Dr. Lukas Lewark ETH Zürich

Algebraic Topology II

Problem 1

Leon Dahlmeier

We want to show $\operatorname{Tor}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} / g \mathbb{Z}$ for $g:=\operatorname{gcd}(m, n)$.
$0 \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{d_{0}} \mathbb{Z} / n \mathbb{Z} \rightarrow 0$ is a free resolution of $\mathbb{Z} / n \mathbb{Z}$ called F. Where \xrightarrow{n} is multiplication with n and d_{0} the projection. Tensoring with $\mathbb{Z} / m \mathbb{Z}$ yields:

$$
0 \rightarrow \mathbb{Z} \otimes \mathbb{Z} / m \mathbb{Z} \xrightarrow{n \otimes i d_{\mathbb{Z} / m \mathbb{Z}}} \mathbb{Z} \otimes \mathbb{Z} / m \mathbb{Z} \xrightarrow{d_{0} \otimes i d_{\mathbb{Z} / m \mathbb{Z}}} \mathbb{Z} / n \mathbb{Z} \rightarrow 0
$$

After simplifying everything we already know about the Tensor product:

$$
0 \xrightarrow{0} \mathbb{Z} / m \mathbb{Z} \xrightarrow{n} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d_{0}} \mathbb{Z} / n \mathbb{Z} \rightarrow 0
$$

Therefore $\operatorname{Tor}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})=H_{1}\left(F^{\mathbb{Z} / n \mathbb{Z}}, \mathbb{Z} / m \mathbb{Z}\right)=\operatorname{ker}(\mathbb{Z} / m \mathbb{Z} \xrightarrow{n} \mathbb{Z} / m \mathbb{Z})$
Finally, let us take a closer look at: $\operatorname{ker}(\mathbb{Z} / m \mathbb{Z} \xrightarrow{n} \mathbb{Z} / m \mathbb{Z})$. Remember $g=$ $\operatorname{gcd}(m, n)$ and let u and k be such that $u \cdot g=m$ and $k \cdot g=n$. Since $n \cdot u=$ $k \cdot u \cdot g=k \cdot m \equiv 0(\bmod m)$, we have $\operatorname{im}(\mathbb{Z} / m \mathbb{Z} \xrightarrow{n} \mathbb{Z} / m \mathbb{Z}) \cong \mathbb{Z} / u \mathbb{Z}$. We conclude using the isomorphism theorem:

$$
\operatorname{Tor}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \cong \frac{\mathbb{Z} / m \mathbb{Z}}{\mathbb{Z} / u \mathbb{Z}} \cong \mathbb{Z} / g \mathbb{Z}
$$

Problem 2

Leon Dahlmeier

a). Since $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(T(A), T(B))$ let us assume without loss of generality that A and B are torsion. Let us define $C:=\bigoplus_{0 \neq b \in B} \mathbb{Z} / \operatorname{ord}(b) \mathbb{Z}$ and $f: C \rightarrow B$ by sending $[1] \in \mathbb{Z} / \operatorname{ord}(b) \mathbb{Z}$ to b.
The abelian group A together with the short exact sequence:

$$
0 \rightarrow \operatorname{ker}(f) \rightarrow C \xrightarrow{f} B \rightarrow 0
$$

give rise to the following long exact sequence:
$0 \rightarrow \operatorname{Tor}(A, \operatorname{ker}(f)) \xrightarrow{g} \operatorname{Tor}(A, C) \rightarrow \operatorname{Tor}(A, B) \rightarrow A \otimes \operatorname{ker}(f) \xrightarrow{h} A \otimes C \rightarrow A \otimes B \rightarrow 0$
from which we can extract the short exact sequence:

$$
0 \rightarrow \operatorname{coker}(g) \xrightarrow{\alpha} \operatorname{Tor}(A, B) \xrightarrow{\beta} \operatorname{ker}(h) \rightarrow 0
$$

But by 4.14 .

$$
\operatorname{Tor}(A, C)=\bigoplus_{0 \neq b \in B} \operatorname{Tor}(A, \mathbb{Z} / \operatorname{ord}(b) \mathbb{Z})=\bigoplus_{0 \neq b \in B} \operatorname{ker}(A \xrightarrow{\cdot \operatorname{ord}(b)} A)
$$

which implies that $\operatorname{Tor}(A, C)$ as a subgroup of a torsion group is torsion. Also $A \otimes \operatorname{ker}(f)$ is torsion since we assumed A to be. Which then means that coker (g) and $\operatorname{ker}(h)$ are, meaning $\operatorname{Tor}(A, B)$ is:
For $x \in \operatorname{Tor}(A, B) \exists n \in \mathbb{N}$ s.t. $n \beta(x)=\beta(x n)=0 \Rightarrow x n \in \operatorname{ker}(\beta)=\operatorname{im}(\alpha)$. Hence, $\exists y \in \operatorname{coker}(g)$ s.t. $\alpha(y)=x n$ but $\exists m \in \mathbb{N}$ s.t. $y m=0$. Meaning $(x n) m=\alpha(y) m=\alpha(y m)=\alpha(0)=0$, which concludes the proof.
b). The long exact sequence for $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ and the abelian group $T(A)$ is:

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}(T(A), \mathbb{Z}) \rightarrow \operatorname{Tor}(T(A), \mathbb{Q}) \rightarrow \operatorname{Tor}(T(A), \mathbb{Q} / \mathbb{Z}) \rightarrow \\
& T(A) \otimes \mathbb{Z} \rightarrow T(A) \otimes \mathbb{Q} \rightarrow T(A) \otimes \mathbb{Q} / \mathbb{Z} \rightarrow 0 .
\end{aligned}
$$

\mathbb{Z} and \mathbb{Q} are torsion-free and $\mathbb{Z} \otimes T(A)$ is isomorphic to $T(A)$. Further for $a \otimes q \in T(A) \otimes \mathbb{Q}$ we have: $a \in T(A)$ meaning there is an $n \in \mathbb{Z} \backslash 0$ s.t. $a \cdot n=0$ i.e. $a \otimes q=n a \otimes \frac{q}{n}=0$ implying $T(A) \otimes \mathbb{Q} \cong 0$. Using these isomorphisms we can simplify to:

$$
0 \rightarrow 0 \rightarrow 0 \rightarrow \operatorname{Tor}(T(A), \mathbb{Q} / \mathbb{Z}) \xrightarrow{\phi} T(A) \rightarrow T(A) \otimes \mathbb{Q} \rightarrow T(A) \otimes \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

Which means that ϕ an isomorphism.

Problem 3

Aparna Jeyakumar

a). (a) From the Universal Coefficient Theorem, we have the following commutative diagram

Since $-\otimes 1_{M}$ and $\operatorname{Tor}(-, M)$ are additive functors between the category of abelian groups, they take isomorphisms to isomorphisms. In particular, $f_{*} \otimes 1_{M}$ and $\operatorname{Tor}\left(f_{*}, 1_{M}\right)$ are isomorphisms. Now, using the five lemma, we get that the vertical map in the middle $f_{*}: H_{n}(X ; M) \rightarrow H_{n}(Y ; M)$ is an isomorphism.
b). To show that $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ is an isomorphism, it is enough to show that $H_{n}(M c(f))=0$ for all n where $M c(f)$ is the mapping cone complex of the map f. This is due to the following result from Homological Algebra:
If $f: X_{\bullet} \rightarrow Y_{\bullet}$ is a chain map of complexes then, the induced map on the homology, $f_{*}: H_{n}\left(X_{\bullet}\right) \rightarrow H_{n}\left(Y_{\bullet}\right)$ is an isomorphism iff $H_{n}(M c(f))=0$ for all n , where $M c(f)$ is the mapping cone complex of the map f.

