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Problem 1

Leon Dahlmeier

We want to show Tor(Z/𝑚Z,Z/𝑛Z) ∼= Z/𝑔Z for 𝑔 := gcd(𝑚,𝑛).

0 → Z 𝑛−→ Z 𝑑0−→ Z/𝑛Z → 0 is a free resolution of Z/𝑛Z called F. Where
𝑛−→ is

multiplication with n and 𝑑0 the projection. Tensoring the deleted resolution 𝐹 Z/𝑛Z

with Z/𝑚Z yields:

0→ Z⊗ Z/𝑚Z
𝑛⊗𝑖𝑑Z/𝑚Z−−−−−→ Z⊗ Z/𝑚Z→ 0.

After simplifying everything we already know about the Tensor product:

0
0−→ Z/𝑚Z 𝑛−→ Z/𝑚Z→ 0

Therefore Tor(Z/𝑚Z,Z/𝑛Z) = 𝐻1(𝐹
Z/𝑛Z,Z/𝑚Z) = ker(Z/𝑚Z 𝑛−→ Z/𝑚Z).

Finally, let us take a closer look at: ker(Z/𝑚Z 𝑛−→ Z/𝑚Z). Remember 𝑔 =
gcd(𝑚,𝑛) and let 𝑢 and 𝑘 be such that 𝑢 · 𝑔 = 𝑚 and 𝑘 · 𝑔 = 𝑛. Since 𝑛 · 𝑢 =

𝑘 · 𝑢 · 𝑔 = 𝑘 ·𝑚 ≡ 0 (mod 𝑚), we have im(Z/𝑚Z 𝑛−→ Z/𝑚Z) ∼= Z/𝑢Z. We conclude
using the isomorphism theorem:

Tor(Z/𝑚Z,Z/𝑛Z) ∼=
Z/𝑚Z
Z/𝑢Z

∼= Z/𝑔Z

Problem 2

Leon Dahlmeier

a). Since Tor(𝐴,𝐵) ∼= Tor(𝑇 (𝐴), 𝑇 (𝐵)) let us assume without loss of generality
that 𝐴 and 𝐵 are torsion. Let us define 𝐶 :=

⨁︀
0̸=𝑏∈𝐵 Z/ ord(𝑏)Z and 𝑓 : 𝐶 → 𝐵

by sending [1] ∈ Z/ ord(𝑏)Z to 𝑏.
The abelian group A together with the short exact sequence:

0 −→ ker(𝑓) −→ 𝐶
𝑓−→ 𝐵 −→ 0

give rise to the following long exact sequence:

0 −→ Tor(𝐴, ker(𝑓))
𝑔−→ Tor(𝐴,𝐶) −→ Tor(𝐴,𝐵) −→ 𝐴⊗ ker(𝑓)

ℎ−→ 𝐴⊗ 𝐶 −→ 𝐴⊗𝐵 −→ 0

from which we can extract the short exact sequence:

0 −→ coker(𝑔)
𝛼−→ Tor(𝐴,𝐵)

𝛽−→ ker(ℎ) −→ 0
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But by 4.14.

Tor(𝐴,𝐶) =
⨁︁

0 ̸=𝑏∈𝐵

Tor(𝐴,Z/ ord(𝑏)Z) =
⨁︁

0̸=𝑏∈𝐵

ker(𝐴
· ord(𝑏)−−−−→ 𝐴)

which implies that Tor(𝐴,𝐶) as a subgroup of a torsion group is torsion. Also
𝐴⊗ ker(𝑓) is torsion since we assumed A to be. Which then means that coker(𝑔)
and ker(ℎ) are, meaning Tor(𝐴,𝐵) is:
For 𝑥 ∈ Tor(𝐴,𝐵)∃𝑛 ∈ N s.t. 𝑛𝛽(𝑥) = 𝛽(𝑥𝑛) = 0 ⇒ 𝑥𝑛 ∈ ker(𝛽) = im(𝛼).
Hence, ∃𝑦 ∈ coker(𝑔) s.t. 𝛼(𝑦) = 𝑥𝑛 but ∃𝑚 ∈ N s.t. 𝑦𝑚 = 0. Meaning
(𝑥𝑛)𝑚 = 𝛼(𝑦)𝑚 = 𝛼(𝑦𝑚) = 𝛼(0) = 0, which concludes the proof.

b). The long exact sequence for 0 −→ Z −→ Q −→ Q/Z −→ 0 and the abelian group
𝑇 (𝐴) is:

0 −→ Tor(𝑇 (𝐴),Z) −→ Tor(𝑇 (𝐴),Q) −→ Tor(𝑇 (𝐴),Q/Z) −→
𝑇 (𝐴)⊗ Z −→ 𝑇 (𝐴)⊗Q −→ 𝑇 (𝐴)⊗Q/Z −→ 0.

