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Problem 1

by Vladimir Nowak
I want to thank Semyon for his insightful comments about my solution attempts
to the exercises. Throughout the following, we refer to the map ℎ : 𝑆2𝑛+1 → C𝑃 𝑛

as the Hopf-fibration.

a).

Proof. Define the map:

𝜙 : 𝐷2𝑛+2 ⊂ C𝑛+1 → C𝑃 𝑛+1, (𝑧0, . . . , 𝑧𝑛) ↦→

[︃
𝑧0 : · · · : 𝑧𝑛 : 1−

𝑛∑︁
𝑗=0

|𝑧𝑗|2
]︃
.

This is certainly a continuous map, given as the composition of maps

𝐷2𝑛+2 −˓→ C𝑛+1 → C𝑛+2 𝜋−→ C𝑃 𝑛+1,

with 𝜋 the canonical projection map. We notice that on 𝑆2𝑛+1 ⊂ 𝐷2𝑛+2, 𝜙
yields the Hopf-fibration, i.e. 𝜙(𝑆2𝑛+1) = C𝑃 𝑛 ⊂ C𝑃 𝑛+1, meaning that 𝜙 induces
a map 𝜙 : C𝑃 𝑛 ∪ℎ 𝐷

2𝑛+2 → C𝑃 𝑛+1. Therefore, in order to show that C𝑃 𝑛+1 ∼=
C𝑃 𝑛 ∪ℎ 𝐷

2𝑛+2, it suffices to show that the induced map 𝜙 is a homeomorphism.
We remark that since the domain of the map 𝜙 is compact (as the quotient of a
compact space C𝑃 𝑛 ⊔𝐷2𝑛+2) and the codomain is Hausdorff, it is enough to show
that 𝜙 is bijective. More specifically, it suffices to show that 𝜙|𝐷2𝑛+2 bijects onto
C𝑃 𝑛+1 −C𝑃 𝑛, seeing as 𝜙|C𝑃𝑛 : C𝑃 𝑛 → 𝜙(C𝑃 𝑛) is bijective.
We first check surjectivity. Let

[︀
𝑧′0 : · · · : 𝑧′𝑛 : 𝑧′𝑛+1

]︀
∈ C𝑃 𝑛+1 −C𝑃 𝑛, i.e. the last

entry fulfils 𝑧′𝑛+1 ≠ 0. Let 𝑟 :=
√︁∑︀𝑛+1

𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒2

and 𝑒𝑖𝛼 ∈ 𝑆1 be the phase, such that
𝑒𝑖𝛼𝑧′𝑛+1

𝑟
∈ R>0. We then rescale the representative of the class

[︀
𝑧′0 : · · · : 𝑧′𝑛 : 𝑧′𝑛+1

]︀
by 𝑒𝑖𝛼

𝑟
and show that (𝑧0 . . . , 𝑧𝑛) ∈ C𝑛+1 defined through the system:{︃

1−
∑︀𝑛

𝑗=0 |𝑧𝑗|
2 = 𝑒𝑖𝛼

𝑟
𝑧′𝑛+1

𝑧𝑗 =
𝑒𝑖𝛼

𝑟
𝑧′𝑗, 0 ≤ 𝑗 ≤ 𝑛

;

in fact, has a solution in the interior of 𝐷2𝑛+2. Through this system of equations,
we get a quadratic equation in the “variable” 𝑟 of the form:

0 = 𝑟2 −
(︀
𝑒𝑖𝛼𝑧′𝑛+1

)︀
𝑟 −

𝑛∑︁
𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒2

= 𝑟2 − 𝛽𝑟 −
𝑛∑︁

𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒2
.
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We then get that the only legal solution for 𝑟 (since it has to be positive) is

𝑟 =
𝛽+

√︁
𝛽2+4

∑︀𝑛
𝑗=0|𝑧′𝑗|2

2
and plugging this into the sum of squares, we get with 𝛽 > 0:

𝑛∑︁
𝑗=0

|𝑧𝑗|2 =
4
∑︀𝑛

𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒(︂

𝛽 +
√︁
𝛽2 + 4

∑︀𝑛
𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒2)︂2 < 1.

