) \in \mathbf{C}^{n+1} - 0 \colon z_i \neq 0\}$$

consists of all points on S^{2n+1} s.t. $z_i \neq 0$. Define a map:

$$\varphi_i \colon h^{-1}(U_i) \to U_i \times S^1, (z_0, \dots, z_n) \mapsto \left([z_0 \colon \dots \colon z_n], \frac{z_i}{|z_i|} \right).$$

Its continuous inverse is given through:

$$\psi_i \colon U_i \times S^1 \to h^{-1}(U_i), \left([z_0 \colon \cdots z_{i-1} \colon 1 \colon z_{i+1} \colon \cdots \colon z_n], e^{it} \right) \mapsto \frac{e^{it} \left(z_0, \dots, 1, \dots, z_n \right)}{\sqrt{1 + \sum_{j=0, j \neq i}^n |z_j|^2}}.$$

This concludes the proof.

This concludes the proof.

PROBLEM 2

by Sina Keller and Tristan Lovsin

2a). We know that $\mathbb{R}P^n \cong \overset{D^n}{\nearrow}$ with ~ being the equivalence relation between antipodal points on ∂D^n . Denote $p: S^n \to D^n$ the projection map.¹ Now we define $h_{\mathbb{R}}$:

$$h_{\mathbb{R}} \colon S^n \longrightarrow \mathbb{R}P^n \cong \overset{D^n}{\nearrow}$$

$$x \longmapsto \begin{cases} [x]_{\sim} & x \text{ on the equator of } S^n \\ p(x) & x \text{ in the left hemisphere} \\ p(-x) & x \text{ in the right hemisphere} \end{cases}$$

In order to show that $h_{\mathbb{R}}$ is a covering, we need to show that there exists a discrete fibre $F := S^0 = \{-1, 1\}$, such that for any $x \in \mathbb{R}P^n$ there exists a neighbourhood \tilde{U} of x and a homeomorphism φ such that the following diagram commutes:

¹The projection is defined in the following way. We look at $S^n := \{x \in \mathbb{R}^{n+1}, ||x|| = 1\}$ and $D^n := \{x \in \mathbb{R}^{n+1}, ||x|| \le 1\}$ as subspaces of \mathbb{R}^{n+1} . Then $p(x_0, \ldots, x_n) = (0, x_1, \ldots, x_n)$.

In order to determine a useful neighborhood, we will distinguish two cases: one where $h_{\mathbb{R}}^{-1}(x)$ is on the equator of S^n and the other where that is not the case. If $h_{\mathbb{R}}^{-1}(x)$ is not on the equator, then let $\tilde{U}_x := h_{\mathbb{R}}(S^n \setminus \{(x_0, \ldots, x_n) \in S^n \mid x_0 = 0\})$ and if $h_{\mathbb{R}}^{-1}(x)$ is on the equator, then let

$$\tilde{U}_x \coloneqq h_{\mathbb{R}}(S^n \setminus \{(x_0, \dots, x_n) \in S^n \mid \langle y, (x_0, \dots, x_n) \rangle = 0 \ \forall y \in h_{\mathbb{R}}^{-1}(x)\}),$$

where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product in \mathbb{R}^n .

Now let $x \in \mathbb{R}P^n$ and $\tilde{U}_x \subset \mathbb{R}P^n$ the open neighborhood we just defined. If $h_{\mathbb{R}}^{-1}(x)$ is not on the equator we denote U_x the right hemisphere and U_{-x} the left hemisphere and if $h_{\mathbb{R}}^{-1}(x)$ is on the equator, then let $U_x := \{(x_0, \ldots, x_n) \in S^n \mid \langle x, (x_0, 0, \ldots, 0) \rangle \geq 0\}$ and $U_{-x} := \{(x_0, \ldots, x_n) \in S^n \mid \langle -x, (x_0, 0, \ldots, 0) \rangle \geq 0\}$. Then $h_{\mathbb{R}}^{-1}(\tilde{U}_x) = U_x \bigsqcup U_{-x}$ for both versions of \tilde{U}_x . We define φ for both versions as

$$\varphi \colon U_x \bigsqcup U_{-x} \longrightarrow \tilde{U}_x \times S^0$$
$$z \longmapsto \begin{cases} ([z], 1) & \Longleftrightarrow \ z \in U_x \\ ([z], -1) & \Longleftrightarrow \ z \in U_{-x} \end{cases}$$

and ψ for both versions as

$$\psi \colon \tilde{U}_x \times S^0 \longrightarrow U_x \bigsqcup U_{-x}$$
$$([z], y) \longmapsto yz$$

