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Problem 1

The duality relationship between the connecting homomorphisms 𝛿 : 𝐻𝑛(𝐴;𝐺) →
𝐻𝑛+1(𝑋,𝐴;𝐺) and 𝜕 : 𝐻𝑛+1(𝑋,𝐴) → 𝐻𝑛(𝐴) is given by the following commutative
diagram:

𝐻𝑛(𝐴;𝐺) 𝐻𝑛+1(𝑋,𝐴;𝐺)

HomZ(𝐻𝑛(𝐴), 𝐺) HomZ(𝐻𝑛+1(𝑋,𝐴), 𝐺).

𝛿

𝑒𝑣 𝑒𝑣

𝜕*

To verify commutativity, recall how the two connecting homomorphisms are defined,
via the diagrams

𝐶𝑛+1(𝑋;𝐺) 𝐶𝑛+1(𝑋,𝐴;𝐺)

𝐶𝑛(𝐴;𝐺) 𝐶𝑛(𝑋;𝐺),

𝐶𝑛+1(𝑋;𝐺) 𝐶𝑛+1(𝑋,𝐴;𝐺)

𝐶𝑛(𝐴;𝐺) 𝐶𝑛(𝑋;𝐺).

The connecting homomorphisms are represented by the dashed arrows, which are
well-defined only when the cochain and chain groups are replaced by cohomology
and homology groups, respectively.
To show that ev𝛿 = 𝜕*ev, start with an element 𝛼 ∈ 𝐻𝑛(𝐴;𝐺) represented
by a cocycle 𝜙 ∈ 𝐶𝑛(𝐴;𝐺). To compute 𝛿(𝛼) we first extend 𝜙 to a cochain
𝜙 ∈ 𝐶𝑛(𝑋;𝐺), say by letting it take the value 0 on singular simplices not in 𝐴.
Then we compose 𝜙 with 𝜕 : 𝐶𝑛+1(𝑋) → 𝐶𝑛(𝑋) to get a cochain 𝜙𝜕 ∈ 𝐶𝑛+1(𝑋;𝐺),
which actually lies in 𝐶𝑛+1(𝑋,𝐴;𝐺) since the original 𝜙 was a cocycle in 𝐴. This
cochain 𝜙𝜕 ∈ 𝐶𝑛+1(𝑋,𝐴;𝐺) represents 𝛿(𝛼) in 𝐻𝑛+1(𝑋,𝐴;𝐺). Now we apply the
map ev, which simply restricts the domain of 𝜙𝜕 to relative cycles in 𝐶𝑛+1(𝑋,𝐴)
that is, (𝑛+ 1)-chains in 𝑋 whose boundary lies in 𝐴. On such chains we have
𝜙𝜕 = 𝛼𝜕 since the extension of 𝛼 to 𝜙 is irrelevant. The net result of all this is
that ev𝛿(𝛼) is represented by 𝛼𝜕. Let us compare this with 𝜕*ev(𝛼). Applying ev
to 𝜙 restricts its domain to cycles in 𝐴. Then applying 𝜕* composes with the map
which sends a relative (𝑛+ 1)-cycle in 𝑋 to its boundary in 𝐴. Thus 𝜕*ev(𝛼) is
represented by 𝛼𝜕 just as ev𝛿(𝛼) was, and so the square commutes.

1



Algebraic Topology II Solutions Sheet 4

Problem 2

Noah Stäuble & Philip Sandt & Richard von Moos

Co-homology of the Klein Bottle 𝐾 with coefficients in Z, 𝐻∙(𝐾;Z).
Consider the following delta-complex structure of 𝐾:

Resulting in the chain complex:

0 → ⟨𝑐1, 𝑐2⟩
𝑑2−→ ⟨𝑏1, 𝑏2, 𝑏3⟩

𝑑1−→ ⟨𝑎⟩ → 0.

Where the boundary operators behave in the following way:

(1)

{︃
𝑑1(𝑏𝑖) = 𝑎− 𝑎 = 0 ∀𝑖 = 1, 2, 3

𝑑2(𝑐1) = 𝑏1 + 𝑏2 − 𝑏3 𝑑2(𝑐2) = 𝑏1 − 𝑏2 + 𝑏3

From this we can immediately deduce all interesting subgroups, except the kernel
of 𝑑2. To this end, consider 𝜎 = 𝛼𝑐1 + 𝛽𝑐2 ∈ 𝐶Δ

2 (𝐾;Z) and observe

𝑑(𝜎) = (𝛼− 𝛽)𝑏1 + (𝛼 + 𝛽)𝑏2 − (𝛼 + 𝛽)𝑏3 = 0 ⇔ 𝛼 = 𝛽 = 0

Therefore, ker(𝑑2) = 0 This yields the homology groups of the delta-complex
𝐻Δ

𝑛 (𝐾;Z) for the Klein Bottle with Z-coefficients:

(2)