We conclude that 𝜙maps the interior of𝐷2𝑛+2 surjectively ontoC𝑃 𝑛+1−C𝑃 𝑛. Now
we turn to the injectivity of 𝜙 restricted to 𝐷2𝑛+2, where the calculation is of a sim-
ilar nature to the one performed for the surjectivity. Let (𝑧0, . . . , 𝑧𝑛) , (𝑧

′
0 . . . , 𝑧

′
𝑛) ∈

𝐷2𝑛+2 such that:[︃
𝑧0 : · · · : 𝑧𝑛 : 1−

𝑛∑︁
𝑗=0

|𝑧𝑗|2
]︃
=

[︃
𝑧′0 : · · · : 𝑧′𝑛 : 1−

𝑛∑︁
𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒2]︃

.

By the definition of the complex projective space, there exists a 𝑟𝑒𝑖𝛼 ∈ C− 0 such
that: {︃

𝑟𝑒𝑖𝛼
(︁
1−

∑︀𝑛
𝑗=0 |𝑧𝑗|

2
)︁
= 1−

∑︀𝑛
𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒2

𝑟𝑒𝑖𝛼𝑧𝑗 = 𝑧′𝑗, 0 ≤ 𝑗 ≤ 𝑛
;

From the first part of the system of equations we can deduce that 𝑒𝑖𝛼 = 1. We
thus end up with a quadratic equation in 𝑟 of the form:

𝑟2 − 𝑟 +
𝑛∑︁

𝑗=0

⃒⃒
𝑧′𝑗
⃒⃒2
(𝑟 − 1) = 0.

The only positive solution is 𝑟 = 1 and we get the equality of points (𝑧0, . . . , 𝑧𝑛) =
(𝑧′0 . . . , 𝑧

′
𝑛), i.e. we also get injectivity. This concludes the proof. □

b).

Proof. From the previous exercise, we know that (for 𝑛 ≥ 1):

C𝑃 𝑛 ∼= C𝑃 𝑛−1 ∪ℎ 𝐷
2𝑛 ∼= · · · ∼=

(︀
· · ·

(︀
C𝑃 0 ∪ℎ 𝐷

2
)︀
∪ℎ 𝐷

4
)︀
∪ℎ 𝐷

6 · · · ) ∪ℎ 𝐷
2𝑛.

We remark that C𝑃 0 = {*} is just the pointed space, meaning the homology
becomes:

𝐻𝑘

(︀
C𝑃 0;𝑀

)︀
=

{︃
𝑀 𝑘 = 0

0 o/w
.

From the above construction, we see that a CW-structure on C𝑃 𝑛 is given through
𝑛 + 1 cells, one 0-cell C𝑃 0 and 𝑛 2k-cells 𝐷2𝑘 for 1 ≤ 𝑘 ≤ 𝑛. Furthermore, by
Theorem 2.13 from lecture, we have 𝐻𝐶𝑊

∙ (C𝑃 𝑛;𝑀) := 𝐻∙
(︀
𝐶𝐶𝑊 (C𝑃 𝑛)⊗𝑀

)︀ ∼=
𝐻∙ (C𝑃

𝑛;𝑀), meaning going through cellular homology gives us the same homology
w.r.t. coefficients 𝑀 . We get the chain complex:

0 → 𝐶𝐶𝑊
2𝑛 (C𝑃 𝑛)⊗𝑀 𝑑−→ 𝐶𝐶𝑊

2𝑛−1 (C𝑃
𝑛)⊗𝑀 𝑑−→ · · ·𝐶𝐶𝑊

1 (C𝑃 𝑛)⊗𝑀 𝑑−→ 𝐶𝐶𝑊
0 (C𝑃 𝑛)⊗𝑀 → 0.
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As there are no cells in uneven dimensions, all uneven dimensions are trivial and
using that Z⊗𝑀 ∼= 𝑀 we get:

𝐻𝑘 (C𝑃
𝑛;𝑀) =

{︃
𝑀 𝑘 even, and 𝑘 ≤ 2𝑛

0 o/w
.

□

c).