We have that $f_{*}: H_{n}(X ; \mathbb{Q}) \rightarrow H_{n}(Y, \mathbb{Q})$ is an isomorphism which implies that $H_{n}\left(M c\left(f \otimes 1_{\mathbb{Q}}\right)\right)=0$ for all n. Since \mathbb{Q} is torsion-free, $\operatorname{Tor}\left(H_{n}(M c(f)), \mathbb{Q}\right)=0$ and from the UCT for $M c(f)$, we get that

$$
H_{n}(M c(f)) \otimes \mathbb{Q} \cong H_{n}(M c(f) ; \mathbb{Q}) \cong H_{n}\left(M c\left(f \otimes 1_{\mathbb{Q}}\right)\right) \cong 0
$$

(The second isomorphism is due to the distributive property of the tensor product over direct sums).
Similarly, we have $H_{n}\left(M c\left(f \otimes 1_{\mathbb{Z}_{p}}\right)\right)=0$ for all p prime, for all n. Using the UCT again, we get that

$$
\left(H_{n}(M c(f)) \otimes \mathbb{Z}_{p}\right) \oplus \operatorname{Tor}\left(H_{n-1}(M c(f)), \mathbb{Z}_{p}\right) \cong 0
$$

which implies that both the terms are 0 and in particular, $\operatorname{Tor}\left(H_{n}(M c(f)), \mathbb{Z}_{p}\right)=0$ for all p prime and for all n. Setting $A=H_{n}(M c(f))$, it is now enough to show that the following claim is true.

Claim : If A is an abelian group such that $A \otimes \mathbb{Q}=0$ and $\operatorname{Tor}\left(A, \mathbb{Z}_{p}\right)=0$ for all p prime, then $A=0$.
Proof: Suppose $A \otimes \mathbb{Q}=0$ and $\operatorname{Tor}\left(A, \mathbb{Z}_{p}\right)=0$ for all p prime. Consider the short exact sequences

$$
\begin{gathered}
0 \longrightarrow \mathbb{Z} \xrightarrow{p} \mathbb{Z} \longrightarrow \mathbb{Z}_{p} \longrightarrow 0 \\
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q} / \mathbb{Z} \longrightarrow 0
\end{gathered}
$$

Then, we get the following LESs,

$$
\begin{gathered}
0 \rightarrow \operatorname{Tor}(A, \mathbb{Z}) \rightarrow \operatorname{Tor}(A, \mathbb{Z}) \rightarrow \operatorname{Tor}\left(A, \mathbb{Z}_{p}\right) \rightarrow A \otimes \mathbb{Z} \xrightarrow{p p} A \otimes \mathbb{Z} \rightarrow A \otimes \mathbb{Z}_{p} \rightarrow 0 \\
0 \rightarrow \operatorname{Tor}(A, \mathbb{Z}) \rightarrow \operatorname{Tor}(A, \mathbb{Q}) \rightarrow \operatorname{Tor}(A, \mathbb{Q} / \mathbb{Z}) \rightarrow A \otimes \mathbb{Z} \rightarrow A \otimes \mathbb{Q} \rightarrow A \otimes Q / \mathbb{Z} \rightarrow 0
\end{gathered}
$$

The first LES reduces to

$$
0 \longrightarrow A \xrightarrow{. p} A \longrightarrow A \otimes \mathbb{Z}_{p} \longrightarrow 0
$$

The injectivity of the map $A \xrightarrow{p} A$ for all p implies that A is a torsion-free group. Then, $\operatorname{Tor}(A, \mathbb{Q} / \mathbb{Z}) \cong 0$ and the second LES reduces to $0 \rightarrow A \rightarrow 0$ and so $A=0$.

Exercise 4．（Sheet 3）
（a）Claim For any group G ，we have $\operatorname{Tor}(G, Q)=0$ ． Δ For any free resolution $0 \rightarrow F_{1} \longrightarrow F_{0} \rightarrow G \longrightarrow 0$ of G ．
$F_{1} \otimes Q \longrightarrow F_{0} \otimes(Q$ is a monomorplism．
\Rightarrow By LICT，$O \rightarrow H_{n}(X ; \mathbb{Z}) \otimes \mathbb{Q} \rightarrow H_{n}(X ; \mathbb{Q}) \rightarrow \operatorname{Tor}\left(H_{n}(X ; \mathbb{Z}), \mathbb{Q}\right) \rightarrow 0$

$$
\Longrightarrow H_{n}(X ; \mathbb{2}) \otimes \mathbb{Q} \cong H_{n}(X ; \mathbb{Q}) .
$$

（6）Easily follows from LCTT．
Since $H_{n}(X ; 飞)$ is finetely generated，

$$
\begin{aligned}
& H_{n}(X ; \mathbb{Z}) \cong \mathbb{Z}^{\oplus k} \oplus\left(\underset{\substack{i=\text { crime } \\
i, 2 i}}{ } \mathbb{Z} /\left(q^{i \cdot}\right)\right) \\
& \Longrightarrow H_{n}(X ; 飞) \otimes \mathbb{F}_{p}=\left(\mathbb{Z}^{\oplus k} \oplus\left(\underset{\substack{q=p^{\text {incl }} \\
i, i}}{\mathbb{Z}} /\left(q^{i}\right)\right)\right) \otimes \mathbb{F}_{p} \cong \\
& \begin{array}{l}
\cong\left(\mathbb{Z} \otimes \mathbb{F}_{p}\right)^{\oplus k} \oplus\left(\underset{\substack{q ; p_{j i m}}}{ }\left[Z /\left(q^{i_{j}}\right) \otimes \mathbb{F}_{p}\right]\right) \\
\mathbb{F}_{p}=0
\end{array} \\
& \text { if } \quad q \neq p \quad 2 /\left(q^{i}\right) \otimes \mathbb{F}_{p}=0
\end{aligned}
$$

$\begin{aligned} & \text { for each } 2 /\left(j^{(i)}\right) \\ & \text { in } H_{m}\left(X, F_{p}\right) \text { ．}\end{aligned}$

Finally， $\mathbb{Z} / 6_{p}{ }^{i} \otimes \mathbb{F}_{p} \cong \mathbb{F}_{p}$ ．

$$
\begin{aligned}
& \left.H_{n-1}(X, \mathbb{Z}) \cong \mathbb{Z}^{\oplus k} \oplus \underset{\substack{q=a \\
i=c}}{\oplus} \mathbb{Z} /\left(q^{i j}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\bigoplus_{\substack{q=e r i m e d \\
i=\geqslant 1}} \mathbb{Z} \operatorname{lgcd}\left(q^{i}, p\right) \cong \bigoplus \mathbb{F}_{p} \\
& Z\left(p^{\prime}\right) \text { in } H_{4}(X ; Z)
\end{aligned}
$$