Z and Q are torsion-free and Z ⊗ 𝑇 (𝐴) is isomorphic to 𝑇 (𝐴). Further for
𝑎⊗ 𝑞 ∈ 𝑇 (𝐴)⊗Q we have: 𝑎 ∈ 𝑇 (𝐴) meaning there is an 𝑛 ∈ Z ∖ 0 s.t. 𝑎 · 𝑛 = 0
i.e. 𝑎⊗ 𝑞 = 𝑛𝑎⊗ 𝑞

𝑛
= 0 implying 𝑇 (𝐴)⊗Q ∼= 0. Using these isomorphisms we can

simplify to:

0 −→ 0 −→ 0 −→ Tor(𝑇 (𝐴),Q/Z) 𝜑−→ 𝑇 (𝐴) −→ 𝑇 (𝐴)⊗Q −→ 𝑇 (𝐴)⊗Q/Z −→ 0

Which means that 𝜑 an isomorphism.

Problem 3

Aparna Jeyakumar

a). (a) From the Universal Coefficient Theorem, we have the following commutative
diagram

0 𝐻𝑛(𝑋)⊗𝑀 𝐻𝑛(𝑋;𝑀) Tor(𝐻𝑛−1(𝑋),𝑀) 0

0 𝐻𝑛(𝑌 )⊗𝑀 𝐻𝑛(𝑌 ;𝑀) Tor(𝐻𝑛−1(𝑌 ),𝑀) 0

𝑓*⊗1𝑀 𝑓* Tor(𝑓*,1𝑀 )

Since −⊗ 1𝑀 and Tor(−,𝑀) are additive functors between the category of abelian
groups, they take isomorphisms to isomorphisms. In particular, 𝑓* ⊗ 1𝑀 and
Tor(𝑓*, 1𝑀 ) are isomorphisms. Now, using the five lemma, we get that the vertical
map in the middle 𝑓* : 𝐻𝑛(𝑋;𝑀)→ 𝐻𝑛(𝑌 ;𝑀) is an isomorphism.
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b). To show that 𝑓* : 𝐻𝑛(𝑋)→ 𝐻𝑛(𝑌 ) is an isomorphism, it is enough to show
that 𝐻𝑛(𝑀𝑐(𝑓)) = 0 for all 𝑛 where 𝑀𝑐(𝑓) is the mapping cone complex of the
map 𝑓 . This is due to the following result from Homological Algebra:
If 𝑓 : 𝑋∙ → 𝑌∙ is a chain map of complexes then, the induced map on the homology,
𝑓* : 𝐻𝑛(𝑋∙)→ 𝐻𝑛(𝑌∙) is an isomorphism iff 𝐻𝑛(𝑀𝑐(𝑓)) = 0 for all n, where𝑀𝑐(𝑓)
is the mapping cone complex of the map 𝑓 .

We have that 𝑓* : 𝐻𝑛(𝑋;Q) → 𝐻𝑛(𝑌,Q) is an isomorphism which implies that
𝐻𝑛(𝑀𝑐(𝑓 ⊗ 1Q)) = 0 for all 𝑛. Since Q is torsion-free, Tor(𝐻𝑛(𝑀𝑐(𝑓)),Q) = 0
and from the UCT for 𝑀𝑐(𝑓), we get that

𝐻𝑛(𝑀𝑐(𝑓))⊗Q ∼= 𝐻𝑛(𝑀𝑐(𝑓);Q) ∼= 𝐻𝑛(𝑀𝑐(𝑓 ⊗ 1Q)) ∼= 0

(The second isomorphism is due to the distributive property of the tensor product
over direct sums).
Similarly, we have 𝐻𝑛(𝑀𝑐(𝑓 ⊗ 1Z𝑝)) = 0 for all 𝑝 prime, for all 𝑛. Using the UCT
again, we get that

(𝐻𝑛(𝑀𝑐(𝑓))⊗ Z𝑝)⊕ Tor(𝐻𝑛−1(𝑀𝑐(𝑓)),Z𝑝) ∼= 0

which implies that both the terms are 0 and in particular, Tor(𝐻𝑛(𝑀𝑐(𝑓)),Z𝑝) = 0
for all 𝑝 prime and for all 𝑛. Setting 𝐴 = 𝐻𝑛(𝑀𝑐(𝑓)), it is now enough to show
that the following claim is true.

Claim : If 𝐴 is an abelian group such that 𝐴 ⊗ Q = 0 and Tor(𝐴,Z𝑝) = 0
for all 𝑝 prime, then 𝐴 = 0.
Proof : Suppose 𝐴⊗Q = 0 and Tor(𝐴,Z𝑝) = 0 for all 𝑝 prime. Consider the short
exact sequences

0 Z Z Z𝑝 0
.𝑝

0 Z Q Q/Z 0

Then, we get the following LESs,

0→ Tor(𝐴,Z)→ Tor(𝐴,Z)→ Tor(𝐴,Z𝑝)→ 𝐴⊗ Z .𝑝−→ 𝐴⊗ Z→ 𝐴⊗ Z𝑝 → 0

0→ Tor(𝐴,Z)→ Tor(𝐴,Q)→ Tor(𝐴,Q/Z)→ 𝐴⊗Z→ 𝐴⊗Q→ 𝐴⊗𝑄/Z→ 0

The first LES reduces to

0 𝐴 𝐴 𝐴⊗ Z𝑝 0
.𝑝

The injectivity of the map 𝐴
.𝑝−→ 𝐴 for all 𝑝 implies that 𝐴 is a torsion-free group.

