Problem 1

The duality relationship between the connecting homomorphisms $\delta: H^{n}(A ; G) \rightarrow$ $H^{n+1}(X, A ; G)$ and $\partial: H_{n+1}(X, A) \rightarrow H_{n}(A)$ is given by the following commutative diagram:

To verify commutativity, recall how the two connecting homomorphisms are defined, via the diagrams

The connecting homomorphisms are represented by the dashed arrows, which are well-defined only when the cochain and chain groups are replaced by cohomology and homology groups, respectively.
To show that ev $\delta=\partial^{*} \mathrm{ev}$, start with an element $\alpha \in H^{n}(A ; G)$ represented by a cocycle $\varphi \in C^{n}(A ; G)$. To compute $\delta(\alpha)$ we first extend φ to a cochain $\varphi \in C^{n}(X ; G)$, say by letting it take the value 0 on singular simplices not in A. Then we compose φ with $\partial: C_{n+1}(X) \rightarrow C_{n}(X)$ to get a cochain $\varphi \partial \in C^{n+1}(X ; G)$, which actually lies in $C^{n+1}(X, A ; G)$ since the original φ was a cocycle in A. This cochain $\varphi \partial \in C^{n+1}(X, A ; G)$ represents $\delta(\alpha)$ in $H^{n+1}(X, A ; G)$. Now we apply the map ev, which simply restricts the domain of $\varphi \partial$ to relative cycles in $C_{n+1}(X, A)$ that is, $(n+1)$-chains in X whose boundary lies in A. On such chains we have $\varphi \partial=\alpha \partial$ since the extension of α to φ is irrelevant. The net result of all this is that $\operatorname{ev} \delta(\alpha)$ is represented by $\alpha \partial$. Let us compare this with $\partial^{*} \operatorname{ev}(\alpha)$. Applying ev to φ restricts its domain to cycles in A. Then applying ∂^{*} composes with the map which sends a relative $(n+1)$-cycle in X to its boundary in A. Thus $\partial^{*} \operatorname{ev}(\alpha)$ is represented by $\alpha \partial$ just as ev $\delta(\alpha)$ was, and so the square commutes.

Problem 2

Noah Stäuble ξ^{3} Philip Sandt ${ }^{6}$ Richard von Moos
Co-homology of the Klein Bottle K with coefficients in $\mathbb{Z}, H_{\bullet}(K ; \mathbb{Z})$. Consider the following delta-complex structure of K :

Resulting in the chain complex:

$$
0 \rightarrow\left\langle c_{1}, c_{2}\right\rangle \xrightarrow{d_{2}}\left\langle b_{1}, b_{2}, b_{3}\right\rangle \xrightarrow{d_{1}}\langle a\rangle \rightarrow 0 .
$$

Where the boundary operators behave in the following way:

$$
\left\{\begin{array}{l}
d_{1}\left(b_{i}\right)=a-a=0 \forall i=1,2,3 \tag{1}\\
d_{2}\left(c_{1}\right)=b_{1}+b_{2}-b_{3}
\end{array} d_{2}\left(c_{2}\right)=b_{1}-b_{2}+b_{3}\right.
$$

From this we can immediately deduce all interesting subgroups, except the kernel of d_{2}. To this end, consider $\sigma=\alpha c_{1}+\beta c_{2} \in C_{2}^{\Delta}(K ; \mathbb{Z})$ and observe

$$
d(\sigma)=(\alpha-\beta) b_{1}+(\alpha+\beta) b_{2}-(\alpha+\beta) b_{3}=0 \Leftrightarrow \alpha=\beta=0
$$

Therefore, $\operatorname{ker}\left(d_{2}\right)=0$ This yields the homology groups of the delta-complex $H_{n}^{\Delta}(K ; \mathbb{Z})$ for the Klein Bottle with \mathbb{Z}-coefficients:

$$
\left\{\begin{array}{l}
H_{0}^{\Delta}(K ; \mathbb{Z})=\langle a\rangle \tag{2}\\
H_{1}^{\Delta}(K ; \mathbb{Z})=\left\langle b_{1}, b_{2}, b_{3}\right\rangle /\left\langle b_{1}+b_{2}-b_{3}, b_{1}-b_{2}+b_{3}\right\rangle \cong\left\langle b_{1}, b_{2}\right\rangle /\left\langle 2 b_{2}\right\rangle \\
H_{2}^{\Delta}(K ; \mathbb{Z})=0
\end{array}\right.
$$