Proof. We remark that the Hopf-fibration ℎ is certainly a continuous and surjective
map. As the open set for [𝑧0 : · · · : 𝑧𝑛] ∈ C𝑃 𝑛, take 𝑈𝑖 := {[𝑧0 : · · · : 𝑧𝑛] ∈ C𝑃 𝑛 : 𝑧𝑖 ̸= 0},
wherever the 𝑖-th entry is non-zero. Note that

ℎ−1(𝑈𝑖) = 𝑆2𝑛+1 ∩
{︀
(𝑧0, . . . , 𝑧𝑛) ∈ C𝑛+1 − 0: 𝑧𝑖 ̸= 0

}︀
consists of all points on 𝑆2𝑛+1 s.t. 𝑧𝑖 ̸= 0. Define a map:

𝜙𝑖 : ℎ
−1(𝑈𝑖) → 𝑈𝑖 × 𝑆1, (𝑧0, . . . , 𝑧𝑛) ↦→

(︂
[𝑧0 : · · · : 𝑧𝑛] ,

𝑧𝑖
|𝑧𝑖|

)︂
.

Its continuous inverse is given through:

𝜓𝑖 : 𝑈𝑖×𝑆1 → ℎ−1(𝑈𝑖),
(︀
[𝑧0 : · · · 𝑧𝑖−1 : 1 : 𝑧𝑖+1 : · · · : 𝑧𝑛] , 𝑒𝑖𝑡

)︀
↦→ 𝑒𝑖𝑡 (𝑧0, . . . , 1, . . . , 𝑧𝑛)√︁

1 +
∑︀𝑛

𝑗=0,𝑗 ̸=𝑖 |𝑧𝑗|2
.

This concludes the proof. □

Problem 2

by Sina Keller and Tristan Lovsin

2a). We know that R𝑃 𝑛 ∼= 𝐷𝑛
⧸∼ with ∼ being the equivalence relation between

antipodal points on 𝜕𝐷𝑛. Denote 𝑝 : 𝑆𝑛 → 𝐷𝑛 the projection map. 1 Now we
define ℎR:

ℎR : 𝑆
𝑛 −→ R𝑃 𝑛 ∼= 𝐷𝑛

⧸∼

𝑥 ↦−→

⎧⎪⎨⎪⎩
[𝑥]∼ 𝑥 on the equator of 𝑆𝑛

𝑝(𝑥) 𝑥 in the left hemisphere

𝑝(−𝑥) 𝑥 in the right hemisphere

In order to show that ℎR is a covering, we need to show that there exists a discrete
fibre 𝐹 := 𝑆0 = {−1, 1}, such that for any 𝑥 ∈ R𝑃 𝑛 there exists a neighbourhood
𝑈̃ of 𝑥 and a homeomorphism 𝜙 such that the following diagram commutes:

1The projection is defined in the following way. We look at 𝑆𝑛 := {𝑥 ∈ R𝑛+1, ‖𝑥‖ = 1} and
𝐷𝑛 := {𝑥 ∈ R𝑛+1, ‖𝑥‖ ≤ 1} as subspaces of R𝑛+1. Then 𝑝(𝑥0, . . . , 𝑥𝑛) = (0, 𝑥1, . . . , 𝑥𝑛).

3
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ℎ−1
R (𝑈̃) 𝑈̃ × 𝑆0

𝑈̃

𝜙

ℎR
𝑃𝑟

In order to determine a useful neighborhood, we will distinguish two cases: one
where ℎ−1

R (𝑥) is on the equator of 𝑆𝑛 and the other where that is not the case.

If ℎ−1
R (𝑥) is not on the equator, then let 𝑈̃𝑥 := ℎR(𝑆

𝑛∖{(𝑥0, . . . , 𝑥𝑛) ∈ 𝑆𝑛 | 𝑥0 = 0})
and if ℎ−1

R (𝑥) is on the equator, then let

𝑈̃𝑥 := ℎR(𝑆
𝑛 ∖ {(𝑥0, . . . , 𝑥𝑛) ∈ 𝑆𝑛 | ⟨𝑦, (𝑥0, . . . , 𝑥𝑛)⟩ = 0 ∀𝑦 ∈ ℎ−1

R (𝑥)}),

where ⟨·, ·⟩ denotes the standard scalar product in R𝑛.
Now let 𝑥 ∈ R𝑃 𝑛 and 𝑈̃𝑥 ⊂ R𝑃 𝑛 the open neighborhood we just defined. If
ℎ−1
R (𝑥) is not on the equator we denote 𝑈𝑥 the right hemisphere and 𝑈−𝑥 the left

hemisphere and if ℎ−1
R (𝑥) is on the equator, then let 𝑈𝑥 := {(𝑥0, . . . , 𝑥𝑛) ∈ 𝑆𝑛 |