Then, Tor(𝐴,Q/Z) ∼= 0 and the second LES reduces to 0→ 𝐴→ 0 and so 𝐴 = 0.
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Problem 5

Naomi Rosenberg

We start by constructing a free resolution of Z/2 as a Z/4-module. To that extent,
note that Z/2 can be interpreted as 2+4Z, which is a submodule of Z/4. Consider
the following sequence:

. . . −→ Z/4 ·2−→ Z/4 ·2−→ Z/4 proj−→ Z/2−→0.

Note that ker(·2) = 2 + 4Z = im(·2) and ker(proj) = 2 + 4Z = im(·2). Conse-
quently, the sequence defined above is a long exact sequence and therefore defines
a free resolution 𝐹 of the Z/4-module Z/2.

We thus get the following deleted free resolution:

𝐹 Z/2 = . . . −→ Z/4 ·2−→ Z/4 ·2−→ Z/4−→0.

This enables us to compute TorZ/4𝑛 (Z/2,Z/2). By plugging into the definition, we
obtain:

TorZ/4𝑛 (Z/2,Z/2) = H𝑛(𝐹
Z/2;Z/2) = H𝑛(𝐹

Z/2 ⊗ Z/2).

So in order to determine TorZ/4𝑛 (Z/2,Z/2), it is sufficient to consider the long exact
sequence

𝐹 Z/2 ⊗ Z/2 = . . . −→ Z/4⊗ Z/2 −→ Z/4⊗ Z/2 −→ . . . −→ Z/4⊗ Z/2 −→ 0.

In the sequence above, the homomorphisms are given by (·2)⊗ idZ/2. Notice that
by Problem Sheet 1, Problem 1, it holds that Z/4⊗Z/2 ∼= Z/ gcd(2, 4) ∼= Z/2 and
the homomorphism is precisely the zero map. Consequently, H𝑛(𝐹

Z/2 ⊗ Z/2) ∼=
ker(·0) / im(·0) ∼= (Z/2)/0 ∼= Z/2 for all 𝑛 ≥ 0.
By the above, this yields

TorZ/4𝑛 (Z/2,Z/2) ∼= Z/2,

for all 𝑛 ≥ 0.

Now let’s calculate Ext𝑛Z/4(Z/2,Z/2). By definition, it holds that

Ext𝑛Z/4(Z/2,Z/2) = H𝑛(Hom(𝐹 Z/2,Z/2)),

where

Hom(𝐹 Z/2,Z/2) = . . .←− Hom(Z/4,Z/2)←− . . .←− Hom(Z/4,Z/2)←− 0.

Notice that Hom(Z/4,Z/2) ∼= Z/2 since to define a homomorphism from Z/4
to Z/2, a generator of Z/4 can either be mapped to 0 + Z/2 or to 1 + Z/2.
The homomorphisms in the long exact sequence are given by the dual of mul-
tiplication by 2, which is the zero map in the depicted case. Hence, we obtain
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H𝑛(Hom(𝐹 Z/2,Z/2)) ∼= ker(·0)/ im(·0) ∼= (Z/2)/0 ∼= Z/2 for all 𝑛 ≥ 0.
This implies that

Ext𝑛Z/4(Z/2,Z/2) ∼= Z/2,
for all 𝑛 ≥ 0.

Problem 6

Maria Morariu

a). Let 𝑝 denote the given covering of 𝑆1. We start by showing that �̃�(1)− �̃�(0)
does not depend on the choice of the lift �̃�. Let �̄� : [0, 1]→ R be a further lift of
𝜎. Define �̄�′ : [0, 1]→ R, �̄�′(𝑡) = �̃�(𝑡) + �̄�(0)− �̃�(0). This map is continuous with

�̄�′(0) = �̄�(0) and 𝑒2𝜋𝑖�̄�
′(𝑡) = 𝑒2𝜋𝑖�̃�(𝑡)𝑒2𝜋𝑖�̄�(0)

(︀
𝑒2𝜋𝑖�̃�(0)

)︀−1
= 𝜎(𝑡)𝜎(0)𝜎(0)−1 = 𝜎(𝑡), so

�̄�′ is a lift of 𝜎 with �̄�′(0) = �̄�(0). By the uniqueness in the lifting property of
covers, it follows �̄�′ = �̄� and in particular �̄�(1) = �̄�′(1) = �̃�(1) + �̄�(0)− �̃�(0) and
thus �̄�(1)− �̄�(0) = �̃�(1)− �̃�(0). Therefore, �̃�(1)− �̃�(0) does not depend on the
choice of the lift �̃� and we can define the map 𝜑 : 𝐶1(𝑆

1)→ R as the linear map
with 𝜑(𝜎) = �̃�(1)− �̃�(0) for any 1-simplex 𝜎. By defintion, this is a 1-cochain of
𝑆1 with coefficients in R.
Let us show that 𝜑 is actually a 1-cocycle. By Remark 5 in the lecture, this is
the same as showing that 𝜑 is 0 on 1-boundaries. Let 𝜎 : ∆2 → 𝑆1 be a singular
2-simplex. We show that 𝜑(𝑑𝜎) = 0. By definition 𝑑𝜎 = 𝜎|[1,2] − 𝜎|[0,2] + 𝜎|[0,1].
Since ∆2 is simply connected, the lifting property of covers implies that there
exists a lift �̃� : ∆2 → R such that 𝑝 ∘ �̃� = 𝜎. Then �̃�|[1,2], �̃�|[0,2], �̃�|[0,1] are lifts of
𝜎|[1,2], 𝜎|[0,2], 𝜎|[0,1]. Hence, we have