Problem 5

Naomi Rosenberg

We start by constructing a free resolution of $\mathbb{Z} / 2$ as a $\mathbb{Z} / 4$-module. To that extent, note that $\mathbb{Z} / 2$ can be interpreted as $2+4 \mathbb{Z}$, which is a submodule of $\mathbb{Z} / 4$. Consider the following sequence:

$$
\ldots \longrightarrow \mathbb{Z} / 4 \xrightarrow{\cdot 2} \mathbb{Z} / 4 \xrightarrow{\cdot 2} \mathbb{Z} / 4 \xrightarrow{\text { proi }} \mathbb{Z} / 2 \longrightarrow 0 .
$$

Note that $\operatorname{ker}(\cdot 2)=2+4 \mathbb{Z}=\operatorname{im}(\cdot 2)$ and $\operatorname{ker}(\operatorname{proj})=2+4 \mathbb{Z}=\operatorname{im}(\cdot 2)$. Consequently, the sequence defined above is a long exact sequence and therefore defines a free resolution F of the $\mathbb{Z} / 4$-module $\mathbb{Z} / 2$.

We thus get the following deleted free resolution:

$$
F^{\mathbb{Z} / 2}=\ldots \longrightarrow \mathbb{Z} / 4 \xrightarrow{\cdot 2} \mathbb{Z} / 4 \xrightarrow{\cdot 2} \mathbb{Z} / 4 \longrightarrow 0 .
$$

This enables us to compute $\operatorname{Tor}_{n}^{\mathbb{Z} / 4}(\mathbb{Z} / 2, \mathbb{Z} / 2)$. By plugging into the definition, we obtain:

$$
\operatorname{Tor}_{n}^{\mathbb{Z} / 4}(\mathbb{Z} / 2, \mathbb{Z} / 2)=\mathrm{H}_{n}\left(F^{\mathbb{Z} / 2} ; \mathbb{Z} / 2\right)=\mathrm{H}_{n}\left(F^{\mathbb{Z} / 2} \otimes \mathbb{Z} / 2\right)
$$

So in order to determine $\operatorname{Tor}_{n}^{\mathbb{Z} / 4}(\mathbb{Z} / 2, \mathbb{Z} / 2)$, it is sufficient to consider the long exact sequence

$$
F^{\mathbb{Z} / 2} \otimes \mathbb{Z} / 2=\ldots \longrightarrow \mathbb{Z} / 4 \otimes \mathbb{Z} / 2 \longrightarrow \mathbb{Z} / 4 \otimes \mathbb{Z} / 2 \longrightarrow \ldots \longrightarrow \mathbb{Z} / 4 \otimes \mathbb{Z} / 2 \longrightarrow 0
$$

In the sequence above, the homomorphisms are given by $(\cdot 2) \otimes \mathrm{id}_{\mathbb{Z} / 2}$. Notice that by Problem Sheet 1 , Problem 1, it holds that $\mathbb{Z} / 4 \otimes \mathbb{Z} / 2 \cong \mathbb{Z} / \operatorname{gcd}(2,4) \cong \mathbb{Z} / 2$ and the homomorphism is precisely the zero map. Consequently, $\mathrm{H}_{n}\left(F^{\mathbb{Z} / 2} \otimes \mathbb{Z} / 2\right) \cong$ $\operatorname{ker}(\cdot 0) / \operatorname{im}(\cdot 0) \cong(\mathbb{Z} / 2) / 0 \cong \mathbb{Z} / 2$ for all $n \geq 0$.
By the above, this yields

$$
\operatorname{Tor}_{n}^{\mathbb{Z} / 4}(\mathbb{Z} / 2, \mathbb{Z} / 2) \cong \mathbb{Z} / 2
$$

for all $n \geq 0$.
Now let's calculate $\operatorname{Ext}_{\mathbb{Z} / 4}^{n}(\mathbb{Z} / 2, \mathbb{Z} / 2)$. By definition, it holds that

$$
\operatorname{Ext}_{\mathbb{Z} / 4}^{n}(\mathbb{Z} / 2, \mathbb{Z} / 2)=\mathrm{H}^{n}\left(\operatorname{Hom}\left(F^{\mathbb{Z} / 2}, \mathbb{Z} / 2\right)\right),
$$

where

$$
\operatorname{Hom}\left(F^{\mathbb{Z} / 2}, \mathbb{Z} / 2\right)=\ldots \longleftarrow \operatorname{Hom}(\mathbb{Z} / 4, \mathbb{Z} / 2) \longleftarrow \ldots \longleftarrow \operatorname{Hom}(\mathbb{Z} / 4, \mathbb{Z} / 2) \longleftarrow 0
$$

Notice that $\operatorname{Hom}(\mathbb{Z} / 4, \mathbb{Z} / 2) \cong \mathbb{Z} / 2$ since to define a homomorphism from $\mathbb{Z} / 4$ to $\mathbb{Z} / 2$, a generator of $\mathbb{Z} / 4$ can either be mapped to $0+\mathbb{Z} / 2$ or to $1+\mathbb{Z} / 2$. The homomorphisms in the long exact sequence are given by the dual of multiplication by 2 , which is the zero map in the depicted case. Hence, we obtain
$\mathrm{H}^{n}\left(\operatorname{Hom}\left(F^{\mathbb{Z} / 2}, \mathbb{Z} / 2\right)\right) \cong \operatorname{ker}(\cdot 0) / \operatorname{im}(\cdot 0) \cong(\mathbb{Z} / 2) / 0 \cong \mathbb{Z} / 2$ for all $n \geq 0$. This implies that

$$
\operatorname{Ext}_{\mathbb{Z} / 4}^{n}(\mathbb{Z} / 2, \mathbb{Z} / 2) \cong \mathbb{Z} / 2
$$

for all $n \geq 0$.