⟨𝑥, (𝑥0, 0, . . . , 0)⟩ ≥ 0} and 𝑈−𝑥 := {(𝑥0, . . . , 𝑥𝑛) ∈ 𝑆𝑛 | ⟨−𝑥, (𝑥0, 0, . . . , 0)⟩ ≥ 0}.
Then ℎ−1

R (𝑈̃𝑥) = 𝑈𝑥

⨆︀
𝑈−𝑥 for both versions of 𝑈̃𝑥. We define 𝜙 for both versions

as

𝜙 : 𝑈𝑥

⨆︁
𝑈−𝑥 −→ 𝑈̃𝑥 × 𝑆0

𝑧 ↦−→
{︂
([𝑧], 1) ⇐⇒ 𝑧 ∈ 𝑈𝑥

([𝑧],−1) ⇐⇒ 𝑧 ∈ 𝑈−𝑥

and 𝜓 for both versions as

𝜓 : 𝑈̃𝑥 × 𝑆0 −→ 𝑈𝑥

⨆︁
𝑈−𝑥

([𝑧], 𝑦) ↦−→ 𝑦𝑧

Let 𝑦 ∈ 𝑈𝑥 and −𝑦 ∈ 𝑈−𝑥, then

𝜓(𝜙(𝑦)) = 𝜓([𝑦], 1) = 𝑦

𝜓(𝜙(−𝑦)) = 𝜓([𝑦],−1) = −𝑦

}︂
= idℎ−1

R (𝑈̃𝑥)
and

𝜙(𝜓([𝑦], 1)) = ([𝑦], 1)

𝜙(𝜓([𝑦],−1)) = 𝜙(−𝑦) = ([𝑦],−1)

}︂
= id𝑈̃𝑥×𝑆0

Therefore we have found an homeomorphism between 𝑈̃ × 𝑆0 and ℎ−1
R (𝑈̃) and

have a covering as desired.

2b). We choose the disc presentation of R𝑃 𝑛+1 ∼= 𝐷𝑛+1
⧸∼ with 𝑥 ∼ 𝑦 iff 𝑥 = 𝑦

or 𝑥 = −𝑦 ∀𝑥, 𝑦 ∈ 𝜕𝐷𝑛+1. In R𝑃 𝑛 ∪ℎR 𝐷
𝑛+1 we have that 𝑥 ∼ ℎR(𝑥) = [𝑥] =

ℎR(−𝑥) ∼ 𝑥 and thus 𝑥 ∼ 𝑦 iff 𝑥 = 𝑦 or 𝑥 = −𝑦 ∀𝑥, 𝑦 ∈ 𝜕𝐷𝑛+1, obtaining

R𝑃 𝑛 ∪ℎR 𝐷
𝑛+1 ∼= 𝐷𝑛+1

⧸∼ ∼= R𝑃 𝑛+1 as desired.

4
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2c). R𝑃 𝑛
⧸R𝑃 𝑛−1 ∼= (R𝑃 𝑛−1 ∪ℎR 𝐷

𝑛)⧸R𝑃 𝑛−1 ∼= 𝐷𝑛
⧸∽ ∼= 𝑆𝑛 where 𝑥 ∽ 𝑦 iff

𝑥, 𝑦 ∈ 𝜕𝐷𝑛.
Now we compute the degree of the map 𝜋 ∘ ℎR with 𝜋 denoting the projection
from R𝑃 𝑛 to R𝑃 𝑛/R𝑃 𝑛−1. Since 𝜋 ∘ ℎR is a smooth map from 𝑆𝑛 to 𝑆𝑛 we know
from Algebraic Topology I that

deg(𝜋 ∘ ℎR) =
𝑘∑︁

𝑗=1

ℰ𝑞𝑗(𝜋 ∘ ℎR)

where ℰ𝑞𝑗(𝜋 ∘ ℎR) is the local degree of 𝜋 ∘ ℎR at 𝑞𝑗 with 𝑞𝑗 ∈ 𝜋 ∘ ℎ−1
R (𝑝) for some