𝜑(𝑑𝜎) = 𝜑(𝜎|[1,2])− 𝜑(𝜎|[0,2]) + 𝜑(𝜎|[0,1])
= �̃�|[1,2](1)− �̃�|[1,2](0)−

(︀
�̃�|[0,2](1)− �̃�|[0,2](0)

)︀
+ �̃�|[0,1](1)− �̃�|[0,1](0)

= �̃�(2)− �̃�(1)− �̃�(2) + �̃�(0) + �̃�(1)− �̃�(0) = 0.

Since all 1-boundaries can be written as finite sums of such 𝑑𝜎, it follows that 𝜑 is
zero on 1-boundaries, so 𝜑 is a 1-cocycle.
Lastly, we show that 𝜑 generates H1(𝑆1,R). Note that H0(𝑆

1) ∼= Z and it is in par-
ticular free, so Ext(H0(𝑆

1),R) ∼= 0 and by the universal coefficient theorem for coho-
mology, it follows that evaluation map 𝑒𝑣 : H1(𝑋;R)→ Hom(H1(𝑆

1),R), [𝜓] ↦→ 𝜓
is an isomorphism. Also, H1(𝑆

1) ∼= Z, so we have a natural isomorphism
Hom(H1(𝑆

1),R) → R, 𝜓 ↦→ 𝜓([𝜎]), where 𝜎 : [0, 1] → 𝑆1, 𝑡 ↦→ 𝑒2𝜋𝑖𝑡. Let us
note that �̃� : [0, 1] → R, 𝑡 ↦→ 𝑡 is a lift of 𝜎, so 𝜑(𝜎) = �̃�(1) − �̃�(0) = 1 − 0 = 1,
which is a generator for R, so [𝜑] is a generator for H1(𝑆1,R).

b). Again, we start by showing that for any path 𝜎 : [0, 1]→ 𝑆1 and any lift �̃� of
𝜎, the expression ⌊�̃�(1)⌋ − ⌊�̃�(0)⌋ does not depend on the choice of the lift. Let �̃�
and �̄� be two lifts of 𝜎. In a), we have seen that
�̄�(1)− �̄�(0) = �̃�(1)− �̃�(0) and thus �̃�(1)− �̄�(1) = �̃�(0)− �̄�(0). For any 𝑡 ∈ [0, 1],
we have 𝑒2𝜋𝑖�̃�(𝑡) = 𝜎(𝑡)𝑒2𝜋𝑖�̄�(𝑡), so �̃� − �̄� ∈ Z and therefore {�̃�(𝑡)} = {�̄�(𝑡)}, where
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by {𝑥} = 𝑥 − ⌊𝑥⌋ we denote the fractional part of 𝑥 ∈ R. Hence, �̃�(𝑡) − �̄�(𝑡) =
⌊�̃�(𝑡)⌋+ {�̃�(𝑡)} − ⌊�̄�(𝑡)⌋ − {�̄�(𝑡)} = ⌊�̃�(𝑡)⌋ − ⌊�̄�(𝑡)⌋. In particular,

⌊�̃�(1)⌋ − ⌊�̄�(1)⌋ = �̃�(1)− �̄�(1) = �̃�(0)− �̄�(0) = ⌊�̃�(0)⌋ − ⌊�̄�(0)⌋.
Thus, we can define the map 𝜑 : 𝐶1(𝑆

1) → Z by linearly extending 𝜑(𝜎) =
⌊�̃�(1)⌋ − ⌊�̃�(0)⌋.
The fact that 𝜑 is a cocycle follows exactly as in a), since the floors of two equal num-
bers are equal. Also, as in a), we get a natural isomorphism𝐻1(𝑆1,Z)→ Z, [𝜓] ↦→ 𝜓(𝜎),
where 𝜎 : [0, 1]→ 𝑆1, 𝑡 ↦→ 𝑒2𝜋𝑖𝑡. Observe that [𝜑] is mapped to 1 under this isomor-
phism, which is a generator for Z and thus [𝜑] is a generator for H1(𝑆1,Z).