Problem 6

Maria Morariu

a). Let p denote the given covering of S^{1}. We start by showing that $\tilde{\sigma}(1)-\tilde{\sigma}(0)$ does not depend on the choice of the lift $\tilde{\sigma}$. Let $\bar{\sigma}:[0,1] \rightarrow \mathbb{R}$ be a further lift of σ. Define $\bar{\sigma}^{\prime}:[0,1] \rightarrow \mathbb{R}, \bar{\sigma}^{\prime}(t)=\tilde{\sigma}(t)+\bar{\sigma}(0)-\tilde{\sigma}(0)$. This map is continuous with $\bar{\sigma}^{\prime}(0)=\bar{\sigma}(0)$ and $e^{2 \pi i \bar{\sigma}^{\prime}(t)}=e^{2 \pi i \tilde{\sigma}(t)} e^{2 \pi i \bar{\sigma}(0)}\left(e^{2 \pi i \tilde{\sigma}(0)}\right)^{-1}=\sigma(t) \sigma(0) \sigma(0)^{-1}=\sigma(t)$, so $\bar{\sigma}^{\prime}$ is a lift of σ with $\bar{\sigma}^{\prime}(0)=\bar{\sigma}(0)$. By the uniqueness in the lifting property of covers, it follows $\bar{\sigma}^{\prime}=\bar{\sigma}$ and in particular $\bar{\sigma}(1)=\bar{\sigma}^{\prime}(1)=\tilde{\sigma}(1)+\bar{\sigma}(0)-\tilde{\sigma}(0)$ and thus $\bar{\sigma}(1)-\bar{\sigma}(0)=\tilde{\sigma}(1)-\tilde{\sigma}(0)$. Therefore, $\tilde{\sigma}(1)-\tilde{\sigma}(0)$ does not depend on the choice of the lift $\tilde{\sigma}$ and we can define the map $\phi: C_{1}\left(S^{1}\right) \rightarrow \mathbb{R}$ as the linear map with $\phi(\sigma)=\tilde{\sigma}(1)-\tilde{\sigma}(0)$ for any 1 -simplex σ. By defintion, this is a 1 -cochain of S^{1} with coefficients in \mathbb{R}.
Let us show that ϕ is actually a 1 -cocycle. By Remark 5 in the lecture, this is the same as showing that ϕ is 0 on 1-boundaries. Let $\sigma: \Delta^{2} \rightarrow S^{1}$ be a singular 2-simplex. We show that $\phi(d \sigma)=0$. By definition $d \sigma=\left.\sigma\right|_{[1,2]}-\left.\sigma\right|_{[0,2]}+\left.\sigma\right|_{[0,1]}$. Since Δ^{2} is simply connected, the lifting property of covers implies that there exists a lift $\tilde{\sigma}: \Delta^{2} \rightarrow \mathbb{R}$ such that $p \circ \tilde{\sigma}=\sigma$. Then $\left.\tilde{\sigma}\right|_{[1,2]},\left.\tilde{\sigma}\right|_{[0,2]},\left.\tilde{\sigma}\right|_{[0,1]}$ are lifts of $\left.\sigma\right|_{[1,2]},\left.\sigma\right|_{[0,2]},\left.\sigma\right|_{[0,1]}$. Hence, we have

$$
\begin{aligned}
\phi(d \sigma) & =\phi\left(\left.\sigma\right|_{[1,2]}\right)-\phi\left(\left.\sigma\right|_{[0,2]}\right)+\phi\left(\left.\sigma\right|_{[0,1]}\right) \\
& =\left.\tilde{\sigma}\right|_{[1,2]}(1)-\left.\tilde{\sigma}\right|_{[1,2]}(0)-\left(\left.\tilde{\sigma}\right|_{[0,2]}(1)-\left.\tilde{\sigma}\right|_{[0,2]}(0)\right)+\left.\tilde{\sigma}\right|_{[0,1]}(1)-\left.\tilde{\sigma}\right|_{[0,1]}(0) \\
& =\tilde{\sigma}(2)-\tilde{\sigma}(1)-\tilde{\sigma}(2)+\tilde{\sigma}(0)+\tilde{\sigma}(1)-\tilde{\sigma}(0)=0 .
\end{aligned}
$$

Since all 1-boundaries can be written as finite sums of such $d \sigma$, it follows that ϕ is zero on 1-boundaries, so ϕ is a 1 -cocycle.
Lastly, we show that ϕ generates $\mathrm{H}^{1}\left(S^{1}, \mathbb{R}\right)$. Note that $\mathrm{H}_{0}\left(S^{1}\right) \cong \mathbb{Z}$ and it is in particular free, so $\operatorname{Ext}\left(\mathrm{H}_{0}\left(S^{1}\right), \mathbb{R}\right) \cong 0$ and by the universal coefficient theorem for cohomology, it follows that evaluation map ev: $\mathrm{H}^{1}(X ; \mathbb{R}) \rightarrow \operatorname{Hom}\left(\mathrm{H}_{1}\left(S^{1}\right), \mathbb{R}\right),[\psi] \mapsto \psi$ is an isomorphism. Also, $\mathrm{H}_{1}\left(S^{1}\right) \cong \mathbb{Z}$, so we have a natural isomorphism $\operatorname{Hom}\left(\mathrm{H}_{1}\left(S^{1}\right), \mathbb{R}\right) \rightarrow \mathbb{R}, \psi \mapsto \psi([\sigma])$, where $\sigma:[0,1] \rightarrow S^{1}, t \mapsto e^{2 \pi i t}$. Let us note that $\tilde{\sigma}:[0,1] \rightarrow \mathbb{R}, t \mapsto t$ is a lift of σ, so $\phi(\sigma)=\tilde{\sigma}(1)-\tilde{\sigma}(0)=1-0=1$, which is a generator for \mathbb{R}, so $[\phi]$ is a generator for $\mathrm{H}^{1}\left(S^{1}, \mathbb{R}\right)$.
b). Again, we start by showing that for any path $\sigma:[0,1] \rightarrow S^{1}$ and any lift $\tilde{\sigma}$ of σ, the expression $\lfloor\tilde{\sigma}(1)\rfloor-\lfloor\tilde{\sigma}(0)\rfloor$ does not depend on the choice of the lift. Let $\tilde{\sigma}$ and $\bar{\sigma}$ be two lifts of σ. In a), we have seen that $\bar{\sigma}(1)-\bar{\sigma}(0)=\tilde{\sigma}(1)-\tilde{\sigma}(0)$ and thus $\tilde{\sigma}(1)-\bar{\sigma}(1)=\tilde{\sigma}(0)-\bar{\sigma}(0)$. For any $t \in[0,1]$, we have $e^{2 \pi i \tilde{\sigma}(t)}=\sigma(t) e^{2 \pi i \bar{\sigma}(t)}$, so $\tilde{\sigma}-\bar{\sigma} \in \mathbb{Z}$ and therefore $\{\tilde{\sigma}(t)\}=\{\bar{\sigma}(t)\}$, where
by $\{x\}=x-\lfloor x\rfloor$ we denote the fractional part of $x \in \mathbb{R}$. Hence, $\tilde{\sigma}(t)-\bar{\sigma}(t)=$ $\lfloor\tilde{\sigma}(t)\rfloor+\{\tilde{\sigma}(t)\}-\lfloor\bar{\sigma}(t)\rfloor-\{\bar{\sigma}(t)\}=\lfloor\tilde{\sigma}(t)\rfloor-\lfloor\bar{\sigma}(t)\rfloor$. In particular, $\lfloor\tilde{\sigma}(1)\rfloor-\lfloor\bar{\sigma}(1)\rfloor=\tilde{\sigma}(1)-\bar{\sigma}(1)=\tilde{\sigma}(0)-\bar{\sigma}(0)=\lfloor\tilde{\sigma}(0)\rfloor-\lfloor\bar{\sigma}(0)\rfloor$.
Thus, we can define the map $\phi: C_{1}\left(S^{1}\right) \rightarrow \mathbb{Z}$ by linearly extending $\phi(\sigma)=$ $\lfloor\tilde{\sigma}(1)\rfloor-\lfloor\tilde{\sigma}(0)\rfloor$.
The fact that ϕ is a cocycle follows exactly as in a), since the floors of two equal numbers are equal. Also, as in a), we get a natural isomorphism $H^{1}\left(S^{1}, \mathbb{Z}\right) \rightarrow \mathbb{Z},[\psi] \mapsto \psi(\sigma)$, where $\sigma:[0,1] \rightarrow S^{1}, t \mapsto e^{2 \pi i t}$. Observe that $[\phi]$ is mapped to 1 under this isomorphism, which is a generator for \mathbb{Z} and thus [ϕ] is a generator for $\mathrm{H}^{1}\left(S^{1}, \mathbb{Z}\right)$.