⎧⎪⎨⎪⎩
𝐻Δ

0 (𝐾;Z) = ⟨𝑎⟩
𝐻Δ

1 (𝐾;Z) = ⟨𝑏1, 𝑏2, 𝑏3⟩/⟨𝑏1 + 𝑏2 − 𝑏3, 𝑏1 − 𝑏2 + 𝑏3⟩ ∼= ⟨𝑏1, 𝑏2⟩/⟨2𝑏2⟩
𝐻Δ

2 (𝐾;Z) = 0

In degrees 𝑛 = 0, 1, the respective preceding groups of lower degrees are free. There-
fore, UCT states that ev−1 : HomZ (𝐻𝑛(𝐾;Z),Z) → 𝐻𝑛(𝐾;Z) is an isomorphism
and yields a basis of co-homology. Denote by 𝜑𝑎 : 𝑎 ↦→ 1 ∈ HomZ (𝐻0(𝐾;Z),Z),
𝜑𝑏1 : 𝑏1 ↦→ 1, 𝑏2 ↦→ 0 ∈ HomZ (𝐻1(𝐾;Z),Z).
For degree 𝑛 = 2 we can consider the dual basis of the simplicial cochain complex
𝐶2

Δ(𝐾;Z) = ⟨𝜑𝑐1 , 𝜑𝑐2⟩, where 𝜑𝑖(𝑐𝑗) = 𝛿𝑖𝑗, for 𝑖, 𝑗 = 1, 2 and manually calculate
the quotient of cocycles and coboundaries.

𝑍2
Δ(𝐾;Z) = 𝐶2

Δ(𝐾;Z)

𝐵2
Δ(𝐾;Z) = Im(𝑑2) = ⟨𝜑𝑏𝑖 ∘ 𝑑2 : 𝑖 = 1, 2, 3⟩

= ⟨𝜑𝑐1 + 𝜑𝑐2 , 𝜑𝑐1 − 𝜑𝑐2 ,−𝜑𝑐1 + 𝜑𝑐2⟩
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This allows us to express the cohomology groups of 𝐾 with Z-coefficients

(3)

⎧⎪⎨⎪⎩
𝐻0

Δ(𝐾;Z) = ⟨𝜑𝑎⟩ ∼= Z
𝐻1

Δ(𝐾;Z) = ⟨𝜑𝑏1⟩ ∼= Z
𝐻2

Δ(𝐾;Z) = ⟨𝜑𝑐1 , 𝜑𝑐2⟩/⟨𝜑𝑐1 + 𝜑𝑐2 , 𝜑𝑐1 − 𝜑𝑐2⟩ ∼= ⟨𝜑𝑐1⟩/⟨2𝜑𝑐1⟩ ∼= Z/2

To discover the ring structure of 𝐻∙(𝐾;Z) ∼= Z⊕ Z⊕ Z/2 it remains to calculate
the behavior of the cup product. From the degree formula it follows that only
𝜑𝑏1 ⌣ 𝜑𝑏1 can be non-zero, aside from products with the unit element 𝜑𝑎.
To this end, let again 𝜎 = 𝛼𝑐1 + 𝛽𝑐2 ∈ 𝐶Δ

2 (𝐾;Z) and denote by 𝑒0, 𝑒1, 𝑒2, 𝑒3 ∈ 𝐾
the vertices of 𝑐1 = [𝑒0, 𝑒1, 𝑒2] and 𝑐2 = [𝑒3, 𝑒0, 𝑒2]

𝜑𝑏1 ⌣ 𝜑𝑏1(𝜎) = 𝛼𝜑𝑏1(𝑐1|[𝑒0,𝑒1])𝜑𝑏1(𝑐1|[𝑒1,𝑒2]) + 𝛽𝜑𝑏1(𝑐2|[𝑒3,𝑒0])𝜑𝑏1(𝑐2|[𝑒0,𝑒2])

= 𝛼𝜑𝑏1(𝑏2)𝜑𝑏1(𝑏1) + 𝛽𝜑𝑏1(𝑏1)𝜑𝑏1(𝑏3) = 0

We found that all products except with 𝜑𝑎 vanish, resulting in 𝐻∙(𝐾;Z) ∼=
Z[𝑋1, 𝑋2]/(𝑋𝑖𝑋𝑗, 2𝑋2) with deg(𝑋𝑖) = 𝑖.

Co-homology of the Klein Bottle 𝐾 with coefficients in F2, 𝐻∙(𝐾;F2).
Analogously to Z-coefficients UCT yields a dual basis in degrees 𝑛 = 0, 1

(4)

{︃
𝐻0(𝐾;F2) = ⟨𝜑𝑎⟩
𝐻1(𝐾;F2) = ⟨𝜑𝑏1 , 𝜑𝑏2⟩

To get a basis of 𝐻2(𝐾;F2) we again work with the quotient of cocycles and
coboundaries. Note that

𝑍2
Δ(𝐾;F2) = 𝐶2

Δ(𝐾;F2)

𝐵2
Δ(𝐾;F2) = Im(𝑑2) = ⟨𝜑𝑐1 + 𝜑𝑐2⟩

Thus we can express 𝐻2
Δ(𝐾;F2) as

(5)
{︁
𝐻2(𝐾;F2) = ⟨𝜑𝑐1 , 𝜑𝑐2⟩/⟨𝜑𝑐1 + 𝜑𝑐2⟩ ∼= ⟨𝜑𝑐1⟩

As for products in 𝐻∙(𝐾;F2) ∼= F2 ⊕ (F2 ⊕ F2)⊕ F2, again because of degree, the
only cochains in 𝐻1(𝐾;F2) can have a non-zero product, aside from products with
𝜑𝑎. Let 𝜎 = 𝛼𝑐1 + 𝛽𝑐2 ∈ 𝐶Δ

2 (𝐾;F2) and consider its value under a general cup
product of 𝜑𝑏1 , 𝜑𝑏2 , 𝜑𝑏3 ∈ 𝐶2

Δ(𝐾;F2).

