DR. LUKAS LEWARK ALGEBRAIC TOPOLOGY II SOLUTIONS SHEET 3 ETH ZÜRICH SPRING, 2024

Problem 1

Leon Dahlmeier

We want to show $\operatorname{Tor}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/g\mathbb{Z}$ for $g \coloneqq \operatorname{gcd}(m, n)$. $0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{d_0} \mathbb{Z}/n\mathbb{Z} \to 0$ is a free resolution of $\mathbb{Z}/n\mathbb{Z}$ called F. Where \xrightarrow{n} is multiplication with n and d_0 the projection. Tensoring the deleted resolution $F^{\mathbb{Z}/n\mathbb{Z}}$ with $\mathbb{Z}/m\mathbb{Z}$ yields:

$$0 \to \mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z} \xrightarrow{n \otimes id_{\mathbb{Z}/m\mathbb{Z}}} \mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z} \to 0.$$

After simplifying everything we already know about the Tensor product:

 $0 \xrightarrow{0} \mathbb{Z}/m\mathbb{Z} \xrightarrow{n} \mathbb{Z}/m\mathbb{Z} \to 0$

Therefore $\operatorname{Tor}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) = H_1(F^{\mathbb{Z}/n\mathbb{Z}},\mathbb{Z}/m\mathbb{Z}) = \ker(\mathbb{Z}/m\mathbb{Z} \xrightarrow{n} \mathbb{Z}/m\mathbb{Z}).$

Finally, let us take a closer look at: $\ker(\mathbb{Z}/m\mathbb{Z} \xrightarrow{n} \mathbb{Z}/m\mathbb{Z})$. Remember $g = \gcd(m, n)$ and let u and k be such that $u \cdot g = m$ and $k \cdot g = n$. Since $n \cdot u = k \cdot u \cdot g = k \cdot m \equiv 0 \pmod{m}$, we have $\operatorname{im}(\mathbb{Z}/m\mathbb{Z} \xrightarrow{n} \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/u\mathbb{Z}$. We conclude using the isomorphism theorem:

$$\operatorname{Tor}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) \cong \frac{\mathbb{Z}/m\mathbb{Z}}{\mathbb{Z}/u\mathbb{Z}} \cong \mathbb{Z}/g\mathbb{Z}$$

Problem 2

Leon Dahlmeier

a). Since $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(T(A), T(B))$ let us assume without loss of generality that A and B are torsion. Let us define $C := \bigoplus_{0 \neq b \in B} \mathbb{Z}/\operatorname{ord}(b)\mathbb{Z}$ and $f : C \to B$ by sending $[1] \in \mathbb{Z}/\operatorname{ord}(b)\mathbb{Z}$ to b.

The abelian group A together with the short exact sequence:

$$0 \to \ker(f) \to C \xrightarrow{f} B \to 0$$

give rise to the following long exact sequence:

$$0 \to \operatorname{Tor}(A, \ker(f)) \xrightarrow{g} \operatorname{Tor}(A, C) \to \operatorname{Tor}(A, B) \to A \otimes \ker(f) \xrightarrow{h} A \otimes C \to A \otimes B \to 0$$

from which we can extract the short exact sequence:

$$0 \to \operatorname{coker}(g) \xrightarrow{\alpha} \operatorname{Tor}(A, B) \xrightarrow{\beta} \ker(h) \to 0$$

Solutions Sheet 3

But by 4.14.

$$\operatorname{Tor}(A,C) = \bigoplus_{0 \neq b \in B} \operatorname{Tor}(A, \mathbb{Z}/\operatorname{ord}(b)\mathbb{Z}) = \bigoplus_{0 \neq b \in B} \ker(A \xrightarrow{\cdot \operatorname{ord}(b)} A)$$

which implies that Tor(A, C) as a subgroup of a torsion group is torsion. Also $A \otimes \text{ker}(f)$ is torsion since we assumed A to be. Which then means that coker(g) and ker(h) are, meaning Tor(A, B) is:

For $x \in \text{Tor}(A, B) \exists n \in \mathbb{N}$ s.t. $n\beta(x) = \beta(xn) = 0 \Rightarrow xn \in \text{ker}(\beta) = \text{im}(\alpha)$. Hence, $\exists y \in \text{coker}(g)$ s.t. $\alpha(y) = xn$ but $\exists m \in \mathbb{N}$ s.t. ym = 0. Meaning $(xn)m = \alpha(y)m = \alpha(ym) = \alpha(0) = 0$, which concludes the proof.

b). The long exact sequence for $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ and the abelian group T(A) is:

$$0 \to \operatorname{Tor}(T(A), \mathbb{Z}) \to \operatorname{Tor}(T(A), \mathbb{Q}) \to \operatorname{Tor}(T(A), \mathbb{Q}/\mathbb{Z}) \to T(A) \otimes \mathbb{Z} \to T(A) \otimes \mathbb{Q} \to T(A) \otimes \mathbb{Q}/\mathbb{Z} \to 0.$$

 \mathbb{Z} and \mathbb{Q} are torsion-free and $\mathbb{Z} \otimes T(A)$ is isomorphic to T(A). Further for $a \otimes q \in T(A) \otimes \mathbb{Q}$ we have: $a \in T(A)$ meaning there is an $n \in \mathbb{Z} \setminus 0$ s.t. $a \cdot n = 0$ i.e. $a \otimes q = na \otimes \frac{q}{n} = 0$ implying $T(A) \otimes \mathbb{Q} \cong 0$. Using these isomorphisms we can simplify to:

$$0 \to 0 \to 0 \to \operatorname{Tor}(T(A), \mathbb{Q}/\mathbb{Z}) \xrightarrow{\phi} T(A) \to T(A) \otimes \mathbb{Q} \to T(A) \otimes \mathbb{Q}/\mathbb{Z} \to 0$$

Which means that ϕ an isomorphism.

Problem 3

Aparna Jeyakumar

a). (a) From the Universal Coefficient Theorem, we have the following commutative diagram

Since $-\otimes 1_M$ and $\operatorname{Tor}(-, M)$ are additive functors between the category of abelian groups, they take isomorphisms to isomorphisms. In particular, $f_* \otimes 1_M$ and $\operatorname{Tor}(f_*, 1_M)$ are isomorphisms. Now, using the five lemma, we get that the vertical map in the middle $f_* : H_n(X; M) \to H_n(Y; M)$ is an isomorphism.

b). To show that $f_*: H_n(X) \to H_n(Y)$ is an isomorphism, it is enough to show that $H_n(Mc(f)) = 0$ for all *n* where Mc(f) is the mapping cone complex of the map f. This is due to the following result from Homological Algebra:

If $f: X_{\bullet} \to Y_{\bullet}$ is a chain map of complexes then, the induced map on the homology, $f_*: H_n(X_{\bullet}) \to H_n(Y_{\bullet})$ is an isomorphism iff $H_n(Mc(f)) = 0$ for all n, where Mc(f) is the mapping cone complex of the map f.