Problem 7

Clara Bonvin

The UCT for cohomology gives the following SES :

$$
0 \longrightarrow \operatorname{Ext}\left(H_{0}(X, \mathbb{Z}), \mathbb{Z}\right) \longrightarrow H^{1}(X ; \mathbb{Z}) \longrightarrow \operatorname{Hom}\left(H_{1}(X, \mathbb{Z}), \mathbb{Z}\right) \longrightarrow 0
$$

Note that $H_{0}(X, \mathbb{Z})$ is a free \mathbb{Z} Module, therefore we have $\operatorname{Ext}\left(H_{0}(X, \mathbb{Z}), \mathbb{Z}\right)=0$.
From the above SES, we get : $H^{1}(X, \mathbb{Z}) \cong \operatorname{Hom}\left(H_{1}(X, \mathbb{Z}), \mathbb{Z}\right)$.
Therefore, it suffices to show that $\operatorname{Hom}\left(H_{1}(X, \mathbb{Z}), \mathbb{Z}\right)$ is torsion free to deduce that $H^{1}(X, \mathbb{Z})$ is torsion free as well.
To show that $\operatorname{Hom}\left(H_{1}(X, \mathbb{Z}), \mathbb{Z}\right)$ is torsion free, we show that $\operatorname{Hom}(M, \mathbb{Z})$ is torsion free for any \mathbb{Z} Module M. We consider its torsion group $T(\operatorname{Hom}(M, \mathbb{Z}))=\{\varphi \in$ $\operatorname{Hom}(M, \mathbb{Z}): \exists \lambda \in \mathbb{Z} \backslash\{0\}$ with $\lambda \varphi=0\}$ and show that it is trivial.
Let $\varphi \in \mathrm{T}(\operatorname{Hom}(M, \mathbb{Z}))$, then $\forall m \in M$, there exists some $\lambda \neq 0$ such that $\lambda \varphi(m)=0$.
This gives $\forall m \in M: \varphi(m)=0 \Rightarrow \varphi=0$ and therefore we get $\mathrm{T}(\operatorname{Hom}(M, \mathbb{Z}))=0$.

Problem 8

Sina Keller and Tristan Lovsin

Since b) and c) are more intuitive to understand we put subpart a) at the end.

b).

Cellular homology. We look at the Klein bottle K^{2} as the square with the edges identified as shown in the following picture:

We then have the following cochains in cohomology:

$$
\begin{array}{ll}
0-\text { cochains: } & \varphi: x \mapsto 1 \\
1 \text { - cochains: } & \alpha:\left\{\begin{array}{ll}
a & \mapsto 1 \\
b & \mapsto 0
\end{array} \text { and } \beta: \begin{cases}a & \mapsto 0 \\
b & \mapsto 1\end{cases} \right. \\
2 \text { - cochains: } & \gamma: A \mapsto 1
\end{array}
$$

These are maps from the cellular chain group to \mathbb{Z} or \mathbb{F}_{2} respectively and are generating $C^{i}\left(T^{2} ; \mathbb{Z}\right.$ or $\left.\mathbb{F}_{2}\right)$ for $i=0,1,2$.
Now let's look at the boundary maps.

$$
\begin{aligned}
d^{0}: C^{0} & \rightarrow C^{1} \\
\varphi & \mapsto d^{0}(\varphi) \\
d^{0}(\varphi)(a) & =\varphi\left(d_{1}(a)\right)=\varphi(x-x)=0 \\
d^{0}(\varphi)(b) & =\varphi\left(d_{1}(b)\right)=\varphi(x-x)=0
\end{aligned}
$$

From this we get the kernel and image of d^{0} :

$$
\begin{align*}
\operatorname{ker}\left(d^{0}\right) & =\langle\varphi\rangle \tag{1}\\
\operatorname{im}\left(d^{0}\right) & =0 \tag{2}
\end{align*}
$$

Now we do the same for d^{1} :

$$
\begin{aligned}
d^{1}: C^{1} & \rightarrow C^{2} \\
\alpha & \mapsto d^{1}(\alpha) \\
d^{1}(\alpha)(A) & =\alpha\left(d_{2}(A)\right)=\alpha(b)-\alpha(a)+\alpha(b)+\alpha(a)=0-1+0+1=0 \\
d^{1}(\beta)(A) & =\beta\left(d_{2}(A)\right)=\beta(b)-\beta(a)+\beta(b)+\beta(a)=2 \beta(b)=2 \Longrightarrow d^{1}(\beta)=2 \gamma
\end{aligned}
$$

Here we get two different cases for coefficients in \mathbb{Z} and \mathbb{F}_{2}.

$$
\begin{array}{cc}
\mathbb{Z} & \mathbb{F}_{2} \\
\operatorname{ker}\left(d^{1}\right)=\langle\alpha\rangle & \operatorname{ker}\left(d^{1}\right)=\langle\alpha, \beta\rangle \tag{3}\\
\operatorname{im}\left(d^{1}\right)=\langle 2 \gamma\rangle & \operatorname{im}\left(d^{1}\right)=0
\end{array}
$$

Now let's do the same for d^{2} :

$$
\begin{aligned}
d^{2}: C^{2} & \rightarrow C^{3} \\
\gamma & \mapsto d^{2}(\gamma) \\
d^{2}(\gamma)(0) & =\gamma\left(d_{3}(0)\right)=0
\end{aligned}
$$

We get for both \mathbb{Z} and \mathbb{F}_{2} that:

$$
\begin{align*}
\operatorname{ker}\left(d^{2}\right) & =\langle\gamma\rangle \tag{5}\\
\operatorname{im}\left(d^{2}\right) & =0
\end{align*}
$$

Now we combine all these equations to get the i-th cohomology with coefficient in \mathbb{Z} and \mathbb{F}_{2} :

$$
\begin{array}{lll}
& \mathbb{Z} & \mathbb{F}_{2} \\
H^{0} \cong \operatorname{ker}\left(d^{0}\right) / \operatorname{im}\left(d^{-1}\right) \stackrel{(1)}{\cong} & \mathbb{Z} / 0=\mathbb{Z} & \mathbb{F}_{2} / 0=\mathbb{F}_{2} \\
H^{1} \cong \operatorname{ker}\left(d^{1}\right) / \operatorname{im}\left(d^{0}\right) \stackrel{(2),(3)}{\cong} & \mathbb{Z} / 0=\mathbb{Z} & \mathbb{F}_{2}^{2} / 0=\mathbb{F}_{2}^{2} \\
H^{2} \cong \operatorname{ker}\left(d^{2}\right) / \operatorname{im}\left(d^{1}\right) \stackrel{(4),(5)}{\cong} & \mathbb{Z} / 2 \mathbb{Z}=\mathbb{F}_{2} & \mathbb{F}_{2} / 0=\mathbb{F}_{2}
\end{array}
$$