𝜑𝑏𝑖 ⌣ 𝜑𝑏𝑗(𝜎) = 𝛼𝜑𝑏𝑖(𝑐1|[𝑒0,𝑒1])𝜑𝑏𝑗(𝑐1|[𝑒1,𝑒2]) + 𝛽𝜑𝑏𝑖(𝑐2|[𝑒3,𝑒0]𝜑𝑏𝑗(𝑐2|[𝑒0,𝑒2])

= 𝛼𝜑𝑏𝑖(𝑏2)𝜑𝑏𝑗(𝑏1) + 𝛽𝜑𝑏𝑖(𝑏1)𝜑𝑏𝑗(𝑏3)

which is only non-zero if

∙ 𝑖 = 2, 𝑗 = 1, which results in 𝜑𝑏1 ⌣ 𝜑𝑏2 = 𝜑𝑐1 .
∙ 𝑖 = 1, 𝑗 = 3, which descends in homology to the relation 𝜑𝑏2 ⌣ 𝜑𝑏1 = 𝜑𝑐1 .
By which we satisfy the graded commutativity.

This allows, us to write the homology ring with F2-Coefficients as 𝐻∙(𝐾;F2) ∼=
F2[𝑋, 𝑌 ]/⟨𝑋2, 𝑌 2⟩, where the degree of both 𝑋, 𝑌 is deg(𝑋) = deg(𝑌 ) = 1.
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Co-homology of 𝑋 = R𝑃 2 with coefficients in Z, 𝐻∙(𝑋;Z).

The non-vanishing part of the simplicial complex is

Z𝑢⊕ Z𝑣 → Z𝑎⊕ Z𝑏⊕ Z𝑐→ Z𝑝⊕ Z𝑞
where the first map is the differential 𝑑2 and the second is 𝑑1. We have 𝑢 ↦→ 𝑐−𝑎+𝑏,
𝑣 ↦→ 𝑎+ 𝑐− 𝑏, and 𝑎 ↦→ 𝑝− 𝑞, 𝑏 ↦→ 𝑝− 𝑞, and 𝑐 ↦→ 0. Via manual computation we
deduce

im 𝑑1 = ⟨𝑝− 𝑞⟩
ker 𝑑1 = ⟨𝑎− 𝑏, 𝑐⟩, im 𝑑2 = ⟨𝑎− 𝑏+ 𝑐, 2𝑐⟩

ker 𝑑2 = ⟨0⟩.
So with Z-coefficients we have

𝐻0(𝑋) = ⟨𝑝, 𝑞⟩/⟨𝑝− 𝑞⟩ ∼= ⟨𝑝⟩ ∼= Z
𝐻1(𝑋) = ⟨𝑎− 𝑏, 𝑐⟩/⟨𝑎− 𝑏+ 𝑐, 2𝑐⟩ ∼= ⟨−𝑐, 𝑐⟩/⟨0, 2𝑐⟩ ∼= ⟨𝑐⟩/⟨2𝑐⟩ ∼= F2

𝐻2(𝑋) = 0.

As the next step of our approach we consider the universal coefficient theorem:

𝐻𝑛(𝑋;Z) ∼= HomZ (𝐻𝑛(𝑋),Z)⊕ Ext (𝐻𝑛−1(𝑋),Z)
Using the properties of Ext from the lecture we compute

Ext (𝐻2(𝑋),Z) ∼= 𝒯 (F2)⊗ Z ∼= F2

Ext (𝐻1(𝑋),Z) ∼= 0

Ext (𝐻0(𝑋),Z) ∼= 0

In degree 1 this implies

𝐻1(𝑋;Z) ∼= HomZ (𝐻1(𝑋),Z)
∼= HomZ (ℱ(𝐻1(𝑋)),Z)⊕ HomZ (𝒯 (𝐻1(𝑋)),Z)

∼= ℱ(𝐻1(𝑋)) = 0

where successively we use the equation for Ext, then we split the homology into
free and torsion parts, and finally we use the canonical isomorphism that one
can construct between a free group and its dual (basis elements map to their
Kronecker delta), and the ”lemma” that the dual of a torsion module vanishes;
and in dimension 0