We have that $f_*: H_n(X; \mathbb{Q}) \to H_n(Y, \mathbb{Q})$ is an isomorphism which implies that $H_n(Mc(f \otimes 1_{\mathbb{Q}})) = 0$ for all n. Since \mathbb{Q} is torsion-free, $\operatorname{Tor}(H_n(Mc(f)), \mathbb{Q}) = 0$ and from the UCT for Mc(f), we get that

$$H_n(Mc(f)) \otimes \mathbb{Q} \cong H_n(Mc(f); \mathbb{Q}) \cong H_n(Mc(f \otimes 1_{\mathbb{Q}})) \cong 0$$

(The second isomorphism is due to the distributive property of the tensor product over direct sums).

Similarly, we have $H_n(Mc(f \otimes 1_{\mathbb{Z}_p})) = 0$ for all p prime, for all n. Using the UCT again, we get that

$$(H_n(Mc(f)) \otimes \mathbb{Z}_p) \oplus \operatorname{Tor}(H_{n-1}(Mc(f)), \mathbb{Z}_p) \cong 0$$

which implies that both the terms are 0 and in particular, $\operatorname{Tor}(H_n(Mc(f)), \mathbb{Z}_p) = 0$ for all p prime and for all n. Setting $A = H_n(Mc(f))$, it is now enough to show that the following claim is true.

Claim : If A is an abelian group such that $A \otimes \mathbb{Q} = 0$ and $\operatorname{Tor}(A, \mathbb{Z}_p) = 0$ for all p prime, then A = 0.

Proof : Suppose $A \otimes \mathbb{Q} = 0$ and $\text{Tor}(A, \mathbb{Z}_p) = 0$ for all p prime. Consider the short exact sequences

$$0 \longrightarrow \mathbb{Z} \xrightarrow{p} \mathbb{Z} \longrightarrow \mathbb{Z}_p \longrightarrow 0$$
$$0 \longrightarrow \mathbb{Z} \longleftrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

Then, we get the following LESs,

 $0 \to \operatorname{Tor}(A, \mathbb{Z}) \to \operatorname{Tor}(A, \mathbb{Z}) \to \operatorname{Tor}(A, \mathbb{Z}_p) \to A \otimes \mathbb{Z} \xrightarrow{\cdot p} A \otimes \mathbb{Z} \to A \otimes \mathbb{Z}_p \to 0$ $0 \to \operatorname{Tor}(A, \mathbb{Z}) \to \operatorname{Tor}(A, \mathbb{Q}) \to \operatorname{Tor}(A, \mathbb{Q}/\mathbb{Z}) \to A \otimes \mathbb{Z} \to A \otimes \mathbb{Q} \to A \otimes Q/\mathbb{Z} \to 0$ The first LES reduces to

 $0 \longrightarrow A \xrightarrow{.p} A \longrightarrow A \otimes \mathbb{Z}_p \longrightarrow 0$

The injectivity of the map $A \xrightarrow{p} A$ for all p implies that A is a torsion-free group. Then, $\operatorname{Tor}(A, \mathbb{Q}/\mathbb{Z}) \cong 0$ and the second LES reduces to $0 \to A \to 0$ and so A = 0.

Exercise 4. (Sheef 3)
(*) Claim For any group G, we have
$$\operatorname{Tar}(G, \mathbb{Q}) = 0$$

 $\Gamma_{f} \otimes \mathbb{Q} \longrightarrow F_{e} \otimes \mathbb{Q}$ is a monomorphism. \square
 $= F_{e} \otimes \mathbb{Q} \longrightarrow F_{e} \otimes \mathbb{Q}$ is a monomorphism. \square
 $\Rightarrow By \sqcup CT, \to H_{n}(X;2) \otimes \mathbb{Q} \to H_{n}(X;\mathbb{Q}) \to \operatorname{Ter}(H_{n}(X;2),\mathbb{Q}) \to \mathbb{Q}$
 $\Rightarrow H_{n}(X;2) \otimes \mathbb{Q} \cong H_{n}(X;\mathbb{Q}).$
(6) Easily follows from UCT.
 $\equiv \operatorname{K}_{n}(X;2) \cong \mathbb{Z}^{\otimes k} \otimes (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})}) \otimes \mathbb{F}_{p} \cong$
 $= H_{n}(X;2) \otimes \mathbb{F}_{p} = (\mathbb{Z}^{\otimes k} \otimes (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})}) \otimes \mathbb{F}_{p})$
 $\Rightarrow H_{n}(X;2) \otimes \mathbb{F}_{p} = (\mathbb{Z}^{\otimes k} \otimes (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})}) \otimes \mathbb{F}_{p})$
 $\Rightarrow H_{n}(X;2) \otimes \mathbb{F}_{p} = \mathbb{Q} \xrightarrow_{\substack{q \in \mathbb{Z}/(q^{k_{1}})} \otimes \mathbb{F}_{p}} =$
 $\cong \mathbb{F}_{p}^{\otimes m} \oplus (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})} \otimes \mathbb{F}_{p})) \cong_{m} \mathbb{F}_{p}^{\otimes m} \otimes (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})} \otimes \mathbb{F}_{p})$
 $\cong \mathbb{F}_{p}^{\otimes m} \oplus (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})} \otimes \mathbb{F}_{p})) \cong_{m} \mathbb{F}_{p}^{\otimes m} \otimes (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})} \otimes \mathbb{F}_{p}))$
 $\stackrel{\text{furthered}}{=} \mathbb{F}_{p} \xrightarrow_{\substack{q \in \mathbb{Z}/(q^{k_{1}})} \otimes \mathbb{F}_{p}} = \mathbb{T}_{m}(\mathbb{Z}^{\otimes m} \oplus (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})}); \mathbb{F}_{p}))$
 $\stackrel{\text{furthered}}{=} \operatorname{Tar}(\mathbb{Z}^{\otimes m} \oplus (\bigoplus_{\substack{q \in \mathbb{Z}/(q^{k_{1}})}); \mathbb{F}_{p}))$
 $\stackrel{\text{furthered}}{=} \mathbb{T}_{p}(\mathbb{Q}^{\otimes m} \oplus \mathbb{Q}^{\otimes m}$

Problem 5

Naomi Rosenberg

We start by constructing a free resolution of $\mathbb{Z}/2$ as a $\mathbb{Z}/4$ -module. To that extent, note that $\mathbb{Z}/2$ can be interpreted as $2 + 4\mathbb{Z}$, which is a submodule of $\mathbb{Z}/4$. Consider the following sequence:

$$\ldots \longrightarrow \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\operatorname{proj}} \mathbb{Z}/2 \longrightarrow 0.$$

Note that $\ker(\cdot 2) = 2 + 4\mathbb{Z} = \operatorname{im}(\cdot 2)$ and $\ker(\operatorname{proj}) = 2 + 4\mathbb{Z} = \operatorname{im}(\cdot 2)$. Consequently, the sequence defined above is a long exact sequence and therefore defines a free resolution F of the $\mathbb{Z}/4$ -module $\mathbb{Z}/2$.