Let $y \in U_x$ and $-y \in U_{-x}$, then

$$\begin{aligned} \psi(\varphi(y)) &= \psi([y], 1) = y \\ \psi(\varphi(-y)) &= \psi([y], -1) = -y \end{aligned} \} = \mathrm{id}_{h_{\mathbb{R}}^{-1}(\tilde{U}_x)} \text{ and} \\ \varphi(\psi([y], 1)) &= ([y], 1) \\ \varphi(\psi([y], -1)) &= \varphi(-y) = ([y], -1) \end{aligned} \} = \mathrm{id}_{\tilde{U}_x \times S^0}$$

Therefore we have found an homeomorphism between $\tilde{U} \times S^0$ and $h_{\mathbb{R}}^{-1}(\tilde{U})$ and have a covering as desired.

2b). We choose the disc presentation of $\mathbb{R}P^{n+1} \cong \overset{D^{n+1}}{\swarrow}$ with $x \sim y$ iff x = y or $x = -y \ \forall x, y \in \partial D^{n+1}$. In $\mathbb{R}P^n \cup_{h_{\mathbb{R}}} D^{n+1}$ we have that $x \sim h_{\mathbb{R}}(x) = [x] = h_{\mathbb{R}}(-x) \sim x$ and thus $x \sim y$ iff x = y or $x = -y \ \forall x, y \in \partial D^{n+1}$, obtaining $\mathbb{R}P^n \cup_{h_{\mathbb{R}}} D^{n+1} \cong \overset{D^{n+1}}{\swarrow} \cong \mathbb{R}P^{n+1}$ as desired.

Algebraic Topology II

Solutions Sheet 2

2c). $\mathbb{R}P^n / \mathbb{R}P^{n-1} \cong (\mathbb{R}P^{n-1} \cup_{h_{\mathbb{R}}} D^n) / \mathbb{R}P^{n-1} \cong D^n / \cong S^n$ where $x \backsim y$ iff $x, y \in \partial D^n$.

Now we compute the degree of the map $\pi \circ h_{\mathbb{R}}$ with π denoting the projection from $\mathbb{R}P^n$ to $\mathbb{R}P^n/\mathbb{R}P^{n-1}$. Since $\pi \circ h_{\mathbb{R}}$ is a smooth map from S^n to S^n we know from Algebraic Topology I that

$$\deg(\pi \circ h_{\mathbb{R}}) = \sum_{j=1}^{k} \mathcal{E}_{q_j}(\pi \circ h_{\mathbb{R}})$$

where $\mathcal{E}_{q_j}(\pi \circ h_{\mathbb{R}})$ is the local degree of $\pi \circ h_{\mathbb{R}}$ at q_j with $q_j \in \pi \circ h_{\mathbb{R}}^{-1}(p)$ for some regular value $p \in S^n$.

Let $p \in S^n$ be arbitrary and fixed. Then $\pi \circ h_{\mathbb{R}}^{-1}(p) = \{-p, p\}$. Clearly $\mathcal{E}_p(\pi \circ h_{\mathbb{R}}) = 1$, as $\pi \circ h_{\mathbb{R}}$ acts like the identity in a small neighbourhood of p. Furthermore, $\mathcal{E}_{-p}(\pi \circ h_{\mathbb{R}}) = (-1)^{n+1}$ as $\pi \circ h_{\mathbb{R}}$ acts as the antipodal map in a small neighbourhood of -p. Thus we have

$$\deg(\pi \circ h_{\mathbb{R}}) = 1 + (-1)^{n+1} = \begin{cases} 0 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd} \end{cases}$$

2d). We choose the standard CW-complex on $\mathbb{R}P^n$ with 1 *p*-cell in each dimension $p \leq n$ and 0 otherwise.

For $M = \mathbb{Z}$ we obtain

$$\cdots \to 0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \ldots$$

if n is even and

$$\cdots \to 0 \to \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \cdots$$

if n is odd. This yields

$$H_p(\mathbb{R}P^n; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } p = n \text{ where } n \text{ is odd or } p = 0\\ \mathbb{Z}_2 & \text{if } 0 n \text{ or } 0$$