𝐻0(𝑋;Z) ∼= ℱ(𝐻0(𝑋)) ∼= Z
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with the same arguments. To be able to compute cup products, the isomorphism
type of 𝐻0(𝑋;Z) is not enough: we need to find an explicit generator of 𝐻0(𝑋;Z).
From 𝐻0(𝑋) = ⟨𝑝, 𝑞⟩/⟨𝑝− 𝑞⟩, we compute that the kernel of 𝑑0 is given by 𝜑𝑝 + 𝜑𝑞,
and so 𝐻0(𝑋) = ⟨[𝜑𝑝 + 𝜑𝑞]⟩.
We now try to compute 𝐻2(𝑋;Z) manually. We use the proposition that simplicial
and singular cochain complexes are homotopy equivalent, so their cohomologies
are naturally isomorphic. We consider a 𝜙 : 𝐶Δ

2 (𝑋) → Z that is in ker 𝑑2. So
by definition 𝜙 ∘ 𝑑3 = 0 as a map 𝐶Δ

3 (𝑋) → Z. Since 𝐶Δ
3 (𝑋) = 0 we deduce

ker 𝑑2 = HomZ
(︀
𝐶Δ

2 (𝑋),Z
)︀
=: (𝐶Δ

2 (𝑋))∨.
We have the equivalence

𝛼 ∈ im 𝑑1 ⇔ there is a 𝜙 ∈ (𝐶Δ
1 (𝑋))∨ so that 𝜙 ∘ 𝑑2 = 𝛼

⟨𝑢, 𝑣⟩ Z

⟨𝑎, 𝑏, 𝑐⟩

𝛼

𝑑2 𝜙

From algebra we know that 𝜙 is then uniquely determined by 𝜙(𝑡) for 𝑡 = 𝑎, 𝑏, 𝑐.
The same is the case for 𝛼 with 𝑢, 𝑣. Assuming that we have a pair (𝛼, 𝜙) as
described above we must have some very specific relations. We have no choice
than to write them down in a seemingly random fashion.

𝛼(𝑢) = 𝜙(𝑑2(𝑢)) = 𝜙(𝑐− 𝑎+ 𝑏) = 𝜙(𝑐)− 𝜙(𝑎) + 𝜙(𝑏)

𝛼(𝑣) = 𝜙(𝑑2(𝑣)) = 𝜙(𝑎+ 𝑐− 𝑏) = 𝜙(𝑎) + 𝜙(𝑐)− 𝜙(𝑏)

By 𝜑𝑢 we denote the map 𝐶Δ
2 (𝑋) → Z, 𝑢 ↦→ 1, and 𝑣 ↦→ 0 i.e. the identification

we talked about earlier. Combining 𝛼 = 𝜙𝑢𝜑𝑢 +𝜙𝑣𝜑𝑣 = 𝜙(𝑎)(𝜑𝑣 −𝜑𝑢) +𝜙(𝑏)(𝜑𝑢 −
𝜑𝑣) + 𝜙(𝑐)(𝜑𝑢 + 𝜑𝑣), as we can choose 𝜙 as we wish we obtain

im 𝑑1 = ⟨𝜑𝑣 − 𝜑𝑢, 𝜑𝑢 + 𝜑𝑣⟩.

Recall that (𝐶Δ
2 )

∨ = ⟨𝜑𝑢, 𝜑𝑣⟩. So

𝐻2(𝑋;Z) = ker 𝑑2/im 𝑑1 = ⟨𝜑𝑢, 𝜑𝑣⟩/⟨𝜑𝑢 + 𝜑𝑣 , 𝜑𝑣 − 𝜑𝑢⟩

∼= ⟨𝜑𝑢⟩/⟨𝜑𝑢 + 𝜑𝑢⟩ ∼= F2.

Thus we obtain a formula for the cohomology ring

𝐻∙(𝑋;Z) = ⟨[𝜑𝑝 + 𝜑𝑞]⟩ ⊕ ⟨𝜑𝑢⟩/⟨2 · 𝜑𝑢⟩.

We have that [𝜑𝑝 + 𝜑𝑞] has degree 0 and [𝜑𝑢] has degree 2 so then [𝜑𝑝 + 𝜑𝑞]⌣ [𝜑𝑢]
has degree 2. Hence [𝜑𝑝 + 𝜑𝑞]⌣ [𝜑𝑢] = 𝑘[𝜑𝑢] for 𝑘 ∈ {0, 1}. By definition,

[𝜑𝑝 + 𝜑𝑞]⌣ [𝜑𝑢](𝑢) = 𝜑𝑝(𝑢|[𝑣0])𝜑𝑢(𝑢) + 𝜑𝑞(𝑢|[𝑣0])𝜑𝑢(𝑢) = 𝜑𝑝(𝑞) · 1 + 𝜑𝑞(𝑞) · 1 = 1

where we use the notation [𝑣0, . . . , 𝑣𝑗] for a standard 𝑗-simplex. It follows that
𝑘 = 0.
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An analogous computation implies that [𝜑𝑝 + 𝜑𝑞] ⌣ [𝜑𝑝 + 𝜑𝑞] = [𝜑𝑝 + 𝜑𝑞] which
makes sense because [𝜑𝑝] should be the unit element in the ring. We can thus
write the formula