We thus get the following deleted free resolution:

 $F^{\mathbb{Z}/2} = \dots \longrightarrow \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \longrightarrow 0.$

This enables us to compute $\operatorname{Tor}_{n}^{\mathbb{Z}/4}(\mathbb{Z}/2,\mathbb{Z}/2)$. By plugging into the definition, we obtain:

$$\operatorname{Tor}_{n}^{\mathbb{Z}/4}(\mathbb{Z}/2,\mathbb{Z}/2) = \operatorname{H}_{n}(F^{\mathbb{Z}/2};\mathbb{Z}/2) = \operatorname{H}_{n}(F^{\mathbb{Z}/2}\otimes\mathbb{Z}/2).$$

So in order to determine $\operatorname{Tor}_{n}^{\mathbb{Z}/4}(\mathbb{Z}/2,\mathbb{Z}/2)$, it is sufficient to consider the long exact sequence

$$F^{\mathbb{Z}/2} \otimes \mathbb{Z}/2 = \ldots \longrightarrow \mathbb{Z}/4 \otimes \mathbb{Z}/2 \longrightarrow \mathbb{Z}/4 \otimes \mathbb{Z}/2 \longrightarrow \ldots \longrightarrow \mathbb{Z}/4 \otimes \mathbb{Z}/2 \longrightarrow 0.$$

In the sequence above, the homomorphisms are given by $(\cdot 2) \otimes \operatorname{id}_{\mathbb{Z}/2}$. Notice that by Problem Sheet 1, Problem 1, it holds that $\mathbb{Z}/4 \otimes \mathbb{Z}/2 \cong \mathbb{Z}/\operatorname{gcd}(2,4) \cong \mathbb{Z}/2$ and the homomorphism is precisely the zero map. Consequently, $\operatorname{H}_n(F^{\mathbb{Z}/2} \otimes \mathbb{Z}/2) \cong \operatorname{ker}(\cdot 0) / \operatorname{im}(\cdot 0) \cong (\mathbb{Z}/2)/0 \cong \mathbb{Z}/2$ for all $n \geq 0$. By the above, this yields

By the above, this yields

$$\operatorname{Tor}_{n}^{\mathbb{Z}/4}(\mathbb{Z}/2,\mathbb{Z}/2)\cong\mathbb{Z}/2,$$

for all $n \ge 0$.

Now let's calculate $\operatorname{Ext}_{\mathbb{Z}/4}^n(\mathbb{Z}/2,\mathbb{Z}/2)$. By definition, it holds that

$$\operatorname{Ext}_{\mathbb{Z}/4}^{n}(\mathbb{Z}/2,\mathbb{Z}/2) = \operatorname{H}^{n}(\operatorname{Hom}(F^{\mathbb{Z}/2},\mathbb{Z}/2)),$$

where

$$\operatorname{Hom}(F^{\mathbb{Z}/2},\mathbb{Z}/2) = \ldots \longleftarrow \operatorname{Hom}(\mathbb{Z}/4,\mathbb{Z}/2) \longleftarrow \ldots \longleftarrow \operatorname{Hom}(\mathbb{Z}/4,\mathbb{Z}/2) \longleftarrow 0.$$

Notice that $\operatorname{Hom}(\mathbb{Z}/4, \mathbb{Z}/2) \cong \mathbb{Z}/2$ since to define a homomorphism from $\mathbb{Z}/4$ to $\mathbb{Z}/2$, a generator of $\mathbb{Z}/4$ can either be mapped to $0 + \mathbb{Z}/2$ or to $1 + \mathbb{Z}/2$. The homomorphisms in the long exact sequence are given by the dual of multiplication by 2, which is the zero map in the depicted case. Hence, we obtain

 $\mathrm{H}^{n}(\mathrm{Hom}(F^{\mathbb{Z}/2},\mathbb{Z}/2)) \cong \ker(\cdot 0)/\operatorname{im}(\cdot 0) \cong (\mathbb{Z}/2)/0 \cong \mathbb{Z}/2 \text{ for all } n \ge 0.$ This implies that

$$\operatorname{Ext}_{\mathbb{Z}/4}^{n}(\mathbb{Z}/2,\mathbb{Z}/2)\cong\mathbb{Z}/2$$

for all $n \ge 0$.

Problem 6

Maria Morariu

a). Let p denote the given covering of S^1 . We start by showing that $\tilde{\sigma}(1) - \tilde{\sigma}(0)$ does not depend on the choice of the lift $\tilde{\sigma}$. Let $\bar{\sigma} : [0,1] \to \mathbb{R}$ be a further lift of σ . Define $\bar{\sigma}' : [0,1] \to \mathbb{R}$, $\bar{\sigma}'(t) = \tilde{\sigma}(t) + \bar{\sigma}(0) - \tilde{\sigma}(0)$. This map is continuous with $\bar{\sigma}'(0) = \bar{\sigma}(0)$ and $e^{2\pi i \bar{\sigma}'(t)} = e^{2\pi i \bar{\sigma}(t)} e^{2\pi i \bar{\sigma}(0)} \left(e^{2\pi i \bar{\sigma}(0)}\right)^{-1} = \sigma(t)\sigma(0)\sigma(0)^{-1} = \sigma(t)$, so $\bar{\sigma}'$ is a lift of σ with $\bar{\sigma}'(0) = \bar{\sigma}(0)$. By the uniqueness in the lifting property of covers, it follows $\bar{\sigma}' = \bar{\sigma}$ and in particular $\bar{\sigma}(1) = \bar{\sigma}'(1) = \tilde{\sigma}(1) + \bar{\sigma}(0) - \tilde{\sigma}(0)$ and thus $\bar{\sigma}(1) - \bar{\sigma}(0) = \tilde{\sigma}(1) - \tilde{\sigma}(0)$. Therefore, $\tilde{\sigma}(1) - \tilde{\sigma}(0)$ does not depend on the choice of the lift $\tilde{\sigma}$ and we can define the map $\phi \colon C_1(S^1) \to \mathbb{R}$ as the linear map with $\phi(\sigma) = \tilde{\sigma}(1) - \tilde{\sigma}(0)$ for any 1-simplex σ . By definition, this is a 1-cochain of S^1 with coefficients in \mathbb{R} .