Problem 7

Clara Bonvin

The UCT for cohomology gives the following SES :

0 Ext(𝐻0(𝑋,Z),Z) 𝐻1(𝑋;Z) Hom(𝐻1(𝑋,Z),Z) 0

Note that 𝐻0(𝑋,Z) is a free Z Module, therefore we have Ext(𝐻0(𝑋,Z),Z) = 0.
From the above SES, we get : 𝐻1(𝑋,Z) ∼= Hom(𝐻1(𝑋,Z),Z).
Therefore, it suffices to show that Hom(𝐻1(𝑋,Z),Z) is torsion free to deduce that
𝐻1(𝑋,Z) is torsion free as well.
To show that Hom(𝐻1(𝑋,Z),Z) is torsion free, we show that Hom(𝑀,Z) is torsion
free for any Z Module M. We consider its torsion group T(Hom(𝑀,Z)) = {𝜙 ∈
Hom(𝑀,Z) : ∃𝜆 ∈ Z⧹{0} with 𝜆𝜙 = 0} and show that it is trivial.
Let 𝜙 ∈ T(Hom(𝑀,Z)), then ∀𝑚 ∈ 𝑀 , there exists some 𝜆 ̸= 0 such that
𝜆𝜙(𝑚) = 0.
This gives ∀𝑚 ∈𝑀 : 𝜙(𝑚) = 0⇒ 𝜙 = 0 and therefore we get T(Hom(𝑀,Z)) = 0.

7
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Problem 8

Sina Keller and Tristan Lovsin

Since b) and c) are more intuitive to understand we put subpart a) at the end.

b).

Cellular homology. We look at the Klein bottle 𝐾2 as the square with the edges
identified as shown in the following picture:

𝐴𝑎 𝑎

𝑥𝑥

𝑥𝑥

𝑏

𝑏

We then have the following cochains in cohomology:

0− cochains: 𝜙 : 𝑥 ↦→ 1

1− cochains: 𝛼 :

{︂
𝑎 ↦→ 1

𝑏 ↦→ 0
and 𝛽 :

{︂
𝑎 ↦→ 0

𝑏 ↦→ 1

2− cochains: 𝛾 : 𝐴 ↦→ 1

These are maps from the cellular chain group to Z or F2 respectively and are
generating 𝐶𝑖(𝑇 2;Z or F2) for 𝑖 = 0, 1, 2.
Now let’s look at the boundary maps.

𝑑0 : 𝐶0 → 𝐶1

𝜙 ↦→ 𝑑0(𝜙)

𝑑0(𝜙)(𝑎) = 𝜙(𝑑1(𝑎)) = 𝜙(𝑥− 𝑥) = 0

𝑑0(𝜙)(𝑏) = 𝜙(𝑑1(𝑏)) = 𝜙(𝑥− 𝑥) = 0

From this we get the kernel and image of 𝑑0:

ker(𝑑0) = ⟨𝜙⟩(1)

im(𝑑0) = 0(2)

8
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Now we do the same for 𝑑1:

𝑑1 : 𝐶1 → 𝐶2

𝛼 ↦→ 𝑑1(𝛼)

𝑑1(𝛼)(𝐴) = 𝛼(𝑑2(𝐴)) = 𝛼(𝑏)− 𝛼(𝑎) + 𝛼(𝑏) + 𝛼(𝑎) = 0− 1 + 0 + 1 = 0

𝑑1(𝛽)(𝐴) = 𝛽(𝑑2(𝐴)) = 𝛽(𝑏)− 𝛽(𝑎) + 𝛽(𝑏) + 𝛽(𝑎) = 2𝛽(𝑏) = 2 =⇒ 𝑑1(𝛽) = 2𝛾

Here we get two different cases for coefficients in Z and F2.

Z F2

ker(𝑑1) = ⟨𝛼⟩ ker(𝑑1) = ⟨𝛼, 𝛽⟩(3)

im(𝑑1) = ⟨2𝛾⟩ im(𝑑1) = 0(4)

Now let’s do the same for 𝑑2:

𝑑2 : 𝐶2 → 𝐶3

𝛾 ↦→ 𝑑2(𝛾)

𝑑2(𝛾)(0) = 𝛾(𝑑3(0)) = 0

We get for both Z and F2 that:

ker(𝑑2) = ⟨𝛾⟩(5)

im(𝑑2) = 0

Now we combine all these equations to get the 𝑖-th cohomology with coefficient in
Z and F2 :

Z F2

𝐻0 ∼= ker(𝑑0)⧸im(𝑑−1)

(1)∼= Z⧸0 = Z F2⧸0 = F2

𝐻1 ∼= ker(𝑑1)⧸im(𝑑0)

(2),(3)∼= Z⧸0 = Z F2
2⧸0 = F2

2

𝐻2 ∼= ker(𝑑2)⧸im(𝑑1)

(4),(5)∼= Z⧸2Z = F2
F2⧸0 = F2

Checking with UCT. Now let’s check if this result is the same as in the UCT of
cohomology. We check the following SES, where 𝐴 is either Z or F2 and 𝐶 our
chain complex of 𝐾2:

0→ Ext(𝐻𝑖−1(𝐶), 𝐴)→ 𝐻 𝑖(𝐶;𝐴)→ Hom(𝐻𝑖(𝐶), 𝐴)→ 0

9
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We have to check the following SES:

0→ Ext(𝐻−1(𝐾
2),Z)→ 𝐻0(𝐾2;Z)→ Hom(𝐻0(𝐾

2),Z)→ 0(6)

0→ Ext(𝐻0(𝐾
2),Z)→ 𝐻1(𝐾2;Z)→ Hom(𝐻1(𝐾

2),Z)→ 0(7)