𝐻2(𝑋;Z) ∼= Z⟨𝑦⟩/
(︀
𝑦2, 2𝑦

)︀
Co-homology of 𝑋 = R𝑃 2 with coefficients in F2, 𝐻∙(𝑋;F2). Analogously
to Z-Coefficients, the UCT yields a dual basis in degree 𝑛 = 1, 0

(6)

{︃
𝐻0(𝑋;F2) = ⟨𝜑𝑝⟩
𝐻1(𝑋;F2) = ⟨𝜑𝑐⟩

To get a basis of 𝐻2(𝑋;F2) we once again work with the quotient of cocycles and
coboundaries. Note that

𝑍2
Δ(𝑋;F2) = 𝐶2

Δ(𝑋;F2)

𝐵2
Δ(𝑋;F2) = Im(𝑑1) = ⟨𝜑𝑢 + 𝜑𝑣⟩

Thus we can express 𝐻2
Δ(𝑋;F2) as

(7)
{︁
𝐻2(𝐾;F2) = ⟨𝜑𝑢, 𝜑𝑣⟩/⟨𝜑𝑢 + 𝜑𝑣⟩ = ⟨𝜑𝑢⟩

By the same argumentation of degree, we must only search for non-zero products
among co-chains of degree 1. To this end, let 𝜎 = 𝛼𝑢 + 𝛽𝑣 ∈ 𝐶Δ

2 (𝑋;F2) for
vertices 𝑒0 . . . 𝑒3 such that 𝑢 = [𝑒0, 𝑒2, 𝑒3], 𝑣 = [𝑒1, 𝑒2, 𝑒3] and 𝜑𝑖, 𝜑𝑗 ∈ 𝐶2

Δ(𝑋;F2)
for 𝑗, 𝑖 ∈ {𝑎, 𝑏, 𝑐}. Investigating the image of a cup product on 𝜎 yields

𝜑𝑖 ⌣ 𝜑𝑗(𝜎) = 𝛼𝜑𝑖(𝑢|[𝑒0,𝑒2])𝜑𝑗(𝑢|[𝑒2,𝑒3]) + 𝛽𝜑𝑖(𝑣|[𝑒1,𝑒2])𝜑𝑗(𝑣|[𝑒2,𝑒3])
= 𝛼𝜑𝑖(𝑏)𝜑𝑗(𝑐) + 𝛽𝜑𝑖(𝑎)𝜑𝑗(𝑐)

Which yields a non-zero product, if

∙ 𝑖 = 𝑏, 𝑗 = 𝑐, which results in 𝜑𝑏 ⌣ 𝜑𝑐 = 𝜑𝑢, descending to 𝜑𝑐 ⌣ 𝜑𝑐 = 𝜑𝑢 in
homology.

∙ 𝑖 = 𝑎, 𝑗 = 𝑐, which yields 𝜑𝑎 ⌣ 𝜑𝑐 = 𝜑𝑣, descending to 𝜑𝑐 ⌣ 𝜑𝑐 = 𝜑𝑢

Thus we can write the cohomology group of the real projective space R𝑃 2 with
F2-Coefficitnes as 𝐻∙(𝑋;F2) ∼= F2[𝑋]/⟨𝑋3⟩, where deg(𝑋) = 1

6
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Problem 3

Maria Morariu
By Algebraic Topology 1, the homology groups with Z-coefficients of 𝑀𝑔 are:
𝐻0(𝑀𝑔) ∼= Z, 𝐻1(𝑀𝑔) ∼= Z2𝑔, 𝐻2(𝑀𝑔) ∼= Z, 𝐻𝑘(𝑀𝑔) ∼= 0 for 𝑘 > 2. These are all
free, so by the UCT for cohomology,
𝐻𝑘(𝑀𝑔) ∼= Hom(𝐻𝑘(𝑀𝑔),Z). Hence, 𝐻0(𝑀𝑔) ∼= Z, 𝐻1(𝑀𝑔) ∼= Z2𝑔, 𝐻2(𝑀𝑔) ∼= Z
and 𝐻𝑘(𝑀𝑔) ∼= 0 for 𝑘 > 2. Let 𝑥1, 𝑦1, ..., 𝑥𝑔, 𝑦𝑔 correspond to the generators of
𝐻1(𝑀𝑔) and let 𝑧 correspond to the generator of 𝐻2(𝑀𝑔). Since all higher coho-
mology groups are zero, we can immediately deduce that the only pairs of non-zero
elements whose cup product might be nonzero are (𝑥𝑖, 𝑦𝑗), (𝑥𝑖, 𝑥𝑗), (𝑦𝑖, 𝑦𝑗), (𝑦𝑖, 𝑥𝑗)
for 𝑖, 𝑗 ∈ {1, ..., 𝑛}.
In the lecture, we have seen that 𝐻∙(𝑇 2) ∼= Z⟨𝑥, 𝑦⟩/(𝑥𝑦 + 𝑦𝑥 = 𝑥2 = 𝑦2 = 0).

Consider the map 𝑞 : 𝑀𝑔 →
𝑔⋁︀

𝑖=1

𝑇 2 as shown in the given figure. 𝑞 induces a

homomorphism

𝑞* : 𝐻∙(
𝑔⋁︀
𝑖1

𝑇 2) → 𝐻∙(𝑀𝑔). We will use it to determine the other cup products.