Let us show that ϕ is actually a 1-cocycle. By Remark 5 in the lecture, this is the same as showing that ϕ is 0 on 1-boundaries. Let $\sigma: \Delta^2 \to S^1$ be a singular 2-simplex. We show that $\phi(d\sigma) = 0$. By definition $d\sigma = \sigma|_{[1,2]} - \sigma|_{[0,2]} + \sigma|_{[0,1]}$. Since Δ^2 is simply connected, the lifting property of covers implies that there exists a lift $\tilde{\sigma}: \Delta^2 \to \mathbb{R}$ such that $p \circ \tilde{\sigma} = \sigma$. Then $\tilde{\sigma}|_{[1,2]}, \tilde{\sigma}|_{[0,2]}, \tilde{\sigma}|_{[0,1]}$ are lifts of $\sigma|_{[1,2]}, \sigma|_{[0,2]}, \sigma|_{[0,1]}$. Hence, we have

$$\begin{split} \phi(d\sigma) &= \phi(\sigma|_{[1,2]}) - \phi(\sigma|_{[0,2]}) + \phi(\sigma|_{[0,1]}) \\ &= \tilde{\sigma}|_{[1,2]}(1) - \tilde{\sigma}|_{[1,2]}(0) - \left(\tilde{\sigma}|_{[0,2]}(1) - \tilde{\sigma}|_{[0,2]}(0)\right) + \tilde{\sigma}|_{[0,1]}(1) - \tilde{\sigma}|_{[0,1]}(0) \\ &= \tilde{\sigma}(2) - \tilde{\sigma}(1) - \tilde{\sigma}(2) + \tilde{\sigma}(0) + \tilde{\sigma}(1) - \tilde{\sigma}(0) = 0. \end{split}$$

Since all 1-boundaries can be written as finite sums of such $d\sigma$, it follows that ϕ is zero on 1-boundaries, so ϕ is a 1-cocycle.

Lastly, we show that ϕ generates $\mathrm{H}^1(S^1, \mathbb{R})$. Note that $\mathrm{H}_0(S^1) \cong \mathbb{Z}$ and it is in particular free, so $\mathrm{Ext}(\mathrm{H}_0(S^1), \mathbb{R}) \cong 0$ and by the universal coefficient theorem for cohomology, it follows that evaluation map $ev \colon \mathrm{H}^1(X; \mathbb{R}) \to \mathrm{Hom}(\mathrm{H}_1(S^1), \mathbb{R}), [\psi] \mapsto \psi$ is an isomorphism. Also, $\mathrm{H}_1(S^1) \cong \mathbb{Z}$, so we have a natural isomorphism $\mathrm{Hom}(\mathrm{H}_1(S^1), \mathbb{R}) \to \mathbb{R}, \psi \mapsto \psi([\sigma])$, where $\sigma \colon [0, 1] \to S^1, t \mapsto e^{2\pi i t}$. Let us note that $\tilde{\sigma} \colon [0, 1] \to \mathbb{R}, t \mapsto t$ is a lift of σ , so $\phi(\sigma) = \tilde{\sigma}(1) - \tilde{\sigma}(0) = 1 - 0 = 1$, which is a generator for \mathbb{R} , so $[\phi]$ is a generator for $\mathrm{H}^1(S^1, \mathbb{R})$.

b). Again, we start by showing that for any path $\sigma: [0,1] \to S^1$ and any lift $\tilde{\sigma}$ of σ , the expression $\lfloor \tilde{\sigma}(1) \rfloor - \lfloor \tilde{\sigma}(0) \rfloor$ does not depend on the choice of the lift. Let $\tilde{\sigma}$ and $\bar{\sigma}$ be two lifts of σ . In a), we have seen that

 $\bar{\sigma}(1) - \bar{\sigma}(0) = \tilde{\sigma}(1) - \tilde{\sigma}(0)$ and thus $\tilde{\sigma}(1) - \bar{\sigma}(1) = \tilde{\sigma}(0) - \bar{\sigma}(0)$. For any $t \in [0, 1]$, we have $e^{2\pi i \bar{\sigma}(t)} = \sigma(t) e^{2\pi i \bar{\sigma}(t)}$, so $\tilde{\sigma} - \bar{\sigma} \in \mathbb{Z}$ and therefore $\{\tilde{\sigma}(t)\} = \{\bar{\sigma}(t)\}$, where

by
$$\{x\} = x - \lfloor x \rfloor$$
 we denote the fractional part of $x \in \mathbb{R}$. Hence, $\tilde{\sigma}(t) - \bar{\sigma}(t) = \lfloor \tilde{\sigma}(t) \rfloor + \{\tilde{\sigma}(t)\} - \lfloor \bar{\sigma}(t) \rfloor - \{\bar{\sigma}(t)\} = \lfloor \tilde{\sigma}(t) \rfloor - \lfloor \bar{\sigma}(t) \rfloor$. In particular,

 $\begin{bmatrix} \tilde{\sigma}(1) \end{bmatrix} - \begin{bmatrix} \bar{\sigma}(1) \end{bmatrix} = \tilde{\sigma}(1) - \bar{\sigma}(1) = \tilde{\sigma}(0) - \bar{\sigma}(0) = \begin{bmatrix} \tilde{\sigma}(0) \end{bmatrix} - \begin{bmatrix} \bar{\sigma}(0) \end{bmatrix}.$

Thus, we can define the map $\phi: C_1(S^1) \to \mathbb{Z}$ by linearly extending $\phi(\sigma) = \lfloor \tilde{\sigma}(1) \rfloor - \lfloor \tilde{\sigma}(0) \rfloor$.

The fact that ϕ is a cocycle follows exactly as in a), since the floors of two equal numbers are equal. Also, as in a), we get a natural isomorphism $H^1(S^1, \mathbb{Z}) \to \mathbb{Z}, [\psi] \mapsto \psi(\sigma)$, where $\sigma \colon [0, 1] \to S^1, t \mapsto e^{2\pi i t}$. Observe that $[\phi]$ is mapped to 1 under this isomorphism, which is a generator for \mathbb{Z} and thus $[\phi]$ is a generator for $H^1(S^1, \mathbb{Z})$.