Checking with UCT. Now let's check if this result is the same as in the UCT of cohomology. We check the following SES, where A is either \mathbb{Z} or \mathbb{F}_{2} and C our chain complex of K^{2} :

$$
0 \rightarrow \operatorname{Ext}\left(H_{i-1}(C), A\right) \rightarrow H^{i}(C ; A) \rightarrow \operatorname{Hom}\left(H_{i}(C), A\right) \rightarrow 0
$$

We have to check the following SES:

$$
\begin{align*}
& 0 \rightarrow \operatorname{Ext}\left(H_{-1}\left(K^{2}\right), \mathbb{Z}\right) \rightarrow H^{0}\left(K^{2} ; \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(H_{0}\left(K^{2}\right), \mathbb{Z}\right) \rightarrow 0 \tag{6}\\
& 0 \rightarrow \operatorname{Ext}\left(H_{0}\left(K^{2}\right), \mathbb{Z}\right) \rightarrow H^{1}\left(K^{2} ; \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(H_{1}\left(K^{2}\right), \mathbb{Z}\right) \rightarrow 0 \tag{7}\\
& 0 \rightarrow \operatorname{Ext}\left(H_{1}\left(K^{2}\right), \mathbb{Z}\right) \rightarrow H^{2}\left(K^{2} ; \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(H_{2}\left(K^{2}\right), \mathbb{Z}\right) \rightarrow 0 \tag{8}\\
& 0 \rightarrow \operatorname{Ext}\left(H_{-1}\left(K^{2}\right), \mathbb{F}_{2}\right) \rightarrow H^{0}\left(K^{2} ; \mathbb{F}_{2}\right) \rightarrow \operatorname{Hom}\left(H_{0}\left(K^{2}\right), \mathbb{F}_{2}\right) \rightarrow 0 \tag{9}\\
& 0 \rightarrow \operatorname{Ext}\left(H_{0}\left(K^{2}\right), \mathbb{F}_{2}\right) \rightarrow H^{1}\left(K^{2} ; \mathbb{F}_{2}\right) \rightarrow \operatorname{Hom}\left(H_{1}\left(K^{2}\right), \mathbb{F}_{2}\right) \rightarrow 0 \tag{10}\\
& 0 \rightarrow \operatorname{Ext}\left(H_{1}\left(K^{2}\right), \mathbb{F}_{2}\right) \rightarrow H^{2}\left(K^{2} ; \mathbb{F}_{2}\right) \rightarrow \operatorname{Hom}\left(H_{2}\left(K^{2}\right), \mathbb{F}_{2}\right) \rightarrow 0 \tag{11}
\end{align*}
$$

From AlgTopo I we remember the homology groups of K^{2} :

$$
H_{i} \cong \begin{cases}\mathbb{Z} & \mathrm{i}=0 \tag{12}\\ \mathbb{Z} \oplus \mathbb{F}_{2} & \mathrm{i}=1 \\ 0 & \text { else }\end{cases}
$$

We know from Prop 8 , that if A is free $\operatorname{Ext}(A, B) \cong 0$.

Oth cohomology. Therefore (6) and (9) with help of (12) becomes the following as desired:

$$
\begin{align*}
(6): 0 & \rightarrow H^{0}\left(K^{2} ; \mathbb{Z}\right) \rightarrow \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \rightarrow 0 \\
& \Rightarrow H^{0}\left(K^{2} ; \mathbb{Z}\right) \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z} \tag{13}\\
(9): 0 & \rightarrow H^{0}\left(K^{2} ; \mathbb{F}_{2}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}, \mathbb{F}_{2}\right) \rightarrow 0 \\
& \Rightarrow H^{0}\left(K^{2} ; \mathbb{F}_{2}\right) \cong \operatorname{Hom}\left(\mathbb{Z}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2} \tag{14}
\end{align*}
$$

1 st cohomology. Similarly (7) and (10) with (12) and the fact that \mathbb{Z} is free turns into the following, as desired:

$$
\begin{aligned}
(7): 0 & \rightarrow H^{1}\left(K^{2} ; \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{Z}\right) \rightarrow 0 \\
& \Rightarrow H^{1}\left(K^{2} ; \mathbb{Z}\right) \cong \operatorname{Hom}\left(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{Z}\right) \cong \mathbb{Z} \\
(10): 0 & \rightarrow H^{1}\left(K^{2} ; \mathbb{F}_{2}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow 0 \\
& \Rightarrow H^{1}\left(K^{2} ; \mathbb{F}_{2}\right) \cong \operatorname{Hom}\left(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{F}_{2}\right) \stackrel{*}{\cong} \mathbb{F}_{2}^{2}
\end{aligned}
$$

* is deduced from the fact that $\operatorname{Hom}(A \oplus B, C) \cong \operatorname{Hom}(A, C) \oplus \operatorname{Hom}(B, C)$ which in this case yields

$$
\operatorname{Hom}\left(\mathbb{Z} \oplus \mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}\left(\mathbb{Z}, \mathbb{F}_{2}\right) \oplus \operatorname{Hom}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

2nd cohomology. Now we need the fact that $\operatorname{Ext}(A \oplus B, C) \cong \operatorname{Ext}(A, C) \oplus \operatorname{Ext}(B, C)$ from Prop 8. This turns (8) and (11) with help of (12) into:

$$
\begin{align*}
&(8): 0 \rightarrow \operatorname{Ext}(\mathbb{Z}, \mathbb{Z}) \oplus \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{Z}\right) \rightarrow H^{2}\left(K^{2} ; \mathbb{Z}\right) \rightarrow 0 \\
& \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{Z}\right) \cong 0 \oplus \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{Z}\right) \cong \operatorname{Ext}(\mathbb{Z}, \mathbb{Z}) \oplus \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{Z}\right) \cong H^{2}\left(K^{2} ; \mathbb{Z}\right) \tag{15}\\
&(11): 0 \rightarrow \operatorname{Ext}\left(\mathbb{Z}, \mathbb{F}_{2}\right) \oplus \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow H^{2}\left(K^{2} ; \mathbb{F}_{2}\right) \rightarrow 0
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong 0 \oplus \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Ext}\left(\mathbb{Z}, \mathbb{F}_{2}\right) \oplus \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong H^{2}\left(K^{2} ; \mathbb{F}_{2}\right) \tag{16}
\end{equation*}
$$

Now we want to calculate Ext for (15) and (16). We remember the definition of Ext from the lecture:

$$
\operatorname{Ext}(M, N):=H^{1}\left(\operatorname{Hom}\left(F^{M}, N\right)\right)
$$

Therefore we try to calculate the following:

$$
\begin{equation*}
\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{Z}\right)=H^{1}\left(\operatorname{Hom}\left(F^{\mathbb{F}_{2}}, \mathbb{Z}\right)\right) \tag{17}
\end{equation*}
$$