Let us explicitly label the generators of the homology and cohomology groups. We
visualize 𝑀𝑔 as a polygon with 4𝑔 edges which are grouped into 𝑔 tuples, each con-
sisting of 4 consecutive edges labelled in counterclockwise order by 𝑎𝑘, 𝑏𝑘, 𝑎

−1
𝑘 , 𝑏−1

𝑘

for 1 ≤ 𝑘 ≤ 𝑔, by identifying edges according to the labelling (see figure for a
depiction of the case 𝑔 = 2). The 𝑎𝑖, 𝑏𝑖 are in fact cycles, representing generators of
𝐻1(𝑀𝑔). Also, let 𝜎 be a cycle representing the generator of 𝐻2(𝑀𝑔). Let us denote

𝑎′𝑖, 𝑏
′
𝑖 the respective cycles corresponding to generators of 𝐻1(

𝑔⋁︀
𝑖1

𝑇 2) ∼=
𝑔⨁︀

𝑖=1

𝐻1(𝑇
2),

meaning 𝑎′𝑖 = 𝑞𝑐(𝑎𝑖) and 𝑏′𝑖 = 𝑞𝑐(𝑏𝑖), where by 𝑞𝑐 we denote the chain map in-
duced by 𝑞. Let 𝜎′

1, ..., 𝜎
′
𝑔 be cycles generating 𝐻2(𝑇

2) for each of the 𝐻2(𝑇
2)

in 𝐻2(
𝑔⋁︀
𝑖1

𝑇 2) ∼=
𝑔⨁︀

𝑖=1

𝐻2(𝑇
2). For each 𝑖, let 𝜙′

𝑖 ∈ 𝐶1(
𝑔⋁︀
𝑖1

𝑇 2) be the dual of 𝑎′𝑖 and

𝜓′
𝑖 ∈ 𝐶1(

𝑔⋁︀
𝑖1

𝑇 2) be the dual of 𝑏′𝑖. Also, let 𝜂′𝑖 ∈ 𝐶2(
𝑔⋁︀
𝑖1

𝑇 2) be the dual of 𝜎′
𝑖. Set

Figure 1. Visualization of 𝑀𝑔 for 𝑔 = 2

7
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𝜙𝑖 := 𝜙′
𝑖 ∘ 𝑞 and 𝜓𝑖 := 𝜓′

𝑖 ∘ 𝑞. Then 𝑞*([𝜙′
𝑖]) = [𝜙′

𝑖 ∘ 𝑞] = [𝜙𝑖]. We observe that
for each 𝑖, 𝜙𝑖(𝑎𝑗) = 𝜙′

𝑖(𝑎
′
𝑗) = 𝛿𝑖,𝑗 and 𝜙𝑖(𝑏𝑗) = 𝜙′

𝑖(𝑏
′
𝑗) = 0, so 𝜙𝑖 is the dual map

of 𝑎𝑖. Hence, [𝜙𝑖] is a generator of 𝐻1(𝑀𝑔), let it correspond to 𝑥𝑖. Similarly,
𝜓𝑖 is the dual map of 𝑏𝑖 and we let it correspond to 𝑦𝑖. Let 𝜂 ∈ 𝐶2(𝑀𝑔) be the
dual map of 𝜎 ∈ 𝐶2(𝑀𝑔). [𝜂] generates 𝐻

2(𝑀𝑔), let it correspond to 𝑧. Note that

𝑞(𝜎) = 𝜎′
1 + ...+ 𝜎′

𝑔, so for each 𝑖, 𝜂′𝑖 ∘ 𝑞(𝜎) =
𝑔∑︀

𝑗=1

𝜂′𝑗(𝜎
′
𝑖) = 1, so 𝜂′𝑖 ∘ 𝑞 = 𝜂.

The computation done in the lecture for the cohomology ring of the torus, together
with the explicit description of 𝐻∙(𝑇 2 ∨ ... ∨ 𝑇 2), shows [𝜙′

𝑖] ⌣ [𝜙′
𝑖] = [𝜓′

𝑖] ⌣
[𝜓′

𝑖] = 0 for each 𝑖. Therefore, using naturality of the cup product, we obtain
[𝜙𝑖]⌣ [𝜙𝑖] = 𝑞*([𝜙′

𝑖]⌣ [𝜙′
𝑖]) = 0 and [𝜓𝑖]⌣ [𝜓𝑖] = 𝑞*([𝜓′

𝑖]⌣ [𝜓′
𝑖]) = 0 for each 𝑖.