Problem 7

Clara Bonvin

The UCT for cohomology gives the following SES :

$$0 \longrightarrow \operatorname{Ext}(H_0(X,\mathbb{Z}),\mathbb{Z}) \longrightarrow H^1(X;\mathbb{Z}) \longrightarrow \operatorname{Hom}(H_1(X,\mathbb{Z}),\mathbb{Z}) \longrightarrow 0$$

Note that $H_0(X, \mathbb{Z})$ is a free \mathbb{Z} Module, therefore we have $\text{Ext}(H_0(X, \mathbb{Z}), \mathbb{Z}) = 0$. From the above SES, we get : $H^1(X, \mathbb{Z}) \cong \text{Hom}(H_1(X, \mathbb{Z}), \mathbb{Z})$.

Therefore, it suffices to show that $\text{Hom}(H_1(X,\mathbb{Z}),\mathbb{Z})$ is torsion free to deduce that $H^1(X,\mathbb{Z})$ is torsion free as well.

To show that $\operatorname{Hom}(H_1(X,\mathbb{Z}),\mathbb{Z})$ is torsion free, we show that $\operatorname{Hom}(M,\mathbb{Z})$ is torsion free for any \mathbb{Z} Module M. We consider its torsion group $\operatorname{T}(\operatorname{Hom}(M,\mathbb{Z})) = \{\varphi \in \operatorname{Hom}(M,\mathbb{Z}) : \exists \lambda \in \mathbb{Z} \setminus \{0\} \text{ with } \lambda \varphi = 0\}$ and show that it is trivial.

Let $\varphi \in T(Hom(M,\mathbb{Z}))$, then $\forall m \in M$, there exists some $\lambda \neq 0$ such that $\lambda \varphi(m) = 0$.

This gives $\forall m \in M : \varphi(m) = 0 \Rightarrow \varphi = 0$ and therefore we get $T(Hom(M, \mathbb{Z})) = 0$.

Solutions Sheet 3

Problem 8

Sina Keller and Tristan Lovsin

Since b) and c) are more intuitive to understand we put subpart a) at the end.

b).

Cellular homology. We look at the Klein bottle K^2 as the square with the edges identified as shown in the following picture:

We then have the following cochains in cohomology:

$$\begin{array}{lll} 0 - \text{cochains:} & \varphi : x \mapsto 1 \\ 1 - \text{cochains:} & \alpha : \begin{cases} a & \mapsto 1 \\ b & \mapsto 0 \end{cases} \text{ and } \beta : \begin{cases} a & \mapsto 0 \\ b & \mapsto 1 \end{cases} \\ 2 - \text{cochains:} & \gamma : A \mapsto 1 \end{array}$$

These are maps from the cellular chain group to \mathbb{Z} or \mathbb{F}_2 respectively and are generating $C^i(T^2; \mathbb{Z} \text{ or } \mathbb{F}_2)$ for i = 0, 1, 2. Now let's look at the boundary maps.

$$d^{0}: C^{0} \to C^{1}$$
$$\varphi \mapsto d^{0}(\varphi)$$
$$d^{0}(\varphi)(a) = \varphi(d_{1}(a)) = \varphi(x - x) = 0$$
$$d^{0}(\varphi)(b) = \varphi(d_{1}(b)) = \varphi(x - x) = 0$$

From this we get the kernel and image of d^0 :

(1)
$$\ker(d^0) = \langle \varphi \rangle$$

 $(2) \qquad \qquad \operatorname{im}(d^0) = 0$

Solutions Sheet 3

Now we do the same for d^1 :

$$d^{1}: C^{1} \to C^{2}$$

$$\alpha \mapsto d^{1}(\alpha)$$

$$d^{1}(\alpha)(A) = \alpha(d_{2}(A)) = \alpha(b) - \alpha(a) + \alpha(b) + \alpha(a) = 0 - 1 + 0 + 1 = 0$$

$$d^{1}(\beta)(A) = \beta(d_{2}(A)) = \beta(b) - \beta(a) + \beta(b) + \beta(a) = 2\beta(b) = 2 \implies d^{1}(\beta) = 2\gamma$$

Here we get two different cases for coefficients in \mathbb{Z} and \mathbb{F}_2 .

$$\mathbb{Z} \qquad \mathbb{F}_2$$
(3)
$$\ker(d^1) = \langle \phi \rangle \qquad \ker(d^1) = \langle \phi, \beta \rangle$$

(3)
$$\ker(d^{1}) = \langle \alpha \rangle$$
 $\ker(d^{1}) = \langle \alpha, \beta \rangle$

(4)
$$\operatorname{im}(d^1) = \langle 2\gamma \rangle \qquad \operatorname{im}(d^1) = 0$$

Now let's do the same for d^2 :

$$d^{2}: C^{2} \to C^{3}$$
$$\gamma \mapsto d^{2}(\gamma)$$
$$d^{2}(\gamma)(0) = \gamma(d_{3}(0)) = 0$$

We get for both \mathbb{Z} and \mathbb{F}_2 that:

(5)
$$\ker(d^2) = \langle \gamma \rangle$$
$$\operatorname{im}(d^2) = 0$$

Now we combine all these equations to get the *i*-th cohomology with coefficient in \mathbb{Z} and \mathbb{F}_2 :

$$\mathbb{Z} \qquad \mathbb{F}_{2}$$

$$H^{0} \cong \operatorname{ker}(d^{0})_{\operatorname{im}(d^{-1})} \stackrel{(1)}{\cong} \qquad \mathbb{Z}_{0} = \mathbb{Z} \qquad \mathbb{F}_{2}_{0} = \mathbb{F}_{2}$$

$$H^{1} \cong \operatorname{ker}(d^{1})_{\operatorname{im}(d^{0})} \stackrel{(2),(3)}{\cong} \qquad \mathbb{Z}_{0} = \mathbb{Z} \qquad \mathbb{F}_{2}^{2}_{0} = \mathbb{F}_{2}^{2}$$

$$H^{2} \cong \operatorname{ker}(d^{2})_{\operatorname{im}(d^{1})} \stackrel{(4),(5)}{\cong} \qquad \mathbb{Z}_{2\mathbb{Z}} = \mathbb{F}_{2} \qquad \mathbb{F}_{2}_{0} = \mathbb{F}_{2}$$