regular value 𝑝 ∈ 𝑆𝑛.
Let 𝑝 ∈ 𝑆𝑛 be arbitrary and fixed. Then 𝜋∘ℎ−1

R (𝑝) = {−𝑝, 𝑝}. Clearly ℰ𝑝(𝜋∘ℎR) =
1, as 𝜋 ∘ ℎR acts like the identity in a small neighbourhood of 𝑝. Furthermore,
ℰ−𝑝(𝜋∘ℎR) = (−1)𝑛+1 as 𝜋∘ℎR acts as the antipodal map in a small neighbourhood
of −𝑝. Thus we have

deg(𝜋 ∘ ℎR) = 1 + (−1)𝑛+1 =

{︂
0 if 𝑛 is even

2 if 𝑛 is odd

2d). We choose the standard CW-complex on R𝑃 𝑛 with 1 𝑝-cell in each dimension
𝑝 ≤ 𝑛 and 0 otherwise.
For 𝑀 = Z we obtain

· · · → 0 → Z 2−→ Z 0−→ Z 2−→ . . .

if 𝑛 is even and

· · · → 0 → Z 0−→ Z 2−→ Z 0−→ . . .

if 𝑛 is odd. This yields

𝐻𝑝(R𝑃 𝑛;Z) ∼=

⎧⎪⎨⎪⎩
Z if 𝑝 = 𝑛 where 𝑛 is odd or 𝑝 = 0

Z2 if 0 < 𝑝 ≤ 𝑛− 1 and 𝑝 is odd

0 if 𝑝 > 𝑛 or 0 < 𝑝 ≤ 𝑛 and 𝑝 is even

For 𝑀 = Z2 we have

· · · → 0 → Z2
2−→ Z2

0−→ Z2
2−→ . . .

if 𝑛 is even and

· · · → 0 → Z2
0−→ Z2

2−→ Z2
0−→ . . .

if 𝑛 is odd. However 2 ≡ 0 in Z2 and thus we have

· · · → 0 → Z2
0−→ Z2

0−→ Z2
0−→ . . .

regardless of 𝑛. Hence

𝐻𝑝(R𝑃 𝑛;Z2) =
Ker(𝑑𝑝)⧸Im(𝑑𝑝+1)

∼=

{︃
Z2⧸0 = Z2 if 𝑝 ≤ 𝑛

0 if 𝑝 > 𝑛

5
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Problem 3

by Maria Morariu

a). We prove the statement using the naturality of the Gysin long exact sequence.
Take an arbitrary map 𝑓 : R𝑃 𝑛 → R𝑃𝑚 and let 𝑝𝑛 : 𝑆

𝑛 → R𝑃 𝑛, 𝑝𝑚 : 𝑆𝑚 → R𝑃𝑚

be the usual two-coverings. We have a map 𝑓 ∘𝑝𝑛 : 𝑆𝑛 → R𝑃𝑚 and the fundamental
group of 𝑆𝑛 is trivial (𝑛 > 1), so by the lifting property of covers, there exists a
function 𝑔 : 𝑆𝑛 → 𝑆𝑚 such that 𝑝𝑚 ∘ 𝑔 = 𝑓 ∘ 𝑝𝑛.
The Gysin LES gives the following commutative diagram, with exact rows:

· · · 𝐻𝑝(R𝑃 𝑛;Z/2) 𝐻𝑝(𝑆
𝑛;Z/2) 𝐻𝑝(R𝑃 𝑛;Z/2) 𝐻𝑝−1(R𝑃 𝑛;Z/2) · · ·

· · · 𝐻𝑝(R𝑃𝑚;Z/2) 𝐻𝑝(𝑆
𝑚;Z/2) 𝐻𝑝(R𝑃𝑚;Z/2) 𝐻𝑝−1(R𝑃𝑚;Z/2) · · ·

𝑓*

𝑇*

𝑔*

𝑝𝑛,*

𝑓*

𝜕

𝑇 ′
* 𝑝𝑚,* 𝜕′

As in the lecture, we get the following diagrams with exact rows:
For 2 ≤ 𝑝 ≤ 𝑚− 1 (1):

0 𝐻𝑝(R𝑃 𝑛;Z/2) 𝐻𝑝−1(R𝑃 𝑛;Z/2) 0

0 𝐻𝑝(R𝑃𝑚;Z/2) 𝐻𝑝−1(R𝑃𝑚;Z/2) 0

𝑓*,𝑝 𝑓*,𝑝−1

and (2):