Also by the computation in the lecture, we have [𝜙′
𝑖]⌣ [𝜓′

𝑖] = [𝜂′𝑖]. Hence,
[𝜙𝑖]⌣ [𝜓𝑖] = 𝑞*([𝜙′

𝑖]⌣ [𝜓′
𝑖]) = 𝑞*([𝜂′𝑖]) = [𝜂′𝑖 ∘ 𝑞] = [𝜂]. Similarly, we obtain for any

𝑗 [𝜓𝑗]⌣ [𝜙𝑗] = −[𝜂]. This means that for any 𝑖, 𝑗 : [𝜙𝑖]⌣ [𝜓𝑖] + [𝜓𝑗]⌣ [𝜙𝑗] = 0.
Now for 𝑖 ̸= 𝑗, we have [𝜙𝑖] ⌣ [𝜙𝑗] = 𝑞*([𝜙′

𝑖] ⌣ [𝜙′
𝑗]) = 𝑞*(0) = 0. Similarly,

[𝜓𝑖]⌣ [𝜓𝑗] = 0.
Therefore,

𝐻∙(𝑀𝑔) ∼= Z⟨𝑥1, 𝑦1, ..., 𝑥𝑔, 𝑦𝑔⟩/
(𝑥𝑖𝑦𝑖 + 𝑦𝑗𝑥𝑗 = 0∀𝑖, 𝑗, 𝑥𝑖𝑦𝑗 = 𝑦𝑖𝑥𝑗 = 0∀𝑖 ̸= 𝑗, 𝑥𝑖𝑥𝑗 = 𝑦𝑖𝑦𝑗 = 0∀𝑖, 𝑗),

where all 𝑥𝑖 and 𝑦𝑖 have degree 1.
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Problem 4

Wang Xiwei
Calculate the cohomology ring,

𝐻∙(CP2;Z) ∼= Z[𝑥]/(𝑥3)
with 𝑥 the generator of degree 2 and

𝐻∙(S2;Z)⊕𝐻∙(S4;Z) ∼= Z[𝑦]/(𝑦2)⊕ Z[𝑧]/(𝑧2)
with 𝑦 the generator of degree 2 and 𝑧 the generator of degree 4.
The cohomology and its reduced version only differ in degree 0. We consider the
generator of degree 2. The degree 2 generator of 𝐻∙(S2;Z)⊕𝐻∙(S4;Z) is 𝑦 and it

is the generator of degree 2 of the reduced cohomology ̃︀𝐻∙(S2;Z)⊕ ̃︀𝐻∙(S4;Z), and
can be identified as the generator of degree 2 of ̃︀𝐻∙(S2∨S4;Z) by ̃︀𝐻∙(S2∨S4;Z) ∼=̃︀𝐻∙(S2;Z) ⊕ ̃︀𝐻∙(S4;Z), and again is the generator of degree 2 of 𝐻∙(S2 ∨ S4;Z).
We have 𝑦2 = 0, but 𝑥 is the generator of degree 2 of 𝐻2(CP2;Z) and 𝑥2 is the
generator of 𝐻4(CP2;Z) which is nonzero. We have 𝐻∙(CP2;Z) ̸∼= 𝐻∙(S2 ∨ S4;Z).
The two spaces have different cohomology ring, they are not homotopic equivalent.

Remark 1: ̃︀𝐻∙(𝑋 ∨ 𝑌 ;𝑅) ∼= ̃︀𝐻∙(𝑋;𝑅)⊕ ̃︀𝐻∙(𝑌 ;𝑅)

can be proved by typical method as we seen in AlgebraicTopology I:

→ ̃︀𝐻 𝑖−1(𝑁𝑋∩𝑁𝑌 ;𝑅) → ̃︀𝐻 𝑖(𝑋∨𝑌 ;𝑅) → ̃︀𝐻 𝑖(𝑋∪𝑁𝑌 ;𝑅)⊕ ̃︀𝐻 𝑖(𝑌 ∪𝑁𝑋 ;𝑅) → ̃︀𝐻 𝑖(𝑁𝑋∩𝑁𝑌 ;𝑅) →
for 𝑖 ≥ 1 and

0 → ̃︀𝐻0(𝑋 ∨ 𝑌 ;𝑅) → ̃︀𝐻0(𝑋 ∪𝑁𝑌 ;𝑅)⊕ ̃︀𝐻0(𝑌 ∪𝑁𝑋 ;𝑅) → ̃︀𝐻0(𝑁𝑋 ∩𝑁𝑌 ;𝑅) →
with 𝑁𝑋 , 𝑁𝑌 be open neighbourhoods of the connecting point deformation retract-
ing to it. Thus ̃︀𝐻 𝑖(𝑋 ∨ 𝑌 ;𝑅) ∼= ̃︀𝐻 𝑖(𝑋;𝑅)⊕ ̃︀𝐻 𝑖(𝑌 ;𝑅)

for 𝑖 ≥ 0.