Checking with UCT. Now let's check if this result is the same as in the UCT of cohomology. We check the following SES, where A is either \mathbb{Z} or \mathbb{F}_2 and C our chain complex of K^2 :

$$0 \to \operatorname{Ext}(H_{i-1}(C), A) \to H^i(C; A) \to \operatorname{Hom}(H_i(C), A) \to 0$$

Solutions Sheet 3

We have to check the following SES:

(6)
$$0 \to \operatorname{Ext}(H_{-1}(K^2), \mathbb{Z}) \to H^0(K^2; \mathbb{Z}) \to \operatorname{Hom}(H_0(K^2), \mathbb{Z}) \to 0$$

(7)
$$0 \to \operatorname{Ext}(H_0(K^2), \mathbb{Z}) \to H^1(K^2; \mathbb{Z}) \to \operatorname{Hom}(H_1(K^2), \mathbb{Z}) \to 0$$

(8)
$$0 \to \operatorname{Ext}(H_1(K^2), \mathbb{Z}) \to H^2(K^2; \mathbb{Z}) \to \operatorname{Hom}(H_2(K^2), \mathbb{Z}) \to 0$$

(9)
$$0 \to \operatorname{Ext}(H_{-1}(K^2), \mathbb{F}_2) \to H^0(K^2; \mathbb{F}_2) \to \operatorname{Hom}(H_0(K^2), \mathbb{F}_2) \to 0$$

(10)
$$0 \to \operatorname{Ext}(H_0(K^2), \mathbb{F}_2) \to H^1(K^2; \mathbb{F}_2) \to \operatorname{Hom}(H_1(K^2), \mathbb{F}_2) \to 0$$

(11)
$$0 \to \operatorname{Ext}(H_1(K^2), \mathbb{F}_2) \to H^2(K^2; \mathbb{F}_2) \to \operatorname{Hom}(H_2(K^2), \mathbb{F}_2) \to 0$$

From AlgTopo I we remember the homology groups of K^2 :

(12)
$$H_i \cong \begin{cases} \mathbb{Z} & i=0\\ \mathbb{Z} \oplus \mathbb{F}_2 & i=1\\ 0 & else \end{cases}$$

We know from Prop 8, that if A is free $Ext(A, B) \cong 0$.

0th cohomology. Therefore (6) and (9) with help of (12) becomes the following as desired:

(13)

$$(6): 0 \to H^{0}(K^{2}; \mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \to 0$$

$$\Rightarrow H^{0}(K^{2}; \mathbb{Z}) \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$$

$$(9): 0 \to H^{0}(K^{2}; \mathbb{F}_{2}) \to \operatorname{Hom}(\mathbb{Z}, \mathbb{F}_{2}) \to 0$$

(14)
$$\Rightarrow H^0(K^2; \mathbb{F}_2) \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{F}_2) \cong \mathbb{F}_2$$

1st cohomology. Similarly (7) and (10) with (12) and the fact that \mathbb{Z} is free turns into the following, as desired:

$$(7): 0 \to H^{1}(K^{2}; \mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{Z}) \to 0$$

$$\Rightarrow H^{1}(K^{2}; \mathbb{Z}) \cong \operatorname{Hom}(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{Z}) \cong \mathbb{Z}$$

$$(10): 0 \to H^{1}(K^{2}; \mathbb{F}_{2}) \to \operatorname{Hom}(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{F}_{2}) \to 0$$

$$\Rightarrow H^{1}(K^{2}; \mathbb{F}_{2}) \cong \operatorname{Hom}(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{F}_{2}) \stackrel{*}{\cong} \mathbb{F}_{2}^{2}$$

* is deduced from the fact that $\operatorname{Hom}(A\oplus B,C)\cong\operatorname{Hom}(A,C)\oplus\operatorname{Hom}(B,C)$ which in this case yields

$$\operatorname{Hom}(\mathbb{Z} \oplus \mathbb{F}_2, \mathbb{F}_2) \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{F}_2) \oplus \operatorname{Hom}(\mathbb{F}_2, \mathbb{F}_2) \cong \mathbb{F}_2 \oplus \mathbb{F}_2$$

Solutions Sheet 3

2nd cohomology. Now we need the fact that $\text{Ext}(A \oplus B, C) \cong \text{Ext}(A, C) \oplus \text{Ext}(B, C)$ from Prop 8. This turns (8) and (11) with help of (12) into:

$$(8): 0 \to \operatorname{Ext}(\mathbb{Z}, \mathbb{Z}) \oplus \operatorname{Ext}(\mathbb{F}_2, \mathbb{Z}) \to H^2(K^2; \mathbb{Z}) \to 0$$

$$(15) \quad \operatorname{Ext}(\mathbb{F}_2, \mathbb{Z}) \cong 0 \oplus \operatorname{Ext}(\mathbb{F}_2, \mathbb{Z}) \cong \operatorname{Ext}(\mathbb{Z}, \mathbb{Z}) \oplus \operatorname{Ext}(\mathbb{F}_2, \mathbb{Z}) \cong H^2(K^2; \mathbb{Z})$$

$$(11): 0 \to \operatorname{Ext}(\mathbb{Z}, \mathbb{F}_2) \oplus \operatorname{Ext}(\mathbb{F}_2, \mathbb{F}_2) \to H^2(K^2; \mathbb{F}_2) \to 0$$

(16)

 $\operatorname{Ext}(\mathbb{F}_2,\mathbb{F}_2) \cong 0 \oplus \operatorname{Ext}(\mathbb{F}_2,\mathbb{F}_2) \cong \operatorname{Ext}(\mathbb{Z},\mathbb{F}_2) \oplus \operatorname{Ext}(\mathbb{F}_2,\mathbb{F}_2) \cong H^2(K^2;\mathbb{F}_2)$

Now we want to calculate Ext for (15) and (16). We remember the definition of Ext from the lecture:

$$\operatorname{Ext}(M, N) \coloneqq H^1(\operatorname{Hom}(F^M, N))$$

Therefore we try to calculate the following:

(17)
$$\operatorname{Ext}(\mathbb{F}_2, \mathbb{Z}) = H^1(\operatorname{Hom}(F^{\mathbb{F}_2}, \mathbb{Z}))$$

Let $F^{\mathbb{F}_2} := 0 \to \mathbb{Z} \xrightarrow{\cdot^2} \mathbb{Z} \to 0$ be a free resolution of \mathbb{F}_2 . Then by definition $\operatorname{Hom}(F^{\mathbb{F}_2},\mathbb{Z})$ form the corresponding cochain complexes and we calculate $\operatorname{im}(d^0)$ and $\operatorname{ker}(d^1)$. Let σ, τ be an arbitrary element in C^0 , C^1 respectively. Let a, b be elements that were defined in part 1.