0 𝐻𝑚(R𝑃 𝑛;Z/2) 𝐻𝑚(𝑆
𝑛;Z/2) 𝐻𝑚(R𝑃 𝑛;Z/2) 𝐻𝑚−1(R𝑃 𝑛;Z/2) 0

0 𝐻𝑚(R𝑃𝑚;Z/2) 𝐻𝑚(𝑆
𝑚;Z/2) 𝐻𝑚(R𝑃𝑚;Z/2) 𝐻𝑚−1(R𝑃𝑚;Z/2) 0

𝑓*,𝑚

𝑇*

𝑔*

𝑝𝑛,*

𝑓*,𝑚

𝜕

𝑓*,𝑚−1

𝑇 ′
* 𝑝𝑚,* 𝜕′

Now 𝑚 and 𝑛 are different, so 𝐻𝑚(𝑆
𝑛) = 0. Thus, commutativity of the first square

in (2) implies 𝑇 ′
* ∘𝑓*,𝑚 = 0. By the lecture, 𝐻𝑝(R𝑃 𝑛;Z/2) ∼= 𝐻𝑝(R𝑃𝑚;Z/2) ∼= Z/2

for all 𝑝 ≤ 𝑚. By exactness 𝑇 ′
* is injective, so we have 𝑓*,𝑚 = 0.

Now 𝜕 and 𝜕′ are surjective homomorphisms Z/2 → Z/2, so they are isomorphisms.
Thus commutativity of the last square in (2), together with 𝑓*,𝑚 = 0 give 𝑓*,𝑚−1 = 0.
Now exactness of the rows in diagram (1) shows that the horizontal maps are
isomorphisms. Inductively, this gives 𝑓*,𝑝 = 0 for all 1 ≤ 𝑝 ≤ 𝑚. In particular,
𝑓*,1 = 0, which is what we wanted to show.

b). Assume that R𝑃𝑚 was a retract of R𝑃 𝑛, i.e. there exists a continuous map
𝑟 : R𝑃 𝑛 → R𝑃𝑚, such that the canonical inclusion 𝑖 : R𝑃𝑚 → R𝑃 𝑛 satisfies
𝑟 ∘ 𝑖 = 𝑖𝑑R𝑃𝑚 .
By functoriality, this implies 𝑟* ∘ 𝑖* = 𝑖𝑑𝐻𝑝(R𝑃𝑚;Z/2),∀𝑝 ≥ 2. In particular,
𝑟* : 𝐻1(R𝑃 𝑛;Z/2) → 𝐻1(R𝑃𝑚;Z/2) is a surjection. However, a) implies that
this map is zero. By the lecture, the homology groups are non-zero, so this is a
contradiction. Therefore R𝑃𝑚 cannot be a retract of R𝑃 𝑛.
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Exercise 4. (Sheet 2)

(a) Define fi D"-S2 to be the quotient map
RP-RP"/RP = S 2.

=> The interior of the 2 call maps homeomorphically into the z-cell.
=> The induced map on cell complexes

2 1 D

C (RP? IF) : T it!

↓ b (1 = 7 : Ha(RPF2) Es Ha(2)
.

er(2) : #2 -> -> Fe

(b) Consider F :RP-S

constant map : RP-443e2

fx- id
-

the induced maps Hz(RPF2)Ma(S)
D

on the other hand Ha(RP)- He(S2)*
N

" I

L always-Trivial
↓

He(IP ; R)- He (S2; 1) = 0

Ho (RP2; 11

-
C Ho(S; R2)

B ↳
always the same isomorphism

Algebraic Topology II Solutions Sheet 2
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Algebraic Topology II Solutions Sheet 2

Problem 5

by Noah Stäuble & Philip Sandt
A Borsuk-Ulam type statement does not hold for the Torus 𝑆1 × 𝑆1 - there exists
a continuous function 𝑆1 × 𝑆1 → R2 where no antipodal points have the same
image. To see this, consider the following counter example

Φ : 𝑆1 × 𝑆1 → 𝑆1 −˓→ R2

(𝑠, 𝑡) ↦→ 𝑠 ↦→ 𝑠
(1)

Φ is continuous and satisfies the following property: if (𝑠, 𝑡) and (−𝑠,−𝑡) have the
same image, then this image is 𝑠 and −𝑠 at the same time, so it is zero, hence

Φ(𝑠, 𝑡) = 𝑠 = 0 ∈ R2.