For $M = \mathbb{Z}_2$ we have

$$\cdots \to 0 \to \mathbb{Z}_2 \xrightarrow{2} \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{2} \cdots$$

if n is even and

$$\cdots \to 0 \to \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{2} \mathbb{Z}_2 \xrightarrow{0} \dots$$

if n is odd. However $2 \equiv 0$ in \mathbb{Z}_2 and thus we have

$$\cdots \to 0 \to \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{0} \cdots$$

regardless of n. Hence

$$H_p(\mathbb{R}P^n; \mathbb{Z}_2) = \frac{\operatorname{Ker}(d_p)}{\operatorname{Im}(d_{p+1})} \cong \begin{cases} \mathbb{Z}_2 / 0 = \mathbb{Z}_2 & \text{if } p \le n \\ 0 & \text{if } p > n \end{cases}$$

Algebraic Topology II

Solutions Sheet 2

Problem 3

by Maria Morariu

a). We prove the statement using the naturality of the Gysin long exact sequence. Take an arbitrary map $f: \mathbb{R}P^n \to \mathbb{R}P^m$ and let $p_n: S^n \to \mathbb{R}P^n$, $p_m: S^m \to \mathbb{R}P^m$ be the usual two-coverings. We have a map $f \circ p_n: S^n \to \mathbb{R}P^m$ and the fundamental group of S^n is trivial (n > 1), so by the lifting property of covers, there exists a function $g: S^n \to S^m$ such that $p_m \circ g = f \circ p_n$.

The Gysin LES gives the following commutative diagram, with exact rows:

$$\cdots \longrightarrow H_p(\mathbb{R}P^n; \mathbb{Z}/2) \xrightarrow{T_*} H_p(S^n; \mathbb{Z}/2) \xrightarrow{p_{n,*}} H_p(\mathbb{R}P^n; \mathbb{Z}/2) \xrightarrow{\partial} H_{p-1}(\mathbb{R}P^n; \mathbb{Z}/2) \longrightarrow \cdots$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{g_*} \qquad \qquad \downarrow^{f_*}$$

$$\cdots \longrightarrow H_p(\mathbb{R}P^m; \mathbb{Z}/2) \xrightarrow{T'_*} H_p(S^m; \mathbb{Z}/2) \xrightarrow{p_{m,*}} H_p(\mathbb{R}P^m; \mathbb{Z}/2) \xrightarrow{\partial'} H_{p-1}(\mathbb{R}P^m; \mathbb{Z}/2) \longrightarrow \cdots$$

As in the lecture, we get the following diagrams with exact rows: For $2 \le p \le m - 1$ (1):

and (2):

Now *m* and *n* are different, so $H_m(S^n) = 0$. Thus, commutativity of the first square in (2) implies $T'_* \circ f_{*,m} = 0$. By the lecture, $H_p(\mathbb{R}P^n; \mathbb{Z}/2) \cong H_p(\mathbb{R}P^m; \mathbb{Z}/2) \cong \mathbb{Z}/2$ for all $p \leq m$. By exactness T'_* is injective, so we have $f_{*,m} = 0$.

Now ∂ and ∂' are surjective homomorphisms $\mathbb{Z}/2 \to \mathbb{Z}/2$, so they are isomorphisms. Thus commutativity of the last square in (2), together with $f_{*,m} = 0$ give $f_{*,m-1} = 0$. Now exactness of the rows in diagram (1) shows that the horizontal maps are isomorphisms. Inductively, this gives $f_{*,p} = 0$ for all $1 \leq p \leq m$. In particular, $f_{*,1} = 0$, which is what we wanted to show.

b). Assume that $\mathbb{R}P^m$ was a retract of $\mathbb{R}P^n$, i.e. there exists a continuous map $r: \mathbb{R}P^n \to \mathbb{R}P^m$, such that the canonical inclusion $i: \mathbb{R}P^m \to \mathbb{R}P^n$ satisfies $r \circ i = id_{\mathbb{R}P^m}$.

By functoriality, this implies $r_* \circ i_* = id_{H_p(\mathbb{R}P^m;\mathbb{Z}/2)}, \forall p \geq 2$. In particular, $r_*: H_1(\mathbb{R}P^n;\mathbb{Z}/2) \to H_1(\mathbb{R}P^m;\mathbb{Z}/2)$ is a surjection. However, a) implies that this map is zero. By the lecture, the homology groups are non-zero, so this is a contradiction. Therefore $\mathbb{R}P^m$ cannot be a retract of $\mathbb{R}P^n$.