$$d^{0}: \quad C^{0} \to C^{1}$$

$$\sigma \mapsto d^{0}(\sigma)$$

$$d^{0}(\sigma)(b) = \sigma(d_{1}(b)) = \sigma(2b) = 2$$

$$d^{1}: \quad C^{1} \to C^{2}$$

$$\tau \mapsto d^{1}(\tau)$$

$$d^{1}(\tau)(0) = 0$$

Therefore we have that $\operatorname{im}(d^0) \cong 2\mathbb{Z}$ and $\operatorname{ker}(d^1) \cong \mathbb{Z}$. Now we have that

(18)
$$H^{1} \cong \overset{\operatorname{ker}(d^{1})}{\underset{\operatorname{im}(d^{0})}{\cong}} \cong \mathbb{Z}_{2\mathbb{Z}} \cong \mathbb{F}_{2}$$
$$\overset{(17)}{\cong} \operatorname{Ext}(\mathbb{F}_{2}, \mathbb{Z})$$

This is exactly the result we expected from our calculations from cellular cohomology.

Now onto (16) where we try to calculate the following:

(19)
$$\operatorname{Ext}(\mathbb{F}_2, \mathbb{F}_2) = H^1(\operatorname{Hom}(F^{\mathbb{F}_2}, \mathbb{F}_2))$$

We have that

 $\operatorname{Hom}(\mathbb{Z}, \mathbb{F}_2) \cong \mathbb{F}_2$

and

$$d^{0}: \quad C^{0} \to C^{1}$$

$$\sigma \mapsto d^{0}(\sigma)$$

$$d^{0}(\sigma)(b) = \sigma(d_{1}(b)) = \sigma(2b) = 2\sigma \equiv 0$$

$$d^{1}: \quad C^{1} \to C^{2}$$

$$\tau \mapsto d^{1}(\tau)$$

$$d^{1}(\tau)(0) = 0$$

Therefore we have that $\operatorname{im}(d^0) \cong 2\mathbb{F}_2 \cong 0$ and $\operatorname{ker}(d^1) \cong \mathbb{F}_2$, thus

(20)
$$H^{1} \cong \overset{\operatorname{ker}(d^{1})}{\underset{\operatorname{im}(d^{0})}{\cong}} \cong \overset{\mathbb{F}_{2}}{\underset{\operatorname{Ext}(\mathbb{F}_{2}, \mathbb{F}_{2})}{\overset{(19)}{\cong}} \operatorname{Ext}(\mathbb{F}_{2}, \mathbb{F}_{2})$$

Therefore all our results align with UCT and we are done.

c).

Cellular cohomology. We know from AlgTopo I that $\mathbb{R}P^n$ has the following cellular homology:

$$n - \text{cell}: c_n$$

$$n - 1 - \text{cell}: c_{n-1}$$

$$\vdots \vdots$$

$$0 - \text{cell}: c_0$$

With the following boundary maps:

(21)
$$d_i(c_i) = \begin{cases} 0 & \text{i odd} \\ 2c_{i-1} & \text{i even} \end{cases}$$

Therefore we construct the following cellular cohomology:

$$n - \operatorname{cell}: \quad \varphi_n : c_n \mapsto 1$$

$$n - 1 - \operatorname{cell}: \quad \varphi_{n-1} : c_{n-1} \mapsto 1$$

$$\vdots \quad \vdots$$

$$0 - \operatorname{cell}: \quad \varphi_0 : c_0 \mapsto 1$$

Now we look at the boundary maps in cohomology:

$$d^{i}(\varphi_{i})(c_{i+1}) = \varphi_{i}(d_{i+1}(c_{i+1})) \stackrel{(21)}{=} \begin{cases} 2\varphi_{i} & \text{i odd} \\ 0 & \text{i even} \end{cases}$$

Solutions Sheet 3

This gives us the kernel and the image:

$$\mathbb{Z} \qquad \mathbb{F}_{2}$$
(22)
$$\ker(d^{i}) = \begin{cases} 0 & \text{i odd} \\ \langle \varphi_{i} \rangle & \text{i even} \end{cases} \qquad \ker(d^{i}) = \begin{cases} \langle \varphi_{i} \rangle & \text{i odd} \\ \langle \varphi_{i} \rangle & \text{i even} \end{cases}$$
(23)
$$\operatorname{im}(d^{i}) = \begin{cases} \langle 2\varphi_{i} \rangle & \text{i odd} \\ 0 & \text{i even} \end{cases} \qquad \operatorname{im}(d^{i}) = \begin{cases} 0 & \text{i odd} \\ 0 & \text{i even} \end{cases}$$

Now we can put this together to get the cohomology groups with coefficient in A which is \mathbb{Z} or \mathbb{F}_2 respectively:¹

$$H^{i}(\mathbb{R}P^{n}; A) \cong \ker(d^{i})_{im(d^{i-1})} \stackrel{(22),(23)}{\cong} \begin{cases} \mathbb{Z}: & \mathbb{F}_{2}: \\ \mathbb{Z}_{0} \cong \mathbb{Z} & \mathbb{F}_{2}_{0} \cong \mathbb{F}_{2} & i = n \text{ with } n \text{ odd } \text{ or } i = 0 \\ 0_{0} \cong 0 & \mathbb{F}_{2}_{0} \cong \mathbb{F}_{2} & 0 < i < n, i \text{ odd} \\ \mathbb{Z}_{2\mathbb{Z}} \cong \mathbb{F}_{2} & \mathbb{F}_{2}_{0} \cong \mathbb{F}_{2} & 0 < i \leq n, i \text{ even} \end{cases}$$

Checking with UCT. Now we have to check if those results are in alignment with UCT. Again we have that A is either \mathbb{Z} or \mathbb{F}_2 and C our chain complex of $\mathbb{R}P^n$

$$0 \to \operatorname{Ext}(H_{i-1}(C), A) \to H^i(C; A) \to \operatorname{Hom}(H_i(C), A) \to 0$$

We remember the homology group of $\mathbb{R}P^2$ from AlgTopo I:

(24)
$$H_i(\mathbb{R}P^n) \cong \begin{cases} \mathbb{Z} & i=0, i=n \text{ and } n \text{ odd} \\ \mathbb{F}_2 & i \text{ odd and } 0 < i < n \\ 0 & \text{else} \end{cases}$$

We get now the following different cases for the SES with help of Prop 8:

(25)
$$0 \to H^i(\mathbb{R}P^n; A) \to \operatorname{Hom}(\mathbb{Z}, A) \to 0 \quad i = 0, i = n \text{ and } n \text{ odd}$$

(26)
$$0 \to H^i(\mathbb{R}P^n; A) \to \operatorname{Hom}(\mathbb{F}_2, A) \to 0$$
 i odd and $0 < i < n$

(27)
$$0 \to \operatorname{Ext}(\mathbb{F}_n, A) \to H^i(\mathbb{R}P^2; A) \to 0$$
 i even and $0 < i < n$

We have already calculated in (13) and (14) what $\operatorname{Hom}(\mathbb{Z}, A)$ is for both cases. Therefore (25) aligns with UCT.