̃︀𝐻∙(𝑋 ∨ 𝑌 ;𝑅) :=
∞⨁︁
𝑖=0

̃︀𝐻 𝑖(𝑋 ∨ 𝑌 ;𝑅) ∼=
∞⨁︁
𝑖=0

( ̃︀𝐻 𝑖(𝑋;𝑅)⊕ ̃︀𝐻 𝑖(𝑌 ;𝑅))

∼= (
∞⨁︁
𝑖=0

̃︀𝐻 𝑖(𝑋;𝑅))⊕ (
∞⨁︁
𝑖=0

̃︀𝐻 𝑖(𝑌 ;𝑅)) =: ̃︀𝐻∙(𝑋;𝑅)⊕ ̃︀𝐻∙(𝑌 ;𝑅)

Concretely, 𝐻∙(𝑋 ∨ 𝑌 ;𝑅) is the subalgebra of 𝐻∙(𝑋;𝑅)×𝐻∙(𝑌 ;𝑅) containing

in degree 0 only those (𝜙, 𝜓) with 𝜙(𝑥0) = 𝜓(𝑦0). While ̃︀𝐻∙(𝑋 ∨ 𝑌 ;𝑅) contains
exactly (𝜙, 𝜓) ∈ ̃︀𝐻∙(𝑋;𝑅)× ̃︀𝐻∙(𝑌 ;𝑅).

Remark 2:
𝐻∙(𝑋 ∨ 𝑌 ;𝑅) ∼= 𝐻∙(𝑋;𝑅)⊕𝐻∙(𝑌 ;𝑅)

is not correct for the 0-th cohomology. For instance, the sum of cohomology ring
of S2 and S4 is of rank 2 in degree 0 whereas the cohomology ring of the wedge is
of rank 1 in degree 0.
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Problem 5

5 a). Let 𝑈1, . . . , 𝑈𝑘 be an open cover of 𝑋 such that each inclusion 𝑈𝑖 →˓ 𝑋 is
nullhomotopic. For 1 ≤ 𝑖 ≤ 𝑘, let 𝛼𝑖 ∈ 𝐻𝑛𝑖(𝑋) with 𝑛𝑖 ≥ 1 be given. We need to
show that 𝛼1 ⌣ · · ·⌣ 𝛼𝑘 = 0.
Since each cohomology restriction map 𝐻𝑛𝑖(𝑋;F) → 𝐻𝑛𝑖(𝑈𝑖;F) is trivial, the
classes 𝛼𝑖 lift to classes 𝛽𝑖 in the relative cohomology groups 𝐻𝑛𝑖(𝑋,𝑈𝑖;F). From
the naturality of the relative cup product, it follows that 𝛼1 ⌣ · · · ⌣ 𝛼𝑘 is the
image of 𝛽1 ⌣ · · ·⌣ 𝛽𝑘, and the latter is an element of

𝐻*(𝑋,
⋃︁
𝑖

𝑈𝑖;𝐹 ) = 𝐻𝑘(𝑋,𝑋;𝐹 ) = 0.

Hence the product 𝛼1 ⌣ · · ·⌣ 𝛼𝑘 equals zero, as desired.

5 b). By Problem 5.a), the Lusternik-Schnirelmann category of the sphere 𝑆𝑛 is
at least two. The corresponding open cover is given by complements to north and
south poles 𝑈± :=

{︀
𝑆𝑛 ∖ {(0, . . . , 0,±1)}

}︀
5 c). By Problem 5.a), the Lusternik-Schnirelmann category of the projective
space C𝑃 𝑛 is at least 𝑛+ 1. The corresponding open cover is given the canonical
charts 𝑈𝑖 := {[𝑧0 : · · · : 𝑧𝑛] | 𝑧𝑖 ̸= 0}.

5 d). Since there are 𝑛 classes in 𝐻1(𝑇 𝑛;F) whose cup product is nonzero, Problem
5.a) implies that 𝑇 𝑛 has Lusternik-Schnirelmann category at least 𝑛+ 1.
One can construct an explicit open covering of 𝑇 𝑛 with 𝑛+ 1 open sets as follows.
Let 𝑝 : R𝑛 → 𝑇 𝑛 be the usual universal covering projection sending (𝑡1, . . . , 𝑡𝑛) to
(𝑒2𝜋𝑖𝑡1 , . . . , 𝑒2𝜋𝑖𝑡𝑛), and let 𝑎0, . . . , 𝑎𝑛 be distinct points in the half-open interval
[0, 1), so that the points 𝑧𝑘 = 𝑒2𝜋𝑖𝑎𝑘 ∈ 𝑆1 are distinct. Now let 𝑊𝑘 ⊂ R𝑛 be the
set of all points such that 𝑎𝑘 < 𝑡𝑖 < 𝑎𝑘 + 1 for all 𝑖, and take 𝑉𝑘 ⊂ 𝑇 𝑛 to be the
image of 𝑊𝑘 under 𝑝. By construction each set 𝑉𝑘 is contractible. A point of 𝑇 𝑛

will lie in 𝑇 𝑛 − 𝑉𝑘 if and only if at least one of its coordinates is equal to 𝑧𝑘. The
intersection of the sets 𝑇 𝑛 − 𝑉𝑘 will consist of all points (𝑏1, . . . , 𝑏𝑛) such that for
each 𝑘, there is some 𝑗 for which 𝑏𝑗 = 𝑧𝑘. Since there are 𝑛+ 1 values of 𝑧𝑘 and
only 𝑛 coordinates 𝑏𝑗, this is impossible. Therefore

⋂︀
𝑘(𝑇

𝑛 − 𝑉𝑘) = ∅, so that
𝑇 𝑛 =

⋃︀
𝑘 𝑉𝑘.
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