0→ Ext(𝐻1(𝐾
2),Z)→ 𝐻2(𝐾2;Z)→ Hom(𝐻2(𝐾

2),Z)→ 0(8)

0→ Ext(𝐻−1(𝐾
2),F2)→ 𝐻0(𝐾2;F2)→ Hom(𝐻0(𝐾

2),F2)→ 0(9)

0→ Ext(𝐻0(𝐾
2),F2)→ 𝐻1(𝐾2;F2)→ Hom(𝐻1(𝐾

2),F2)→ 0(10)

0→ Ext(𝐻1(𝐾
2),F2)→ 𝐻2(𝐾2;F2)→ Hom(𝐻2(𝐾

2),F2)→ 0(11)

From AlgTopo I we remember the homology groups of 𝐾2:

(12) 𝐻𝑖
∼=

⎧⎪⎨⎪⎩
Z i=0

Z⊕ F2 i=1

0 else

We know from Prop 8, that if 𝐴 is free Ext(𝐴,𝐵) ∼= 0.

0th cohomology. Therefore (6) and (9) with help of (12) becomes the following as
desired:

(6) : 0→𝐻0(𝐾2;Z)→ Hom(Z,Z)→ 0

⇒𝐻0(𝐾2;Z) ∼= Hom(Z,Z) ∼= Z(13)

(9) : 0→𝐻0(𝐾2;F2)→ Hom(Z,F2)→ 0

⇒𝐻0(𝐾2;F2) ∼= Hom(Z,F2) ∼= F2(14)

1st cohomology. Similarly (7) and (10) with (12) and the fact that Z is free turns
into the following, as desired:

(7) : 0→𝐻1(𝐾2;Z)→ Hom(Z⊕ F2,Z)→ 0

⇒𝐻1(𝐾2;Z) ∼= Hom(Z⊕ F2,Z) ∼= Z
(10) : 0→𝐻1(𝐾2;F2)→ Hom(Z⊕ F2,F2)→ 0

⇒𝐻1(𝐾2;F2) ∼= Hom(Z⊕ F2,F2)
*∼= F2

2

* is deduced from the fact that Hom(𝐴⊕𝐵,𝐶) ∼= Hom(𝐴,𝐶)⊕Hom(𝐵,𝐶) which
in this case yields

Hom(Z⊕ F2,F2) ∼= Hom(Z,F2)⊕ Hom(F2,F2) ∼= F2 ⊕ F2

10
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2nd cohomology. Now we need the fact that Ext(𝐴⊕𝐵,𝐶) ∼= Ext(𝐴,𝐶)⊕Ext(𝐵,𝐶)
from Prop 8. This turns (8) and (11) with help of (12) into:

(8) : 0→ Ext(Z,Z)⊕ Ext(F2,Z)→𝐻2(𝐾2;Z)→ 0

Ext(F2,Z) ∼= 0⊕ Ext(F2,Z) ∼= Ext(Z,Z)⊕ Ext(F2,Z) ∼=𝐻2(𝐾2;Z)(15)

(11) : 0→ Ext(Z,F2)⊕ Ext(F2,F2)→𝐻2(𝐾2;F2)→ 0

Ext(F2,F2) ∼= 0⊕ Ext(F2,F2) ∼= Ext(Z,F2)⊕ Ext(F2,F2) ∼=𝐻2(𝐾2;F2)

(16)

Now we want to calculate Ext for (15) and (16). We remember the definition of
Ext from the lecture:

Ext(𝑀,𝑁) := 𝐻1(Hom(𝐹𝑀 , 𝑁))

Therefore we try to calculate the following:

Ext(F2,Z) = 𝐻1(Hom(𝐹 F2 ,Z))(17)

Let 𝐹 F2 := 0 → Z ·2→ Z → 0 be a free resolution of F2. Then by definition
Hom(𝐹 F2 ,Z) form the corresponding cochain complexes and we calculate im(𝑑0)
and ker(𝑑1). Let 𝜎, 𝜏 be an arbitrary element in 𝐶0, 𝐶1 respectively. Let 𝑎, 𝑏 be
elements that were defined in part 1.

𝑑0 : 𝐶0 → 𝐶1

𝜎 ↦→ 𝑑0(𝜎)

𝑑0(𝜎)(𝑏) = 𝜎(𝑑1(𝑏)) = 𝜎(2𝑏) = 2

𝑑1 : 𝐶1 → 𝐶2

𝜏 ↦→ 𝑑1(𝜏)

𝑑1(𝜏)(0) = 0

Therefore we have that im(𝑑0) ∼= 2Z and ker(𝑑1) ∼= Z. Now we have that

𝐻1 ∼= ker(𝑑1)⧸im(𝑑0)
∼= Z⧸2Z ∼= F2

(17)∼= Ext(F2,Z)(18)

This is exactly the result we expected from our calculations from cellular cohomol-
ogy.
Now onto (16) where we try to calculate the following:

Ext(F2,F2) = 𝐻1(Hom(𝐹 F2 ,F2))(19)

We have that

Hom(Z,F2) ∼= F2

11
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and

𝑑0 : 𝐶0 → 𝐶1

𝜎 ↦→ 𝑑0(𝜎)

𝑑0(𝜎)(𝑏) = 𝜎(𝑑1(𝑏)) = 𝜎(2𝑏) = 2𝜎 ≡ 0

𝑑1 : 𝐶1 → 𝐶2

𝜏 ↦→ 𝑑1(𝜏)

𝑑1(𝜏)(0) = 0

Therefore we have that im(𝑑0) ∼= 2F2
∼= 0 and ker(𝑑1) ∼= F2, thus

𝐻1 ∼= ker(𝑑1)⧸im(𝑑0)
∼= F2⧸0 ∼= F2

(19)∼= Ext(F2,F2)(20)

Therefore all our results align with UCT and we are done.

c).