Let $F^{\mathbb{F}_{2}}:=0 \rightarrow \mathbb{Z} \xrightarrow{-2} \mathbb{Z} \rightarrow 0$ be a free resolution of \mathbb{F}_{2}. Then by definition $\operatorname{Hom}\left(F^{\mathbb{P}_{2}}, \mathbb{Z}\right)$ form the corresponding cochain complexes and we calculate im $\left(d^{0}\right)$ and $\operatorname{ker}\left(d^{1}\right)$. Let σ, τ be an arbitrary element in C^{0}, C^{1} respectively. Let a, b be elements that were defined in part 1.

$$
\begin{aligned}
d^{0}: \quad C^{0} & \rightarrow C^{1} \\
\sigma & \mapsto d^{0}(\sigma) \\
d^{0}(\sigma)(b) & =\sigma\left(d_{1}(b)\right)=\sigma(2 b)=2 \\
d^{1}: \quad C^{1} & \rightarrow C^{2} \\
\tau & \mapsto d^{1}(\tau) \\
d^{1}(\tau)(0) & =0
\end{aligned}
$$

Therefore we have that $\operatorname{im}\left(d^{0}\right) \cong 2 \mathbb{Z}$ and $\operatorname{ker}\left(d^{1}\right) \cong \mathbb{Z}$. Now we have that

$$
H^{1} \cong \operatorname{ker}\left(d^{1}\right) / \operatorname{im}\left(d^{0}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{F}_{2}
$$

$$
\begin{equation*}
\stackrel{(17)}{\cong} \operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{Z}\right) \tag{18}
\end{equation*}
$$

This is exactly the result we expected from our calculations from cellular cohomology.
Now onto (16) where we try to calculate the following:

$$
\begin{equation*}
\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=H^{1}\left(\operatorname{Hom}\left(F^{\mathbb{F}_{2}}, \mathbb{F}_{2}\right)\right) \tag{19}
\end{equation*}
$$

We have that

$$
\operatorname{Hom}\left(\mathbb{Z}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}
$$

and

$$
\begin{aligned}
d^{0}: \quad C^{0} & \rightarrow C^{1} \\
\sigma & \mapsto d^{0}(\sigma) \\
d^{0}(\sigma)(b) & =\sigma\left(d_{1}(b)\right)=\sigma(2 b)=2 \sigma \equiv 0 \\
d^{1}: \quad C^{1} & \rightarrow C^{2} \\
\tau & \mapsto d^{1}(\tau) \\
d^{1}(\tau)(0) & =0
\end{aligned}
$$

Therefore we have that $\operatorname{im}\left(d^{0}\right) \cong 2 \mathbb{F}_{2} \cong 0$ and $\operatorname{ker}\left(d^{1}\right) \cong \mathbb{F}_{2}$, thus

$$
\begin{equation*}
H^{1} \cong \operatorname{ker}\left(d^{1}\right) / \operatorname{im}\left(d^{0}\right) \cong \mathbb{F}_{2} / 0 \cong \mathbb{F}_{2} \tag{20}
\end{equation*}
$$

Therefore all our results align with UCT and we are done.
c).

Cellular cohomology. We know from AlgTopo I that $\mathbb{R} P^{n}$ has the following cellular homology:

$$
\begin{aligned}
n-\text { cell }: & c_{n} \\
n-1-\text { cell }: & c_{n-1} \\
\vdots & \vdots \\
0-\text { cell }: & c_{0}
\end{aligned}
$$

With the following boundary maps:

$$
d_{i}\left(c_{i}\right)= \begin{cases}0 & \text { i odd } \tag{21}\\ 2 c_{i-1} & \text { i even }\end{cases}
$$

Therefore we construct the following cellular cohomology:

$$
\begin{aligned}
n-\text { cell }: & \varphi_{n}: c_{n} \mapsto 1 \\
n-1-\text { cell }: & \varphi_{n-1}: c_{n-1} \mapsto 1 \\
\vdots & \vdots \\
0-\text { cell }: & \varphi_{0}: c_{0} \mapsto 1
\end{aligned}
$$

Now we look at the boundary maps in cohomology:

$$
d^{i}\left(\varphi_{i}\right)\left(c_{i+1}\right)=\varphi_{i}\left(d_{i+1}\left(c_{i+1}\right)\right) \stackrel{(21)}{=} \begin{cases}2 \varphi_{i} & \mathrm{i} \text { odd } \\ 0 & \mathrm{i} \text { even }\end{cases}
$$

Algebraic Topology II

This gives us the kernel and the image:

$$
\begin{array}{rc}
\mathbb{Z} & \mathbb{F}_{2} \\
\operatorname{ker}\left(d^{i}\right) & = \begin{cases}0 & \text { i odd } \\
\left\langle\varphi_{i}\right\rangle & \text { i even }\end{cases} \\
\operatorname{im}\left(d^{i}\right) & = \begin{cases}\left\langle 2 \varphi_{i}\right\rangle & \text { i odd } \\
0 & \text { i even }\end{cases} \tag{23}\\
\left.d^{i}\right)= \begin{cases}\left\langle\varphi_{i}\right\rangle & \text { i odd } \\
\left\langle\varphi_{i}\right\rangle & \text { i even }\end{cases} \\
\operatorname{im}\left(d^{i}\right)= \begin{cases}0 & \text { i odd } \\
0 & \text { i even }\end{cases}
\end{array}
$$

Now we can put this together to get the cohomology groups with coefficient in A which is \mathbb{Z} or \mathbb{F}_{2} respectively:
$H^{i}\left(K^{2} ; A\right) \cong \operatorname{ker}\left(d^{i}\right) / \operatorname{im}\left(d^{i-1}\right) \stackrel{(22),(23)}{\cong}\left\{\begin{array}{lll}\mathbb{Z}: & \mathbb{F}_{2}: & \\ \mathbb{Z} / 0 \cong \mathbb{Z} & \mathbb{F}_{2} / 0 \cong \mathbb{F}_{2} & i=n \text { with n odd or } i=0 \\ 0 / 0 \cong 0 & \mathbb{F}_{2} \cong 0 \cong \mathbb{F}_{2} & 0<i<n, i \text { odd } \\ \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{F}_{2} & \mathbb{F}_{2} / 0 \cong \mathbb{F}_{2} & 0<i \leq n, i \text { even }\end{array}\right.$
Checking with UCT. Now we have to check if those results are in alignment with UCT. Again we have that A is either \mathbb{Z} or \mathbb{F}_{2} and C our chain complex of $\mathbb{R} P^{n}$

$$
0 \rightarrow \operatorname{Ext}\left(H_{i-1}(C), A\right) \rightarrow H^{i}(C ; A) \rightarrow \operatorname{Hom}\left(H_{i}(C), A\right) \rightarrow 0
$$

We remember the homology group of $\mathbb{R} P^{2}$ from AlgTopo I:

$$
H_{i}\left(\mathbb{R} P^{n}\right) \cong \begin{cases}\mathbb{Z} & \mathrm{i}=0, \mathrm{i}=\mathrm{n} \text { and } \mathrm{n} \text { odd } \tag{24}\\ \mathbb{F}_{2} & \text { i odd and } 0<i<n \\ 0 & \text { else }\end{cases}
$$