We have calculated $\text{Ext}(\mathbb{F}_n, A)$ in (18) and (20) for both cases. Therefore (27) aligns with UCT as well.

Now let's look at both cases for (26). In the case of $A = \mathbb{Z}$ we have that $\operatorname{Hom}(\mathbb{F}_2, \mathbb{Z}) \cong 0$ and when $A = \mathbb{F}_2$ we have $\operatorname{Hom}(\mathbb{F}_2, \mathbb{F}_2) \cong \mathbb{F}_2$, yielding the desired result for all cases and we are done.

¹Correction 27 July 2024: Previously, the next line said $H^i(K^2; A)$.

a).

Cellular homology. We view $T^n = {I^n} / \sim$ as the *n*-dim cube with the equivalence relation \sim which identifies opposite facets of the boundary.

We construct our cells similarly to a hypercube without identifying opposite facets. As Wikipedia stated, we imagine the hypercube in a Cartesian coordinate system. Then there exists for every *i*-dim cell *i* coordinate axes that are parallel to this element. This results in $\binom{n}{k}$ elements. Differently to Wikipedia, we don't have to multiply by 2^{n-i} for the total amount of cells, because the parallel cells on the other side of the hypercube are identified.²

So we have $\binom{n}{i}$ *i*-cells for each *i*-dim cochain group C_i . We call them c_k^i for $i = 0, \ldots, n$ and $k = 0, \ldots, \binom{n}{i}$. Now we compute the boundary maps d_i .

Quick reminder how cellular homology works. We look at embeddings f of the n-dimensional ball B^n and its boundary ∂B^n into the $K^{(n)}$ and $K^{(n-1)}$ skeletons respectively, where these maps are injective on the interior of B^n but not necessarily on the boundary. Then we took the quotient space $K^{(n)}/K^{(n-1)} \simeq \bigvee S^n$ and looked at the projection onto one of those spheres. This projection we called p^3 . In this exercise we will use the notation from AlgTopo I and the solution of exercise 3 of the exercise sheet 7.

For d_i we consider any of the maps $p_{c_k^{i-1}}f_{\partial c_m^i}: \partial I^i \to S^{i-1}$. We note that there are two opposite facets of I^i in whose interiors this map restricts to a homeomorphism. The map collapses the rest of ∂I^i to a point in S^{i-1} . The degree of $p_{c_k^{i-1}}f_{\partial c_m^i}$ is therefore the sum of the two local degrees at any two points in q_1, q_2 in the two first-mentioned facets which get mapped to the same point in T^n . Now we note that the restriction of $p_{c_k^{i-1}}f_{\partial c_m^i}$ to these faces are obtained from one another by precomposing with an orientation-reversing map. Therefore the sum of these local degrees vanishes. Therefore we have that $\deg(d_i) = 0$ for all i.⁴

For the cellular cohomology we take the cochains $C^i := \text{Hom}(C_i, A)$, for A either \mathbb{Z} or \mathbb{F}_2 . We again have $\binom{n}{i}$ *i*-cochains for each *i*-dim cochain group C^i .

Now we want to calculate the coboundary maps d^i . We know that the coboundary maps are the transpose of the boundary maps and since the boundary maps are all 0, we have that $d^i = 0$ for all *i* as well.

We have that $\ker(d^i) \cong A^{\binom{n}{i}}$ and $\operatorname{im}(d^i) \cong 0$ for all *i*. We immediately get the cohomology groups:

$$H^{i}(T^{n};\mathbb{Z}) \cong \overset{\operatorname{ker}(d^{i})}{\underset{\operatorname{im}(d^{i-1})}{\cong}} \cong \overset{\mathbb{Z}\binom{n}{i}}{\underset{0}{\cong}}_{0} \cong \mathbb{Z}\binom{n}{i}$$
$$H^{i}(T^{n};\mathbb{F}_{2}) \cong \overset{\operatorname{ker}(d^{i})}{\underset{\operatorname{im}(d^{i-1})}{\cong}} \cong \overset{\mathbb{F}_{2}^{\binom{n}{i}}}{\underset{0}{\cong}}_{0} \cong \mathbb{F}_{2}^{\binom{n}{i}}$$

²Wikipedia: Hyperwüfel

 $^{^{3}}$ A detailed explanation of this is found in the lecture notes of Lecture 25 AlgTopo I starting at page 6.

⁴Generalized version of proof for exercise 3 on exercise sheet 7 in AlgTopo I

Checking with UCT. Now we check if this result aligns with UCT for cohomology: (28) $0 \to \text{Ext}(H_{i-1}(C), A) \to H^i(C; A) \to \text{Hom}(H_i(C), A) \to 0$

We know that $H_i(T^n) = \mathbb{Z}^{\binom{n}{i}}$ from AlgTopo I. This is just a finite number of copies of \mathbb{Z} and therefore free. We know from Prop 8, that if A is free $\text{Ext}(A, B) \cong 0$. We note that $\text{Hom}(\mathbb{Z}^i, \mathbb{Z}) \cong \mathbb{Z}^i$ and $\text{Hom}(\mathbb{Z}^i, \mathbb{F}_2) \cong \mathbb{F}_2^i$. Therefore (28) in our case becomes:

$$0 \to H^{i}(T^{n}; A) \to \operatorname{Hom}(\mathbb{Z}^{\binom{n}{i}}, A) \to 0$$

$$\Rightarrow 0 \to H^{i}(T^{n}; A) \to A^{\binom{n}{i}} \to 0$$

$$\Rightarrow H^{i}(T^{n}; \mathbb{Z}) \cong \mathbb{Z}^{\binom{n}{i}} \text{ and}$$

$$H^{i}(T^{n}; \mathbb{F}_{2}) \cong \mathbb{F}_{2}^{\binom{n}{i}}$$

This is exactly what we expect from cellular cohomology and we are done.

Problem 9

no solutions for starred problems