Cellular cohomology. We know from AlgTopo I that R𝑃 𝑛 has the following cellular
homology:

𝑛− cell : 𝑐𝑛

𝑛− 1− cell : 𝑐𝑛−1

...
...

0− cell : 𝑐0

With the following boundary maps:

(21) 𝑑𝑖(𝑐𝑖) =

{︂
0 i odd

2𝑐𝑖−1 i even

Therefore we construct the following cellular cohomology:

𝑛− cell : 𝜙𝑛 : 𝑐𝑛 ↦→ 1

𝑛− 1− cell : 𝜙𝑛−1 : 𝑐𝑛−1 ↦→ 1

...
...

0− cell : 𝜙0 : 𝑐0 ↦→ 1

Now we look at the boundary maps in cohomology:

𝑑𝑖(𝜙𝑖)(𝑐𝑖+1) = 𝜙𝑖(𝑑𝑖+1(𝑐𝑖+1))
(21)
=

{︂
2𝜙𝑖 i odd

0 i even

12
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This gives us the kernel and the image:

Z F2

ker(𝑑𝑖) =

{︂
0 i odd

⟨𝜙𝑖⟩ i even
ker(𝑑𝑖) =

{︂⟨𝜙𝑖⟩ i odd

⟨𝜙𝑖⟩ i even
(22)

im(𝑑𝑖) =

{︂⟨2𝜙𝑖⟩ i odd

0 i even
im(𝑑𝑖) =

{︂
0 i odd

0 i even
(23)

Now we can put this together to get the cohomology groups with coefficient in 𝐴
which is Z or F2 respectively:1

𝐻 𝑖(R𝑃 𝑛;𝐴) ∼= ker(𝑑𝑖)⧸im(𝑑𝑖−1)

(22),(23)∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z : F2 :
Z⧸0 ∼= Z F2⧸0 ∼= F2 𝑖 = 𝑛 with n odd or 𝑖 = 0
0⧸0 ∼= 0 F2⧸0 ∼= F2 0 < 𝑖 < 𝑛, 𝑖 odd
Z⧸2Z ∼= F2

F2⧸0 ∼= F2 0 < 𝑖 ≤ 𝑛, 𝑖 even

Checking with UCT. Now we have to check if those results are in alignment with
UCT. Again we have that 𝐴 is either Z or F2 and 𝐶 our chain complex of R𝑃 𝑛

0→ Ext(𝐻𝑖−1(𝐶), 𝐴)→ 𝐻 𝑖(𝐶;𝐴)→ Hom(𝐻𝑖(𝐶), 𝐴)→ 0

We remember the homology group of R𝑃 2 from AlgTopo I:

(24) 𝐻𝑖(R𝑃 𝑛) ∼=

⎧⎪⎨⎪⎩
Z i=0, i=n and n odd

F2 i odd and 0 < 𝑖 < 𝑛

0 else

We get now the following different cases for the SES with help of Prop 8:

0→𝐻 𝑖(R𝑃 𝑛;𝐴)→ Hom(Z, 𝐴)→ 0 𝑖 = 0, 𝑖 = 𝑛 and 𝑛 odd(25)

0→𝐻 𝑖(R𝑃 𝑛;𝐴)→ Hom(F2, 𝐴)→ 0 𝑖 odd and 0 < 𝑖 < 𝑛(26)

0→ Ext(F𝑛, 𝐴)→𝐻 𝑖(R𝑃 2;𝐴)→ 0 𝑖 even and 0 < 𝑖 < 𝑛(27)

We have already calculated in (13) and (14) what Hom(Z, 𝐴) is for both cases.
Therefore (25) aligns with UCT.
We have calculated Ext(F𝑛, 𝐴) in (18) and (20) for both cases. Therefore (27)
aligns with UCT as well.
Now let’s look at both cases for (26). In the case of 𝐴 = Z we have that
Hom(F2,Z) ∼= 0 and when 𝐴 = F2 we have Hom(F2,F2) ∼= F2, yielding the desired
result for all cases and we are done.

1Correction 27 July 2024: Previously, the next line said 𝐻𝑖(𝐾2;𝐴).
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a).