Exercise 4. (Shut A)
(a) Define
$$f:\mathbb{RP}^{2} \longrightarrow S^{2}$$
 to be the quotient map
 $\mathbb{RP}^{2} \longrightarrow \mathbb{RP}^{2}/\mathbb{RP}^{3} \cong S^{2}$.
 \Rightarrow The induced wap on cell complexes
 $a = 1 = 0$
 $\mathbb{C}^{cw}(\mathbb{RP}^{2}; F_{2}): F_{2} \longrightarrow \mathbb{F}_{2} \longrightarrow \mathbb{F}_{2}$
 $\downarrow A \qquad \downarrow A \qquad \downarrow A \qquad \Rightarrow f_{*}: H_{4}(\mathbb{RP}^{3}; F_{2}) \xrightarrow{a} H_{2}(S^{2}; F_{2}).$
 $\mathbb{C}^{cw}(S^{2}; F_{2}): F_{2} \longrightarrow \mathbb{F}_{2} \longrightarrow \mathbb{F}_{2}$
(b) Consider $f:\mathbb{RP}^{2} \longrightarrow S^{2}$
 $cw tout map: \mathbb{RP}^{2} \longrightarrow the S^{2}$
 $f_{*}: id$
 $f_{*}: id$

Solutions Sheet 2

Problem 5

by Noah Stäuble & Philip Sandt

A Borsuk-Ulam type statement does not hold for the Torus $S_1 \times S_1$ - there exists a continuous function $S^1 \times S^1 \to \mathbb{R}^2$ where no antipodal points have the same image. To see this, consider the following counter example

(1)
$$\begin{aligned} \Phi: S_1 \times S_1 \to S_1 \hookrightarrow \mathbb{R}^2 \\ (s,t) \mapsto s \mapsto s \end{aligned}$$

 Φ is continuous and satisfies the following property: if (s, t) and (-s, -t) have the same image, then this image is s and -s at the same time, so it is zero, hence

$$\Phi(s,t) = s = 0 \in \mathbb{R}^2.$$

But 0 is not in S^1 so we cannot have antipodal points mapping to the same point.

Problem 6

by Naomi Rosenberg

Fix $n \in \mathbb{N}$. Let $\bigcup_{k=1}^{n+1} U_k$ be a covering of S^n with closed sets U_k . Without loss of generality, assume that U_k does not contain any antipodal points for $k \in \{1, ..., n\}$; otherwise the claim from the exercise is already satisfied.

Our goal is to construct a map $f: S^n \to \mathbb{R}^n$, to then apply the Borsuk-Ulam Theorem in order to deduce that there exists a point $x \in S^n$ satisfying f(x) = f(-x), and to then notice that both, x and -x, have to be contained in U_{k+1} .

We start by defining

$$f_k: S^n \to \mathbb{R}, f_k(x) \coloneqq d(x, U_k) \coloneqq \inf_{y \in U_k} d(x, y),$$

for every $k \in \{1, ..., n\}$, where we denote by d the Euclidean distance on \mathbb{R}^n . We claim that f_k is continuous. Indeed, d is continuous and for every $x, y \in S^n$, the following holds:

$$f_k(x) = d(x, U_k) = \inf_{u \in U_k} (d(x, u))$$

$$\leq \inf_{u \in U_k} (d(x, y) + d(y, u)) = d(x, y) + d(y, U_k) = d(x, y) + f_k(y),$$

and analogously $f_k(y) \leq d(x, y) + f_k(x)$. Thus, $|f_k(x) - f_k(y)| \leq d(x, y)$. Hence, f_k is 1-Lipschitz and therefore continuous.

Next, we define the function f as follows:

$$f: S^n \to \mathbb{R}^n, f(x) \coloneqq (f_1(x), ..., f_n(x)).$$

Since f is continuous in every component, it is continuous on its whole domain. Thus, we can conclude with the Borsuk-Ulam Theorem that there exists an element $x \in S^n$ satisfying f(x) = f(-x). In particular, by the definition of f, x satisfies $d(x, U_k) = f_k(x) = f_k(-x) = d(-x, U_k)$ for every $k \in \{1, ..., n\}$. By assumption, U_k does not contain any antipodal points, thus U_k cannot contain both, x and -x. In fact, neither x, nor -x can be contained in U_k . Indeed, if $x \in U_k$, then $0 = d(x, U_k) = d(-x, U_k)$ and therefore $-x \in U_k$, which is a contradiction.

Since the above holds for every $k \in \{1, ..., n\}$, x and -x are contained in none of the U_k 's for $k \in \{1, ..., n\}$.

Taking into account that $\bigcup_{k=1}^{n+1} U_k$ is a covering of S^n , the above implies that $x, -x \in U_{k+1}$. This concludes the proof since consequently, x and y are in the same set from the covering.