But 0 is not in 𝑆1 so we cannot have antipodal points mapping to the same point.
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Algebraic Topology II Solutions Sheet 2

Problem 6

by Naomi Rosenberg
Fix 𝑛 ∈ N. Let

⋃︀𝑛+1
𝑘=1 𝑈𝑘 be a covering of 𝑆𝑛 with closed sets 𝑈𝑘. Without loss of

generality, assume that 𝑈𝑘 does not contain any antipodal points for 𝑘 ∈ {1, ..., 𝑛};
otherwise the claim from the exercise is already satisfied.

Our goal is to construct a map 𝑓 : 𝑆𝑛 → R𝑛, to then apply the Borsuk-Ulam The-
orem in order to deduce that there exists a point 𝑥 ∈ 𝑆𝑛 satisfying 𝑓(𝑥) = 𝑓(−𝑥),
and to then notice that both, 𝑥 and −𝑥, have to be contained in 𝑈𝑘+1.

We start by defining

𝑓𝑘 : 𝑆
𝑛 → R, 𝑓𝑘(𝑥) := 𝑑(𝑥, 𝑈𝑘) := inf

𝑦∈𝑈𝑘

𝑑(𝑥, 𝑦),

for every 𝑘 ∈ {1, ..., 𝑛}, where we denote by 𝑑 the Euclidean distance on R𝑛. We
claim that 𝑓𝑘 is continuous. Indeed, 𝑑 is continuous and for every 𝑥, 𝑦 ∈ 𝑆𝑛, the
following holds:

𝑓𝑘(𝑥) = 𝑑(𝑥, 𝑈𝑘) = inf
𝑢∈𝑈𝑘

(𝑑(𝑥, 𝑢))

≤ inf
𝑢∈𝑈𝑘

(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑢)) = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑈𝑘) = 𝑑(𝑥, 𝑦) + 𝑓𝑘(𝑦),

and analogously 𝑓𝑘(𝑦) ≤ 𝑑(𝑥, 𝑦) + 𝑓𝑘(𝑥). Thus, |𝑓𝑘(𝑥)− 𝑓𝑘(𝑦)| ≤ 𝑑(𝑥, 𝑦). Hence,
𝑓𝑘 is 1-Lipschitz and therefore continuous.
Next, we define the function 𝑓 as follows:

𝑓 : 𝑆𝑛 → R𝑛, 𝑓(𝑥) := (𝑓1(𝑥), ..., 𝑓𝑛(𝑥)).

Since 𝑓 is continuous in every component, it is continuous on its whole domain.
Thus, we can conclude with the Borsuk-Ulam Theorem that there exists an element
𝑥 ∈ 𝑆𝑛 satisfying 𝑓(𝑥) = 𝑓(−𝑥). In particular, by the definition of 𝑓 , 𝑥 satisfies
𝑑(𝑥, 𝑈𝑘) = 𝑓𝑘(𝑥) = 𝑓𝑘(−𝑥) = 𝑑(−𝑥, 𝑈𝑘) for every 𝑘 ∈ {1, ..., 𝑛}. By assumption,
𝑈𝑘 does not contain any antipodal points, thus 𝑈𝑘 cannot contain both, 𝑥 and −𝑥.
In fact, neither 𝑥, nor −𝑥 can be contained in 𝑈𝑘. Indeed, if 𝑥 ∈ 𝑈𝑘, then
0 = 𝑑(𝑥, 𝑈𝑘) = 𝑑(−𝑥, 𝑈𝑘) and therefore −𝑥 ∈ 𝑈𝑘, which is a contradiction.
Since the above holds for every 𝑘 ∈ {1, ...𝑛, }, 𝑥 and −𝑥 are contained in none of
the 𝑈𝑘’s for 𝑘 ∈ {1, ..., 𝑛}.
Taking into account that

⋃︀𝑛+1
𝑘=1 𝑈𝑘 is a covering of 𝑆𝑛, the above implies that

𝑥,−𝑥 ∈ 𝑈𝑘+1. This concludes the proof since consequently, 𝑥 and 𝑦 are in the
same set from the covering.
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