We get now the following different cases for the SES with help of Prop 8:

$$
\left.\begin{array}{rlr}
0 & \rightarrow H^{i}\left(\mathbb{R} P^{n} ; A\right) & \rightarrow \operatorname{Hom}(\mathbb{Z}, A) \rightarrow 0 \\
0 & \rightarrow H^{i}\left(\mathbb{R} P^{n} ; A\right) & \rightarrow \operatorname{Hom}\left(\mathbb{F}_{2}, A\right) \rightarrow 0, i=n \text { and } n \text { odd } \tag{26}\\
A) & \rightarrow H^{i}\left(\mathbb{R} P^{2} ; A\right) & \rightarrow 0
\end{array} \quad i \text { odd and } 0<i<n\right\}
$$

(27) $0 \rightarrow \operatorname{Ext}\left(\mathbb{F}_{n}, A\right) \rightarrow H^{i}\left(\mathbb{R} P^{2} ; A\right) \rightarrow 0$

We have already calculated in (13) and (14) what $\operatorname{Hom}(\mathbb{Z}, A)$ is for both cases. Therefore (25) aligns with UCT.
We have calculated $\operatorname{Ext}\left(\mathbb{F}_{n}, A\right)$ in (18) and (20) for both cases. Therefore (27) aligns with UCT as well.
Now let's look at both cases for (26). In the case of $A=\mathbb{Z}$ we have that $\operatorname{Hom}\left(\mathbb{F}_{2}, \mathbb{Z}\right) \cong 0$ and when $A=\mathbb{F}_{2}$ we have $\operatorname{Hom}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$, yielding the desired result for all cases and we are done.
a).

Cellular homology. We view $T^{n}=I^{n} / \sim$ as the n-dim cube with the equivalence relation \sim which identifies opposite facets of the boundary.
We construct our cells similarly to a hypercube without identifying opposite facets. As Wikipedia stated, we imagine the hypercube in a Cartesian coordinate system. Then there exists for every i-dim cell i coordinate axes that are parallel to this element. This results in $\binom{n}{k}$ elements. Differently to Wikipedia, we don't have to multiply by 2^{n-i} for the total amount of cells, because the parallel cells on the other side of the hypercube are identified. ${ }^{1}$
So we have $\binom{n}{i} i$-cells for each i-dim cochain group C_{i}. We call them c_{k}^{i} for $i=0, \ldots, n$ and $k=0, \ldots,\binom{n}{i}$. Now we compute the boundary maps d_{i}.
Quick reminder how cellular homology works. We look at embeddings f of the n-dimensional ball B^{n} and its boundary ∂B^{n} into the $K^{(n)}$ and $K^{(n-1)}$ skeletons respectively, where these maps are injective on the interior of B^{n} but not necessarily on the boundary. Then we took the quotient space $K^{(n)} / K^{(n-1)} \simeq \bigvee S^{n}$ and looked at the projection onto one of those spheres. This projection we called p^{2}. In this exercise we will use the notation from AlgTopo I and the solution of exercise 3 of the exercise sheet 7 .
For d_{i} we consider any of the maps $p_{c_{k}^{i-1}} f_{\partial c_{m}^{i}}: \partial I^{i} \rightarrow S^{i-1}$. We note that there are two opposite facets of I^{i} in whose interiors this map restricts to a homeomorphism. The map collapses the rest of ∂I^{i} to a point in S^{i-1}. The degree of $p_{c_{k}^{i-1}} f_{\partial c_{m}^{i}}$ is therefore the sum of the two local degrees at any two points in q_{1}, q_{2} in the two first-mentioned facets which get mapped to the same point in T^{n}. Now we note that the restriction of $p_{c_{k}^{i-1}} f_{\partial c_{m}^{i}}$ to these faces are obtained from one another by precomposing with an orientation-reversing map. Therefore the sum of these local degrees vanishes. Therefore we have that $\operatorname{deg}\left(d_{i}\right)=0$ for all $i .^{3}$
For the cellular cohomology we take the the cochains $C^{i}:=\operatorname{Hom}\left(C_{i}, A\right)$, for A either \mathbb{Z} or \mathbb{F}_{2}. We again have $\binom{n}{i} i$-cochains for each i-dim cochain group C^{i}.
Now we want to calculate the coboundary maps d^{i}. We know that the coboundary maps are the transpose of the boundary maps and since the boundary maps are all 0 , we have that $d^{i}=0$ for all i as well.
We have that $\operatorname{ker}\left(d^{i}\right) \cong A^{\binom{n}{i}}$ and $\operatorname{im}\left(d^{i}\right) \cong 0$ for all i. We immediately get the cohomology groups:

$$
\begin{gathered}
H^{i}\left(T^{n} ; \mathbb{Z}\right) \cong \operatorname{ker}\left(d^{i}\right) / \operatorname{im}\left(d^{i-1}\right) \cong \mathbb{Z}_{\binom{n}{i}}^{0} \cong \mathbb{Z}_{\binom{n}{i}} \\
H^{i}\left(T^{n} ; \mathbb{F}_{2}\right) \cong \operatorname{ker}\left(d^{i}\right) / \operatorname{im}\left(d^{i-1}\right) \cong \mathbb{F}_{2}^{\binom{n}{i}} / 0 \cong \mathbb{F}_{2}^{\binom{n}{i}}
\end{gathered}
$$

[^0]Checking with UCT. Now we check if this result aligns with UCT for cohomology:

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}\left(H_{i-1}(C), A\right) \rightarrow H^{i}(C ; A) \rightarrow \operatorname{Hom}\left(H_{i}(C), A\right) \rightarrow 0 \tag{28}
\end{equation*}
$$

We know that $H_{i}\left(T^{n}\right)=\mathbb{Z}\binom{n}{i}$ from AlgTopo I. This is just a finite number of copies of \mathbb{Z} and therefore free. We know from Prop 8 , that if A is free $\operatorname{Ext}(A, B) \cong 0$. We note that $\operatorname{Hom}\left(\mathbb{Z}^{i}, \mathbb{Z}\right) \cong \mathbb{Z}^{i}$ and $\operatorname{Hom}\left(\mathbb{Z}^{i}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}^{i}$. Therefore (28) in our case becomes:

$$
\begin{aligned}
& 0 \rightarrow H^{i}\left(T^{n} ; A\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}_{\binom{n}{i}}\right) \\
& \Rightarrow 0 \rightarrow H^{i}\left(T^{n} ; A\right) \rightarrow A^{\binom{n}{i}} \rightarrow 0 \\
& \Rightarrow H^{i}\left(T^{n} ; \mathbb{Z}\right) \cong \mathbb{Z}_{\binom{n}{i}} \text { and } \\
& H^{i}\left(T^{n} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}^{\binom{n}{i}}
\end{aligned}
$$

This is exactly what we expect from cellular cohomology and we are done.
Problem 9
no solutions for starred problems

[^0]: ${ }^{1}$ Wikipedia: Hyperwüfel
 ${ }^{2}$ A detailed explanation of this is found in the lecture notes of Lecture 25 AlgTopo I starting at page 6 .
 ${ }^{3}$ Generalized version of proof for exercise 3 on exercise sheet 7 in AlgTopo I