Cellular homology. We view 𝑇 𝑛 = 𝐼𝑛⧸∼ as the 𝑛-dim cube with the equivalence
relation ∼ which identifies opposite facets of the boundary.
We construct our cells similarly to a hypercube without identifying opposite facets.
As Wikipedia stated, we imagine the hypercube in a Cartesian coordinate system.
Then there exists for every 𝑖-dim cell 𝑖 coordinate axes that are parallel to this
element. This results in

(︀
𝑛
𝑘

)︀
elements. Differently to Wikipedia, we don’t have to

multiply by 2𝑛−𝑖 for the total amount of cells, because the parallel cells on the
other side of the hypercube are identified. 2

So we have
(︀
𝑛
𝑖

)︀
𝑖-cells for each 𝑖-dim cochain group 𝐶𝑖. We call them 𝑐𝑖𝑘 for

𝑖 = 0, . . . , 𝑛 and 𝑘 = 0, . . . ,
(︀
𝑛
𝑖

)︀
. Now we compute the boundary maps 𝑑𝑖.

Quick reminder how cellular homology works. We look at embeddings 𝑓 of the
𝑛-dimensional ball 𝐵𝑛 and its boundary 𝜕𝐵𝑛 into the 𝐾(𝑛) and 𝐾(𝑛−1) skeletons
respectively, where these maps are injective on the interior of 𝐵𝑛 but not necessarily

on the boundary. Then we took the quotient space 𝐾
(𝑛)
⧸𝐾(𝑛−1) ≃

⋁︀
𝑆𝑛 and looked

at the projection onto one of those spheres. This projection we called 𝑝3. In this
exercise we will use the notation from AlgTopo I and the solution of exercise 3 of
the exercise sheet 7.
For 𝑑𝑖 we consider any of the maps 𝑝𝑐𝑖−1

𝑘
𝑓𝜕𝑐𝑖𝑚 : 𝜕𝐼 𝑖 → 𝑆𝑖−1. We note that there are

two opposite facets of 𝐼 𝑖 in whose interiors this map restricts to a homeomorphism.
The map collapses the rest of 𝜕𝐼 𝑖 to a point in 𝑆𝑖−1. The degree of 𝑝𝑐𝑖−1

𝑘
𝑓𝜕𝑐𝑖𝑚 is

therefore the sum of the two local degrees at any two points in 𝑞1, 𝑞2 in the two
first-mentioned facets which get mapped to the same point in 𝑇 𝑛. Now we note
that the restriction of 𝑝𝑐𝑖−1

𝑘
𝑓𝜕𝑐𝑖𝑚 to these faces are obtained from one another by

precomposing with an orientation-reversing map. Therefore the sum of these local
degrees vanishes. Therefore we have that deg(𝑑𝑖) = 0 for all 𝑖. 4

For the cellular cohomology we take the the cochains 𝐶𝑖 := Hom(𝐶𝑖, 𝐴), for 𝐴
either Z or F2. We again have

(︀
𝑛
𝑖

)︀
𝑖-cochains for each 𝑖-dim cochain group 𝐶𝑖.

Now we want to calculate the coboundary maps 𝑑𝑖. We know that the coboundary
maps are the transpose of the boundary maps and since the boundary maps are
all 0, we have that 𝑑𝑖 = 0 for all 𝑖 as well.

We have that ker(𝑑𝑖) ∼= 𝐴(
𝑛
𝑖) and im(𝑑𝑖) ∼= 0 for all 𝑖. We immediately get the

cohomology groups:

𝐻 𝑖(𝑇 𝑛;Z) ∼= ker(𝑑𝑖)⧸im(𝑑𝑖−1)
∼= Z(

𝑛
𝑖)
⧸0 ∼= Z(

𝑛
𝑖)

𝐻 𝑖(𝑇 𝑛;F2) ∼= ker(𝑑𝑖)⧸im(𝑑𝑖−1)
∼=

F(
𝑛
𝑖)

2 ⧸0 ∼= F(
𝑛
𝑖)

2

2Wikipedia: Hyperwüfel
3A detailed explanation of this is found in the lecture notes of Lecture 25 AlgTopo I starting

at page 6.
4Generalized version of proof for exercise 3 on exercise sheet 7 in AlgTopo I
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Checking with UCT. Now we check if this result aligns with UCT for cohomology:

(28) 0→ Ext(𝐻𝑖−1(𝐶), 𝐴)→ 𝐻 𝑖(𝐶;𝐴)→ Hom(𝐻𝑖(𝐶), 𝐴)→ 0

We know that 𝐻𝑖(𝑇
𝑛) = Z(

𝑛
𝑖) from AlgTopo I. This is just a finite number of copies

of Z and therefore free. We know from Prop 8, that if 𝐴 is free Ext(𝐴,𝐵) ∼= 0.
We note that Hom(Z𝑖,Z) ∼= Z𝑖 and Hom(Z𝑖,F2) ∼= F𝑖

2. Therefore (28) in our case
becomes:

0→𝐻 𝑖(𝑇 𝑛;𝐴)→ Hom(Z(
𝑛
𝑖), 𝐴)→ 0

⇒ 0→𝐻 𝑖(𝑇 𝑛;𝐴)→ 𝐴(
𝑛
𝑖) → 0

⇒𝐻 𝑖(𝑇 𝑛;Z) ∼= Z(
𝑛
𝑖) and

𝐻 𝑖(𝑇 𝑛;F2) ∼= F(
𝑛
𝑖)

2

This is exactly what we expect from cellular cohomology and we are done.

Problem 9

no solutions for starred problems
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