In degrees $n=0,1$, the respective preceding groups of lower degrees are free. Therefore, UCT states that $\mathrm{ev}^{-1}: \operatorname{Hom}_{\mathbb{Z}}\left(H_{n}(K ; \mathbb{Z}), \mathbb{Z}\right) \rightarrow H^{n}(K ; \mathbb{Z})$ is an isomorphism and yields a basis of co-homology. Denote by $\phi_{a}: a \mapsto 1 \in \operatorname{Hom}_{\mathbb{Z}}\left(H_{0}(K ; \mathbb{Z}), \mathbb{Z}\right)$, $\phi_{b_{1}}: b_{1} \mapsto 1, b_{2} \mapsto 0 \in \operatorname{Hom}_{\mathbb{Z}}\left(H_{1}(K ; \mathbb{Z}), \mathbb{Z}\right)$.
For degree $n=2$ we can consider the dual basis of the simplicial cochain complex $C_{\Delta}^{2}(K ; \mathbb{Z})=\left\langle\phi_{c_{1}}, \phi_{c_{2}}\right\rangle$, where $\phi_{i}\left(c_{j}\right)=\delta_{i j}$, for $i, j=1,2$ and manually calculate the quotient of cocycles and coboundaries.

$$
\begin{gathered}
Z_{\Delta}^{2}(K ; \mathbb{Z})=C_{\Delta}^{2}(K ; \mathbb{Z}) \\
B_{\Delta}^{2}(K ; \mathbb{Z})=\operatorname{Im}\left(d^{2}\right)=\left\langle\phi_{b_{i}} \circ d_{2}: i=1,2,3\right\rangle \\
=\left\langle\phi_{c_{1}}+\phi_{c_{2}}, \phi_{c_{1}}-\phi_{c_{2}},-\phi_{c_{1}}+\phi_{c_{2}}\right\rangle
\end{gathered}
$$

This allows us to express the cohomology groups of K with \mathbb{Z}-coefficients

$$
\left\{\begin{array}{l}
H_{\Delta}^{0}(K ; \mathbb{Z})=\left\langle\phi_{a}\right\rangle \cong \mathbb{Z} \tag{3}\\
H_{\Delta}^{1}(K ; \mathbb{Z})=\left\langle\phi_{b_{1}}\right\rangle \cong \mathbb{Z} \\
H_{\Delta}^{2}(K ; \mathbb{Z})=\left\langle\phi_{c_{1}}, \phi_{c_{2}}\right\rangle /\left\langle\phi_{c_{1}}+\phi_{c_{2}}, \phi_{c_{1}}-\phi_{c_{2}}\right\rangle \cong\left\langle\phi_{c_{1}}\right\rangle /\left\langle 2 \phi_{c_{1}}\right\rangle \cong \mathbb{Z} / 2
\end{array}\right.
$$

To discover the ring structure of $H^{\bullet}(K ; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2$ it remains to calculate the behavior of the cup product. From the degree formula it follows that only $\phi_{b_{1}} \smile \phi_{b_{1}}$ can be non-zero, aside from products with the unit element ϕ_{a}.
To this end, let again $\sigma=\alpha c_{1}+\beta c_{2} \in C_{2}^{\Delta}(K ; \mathbb{Z})$ and denote by $e_{0}, e_{1}, e_{2}, e_{3} \in K$ the vertices of $c_{1}=\left[e_{0}, e_{1}, e_{2}\right]$ and $c_{2}=\left[e_{3}, e_{0}, e_{2}\right]$

$$
\begin{aligned}
\phi_{b_{1}} \smile \phi_{b_{1}}(\sigma)= & \alpha \phi_{b_{1}}\left(\left.c_{1}\right|_{\left[e_{0}, e_{1}\right]}\right) \phi_{b_{1}}\left(\left.c_{1}\right|_{\left[e_{1}, e_{2}\right]}\right)+\beta \phi_{b_{1}}\left(\left.c_{2}\right|_{\left[e_{3}, e_{0}\right]}\right) \phi_{b_{1}}\left(\left.c_{2}\right|_{\left[e_{0}, e_{2}\right.}\right) \\
& =\alpha \phi_{b_{1}}\left(b_{2}\right) \phi_{b_{1}}\left(b_{1}\right)+\beta \phi_{b_{1}}\left(b_{1}\right) \phi_{b_{1}}\left(b_{3}\right)=0
\end{aligned}
$$

We found that all products except with ϕ_{a} vanish, resulting in $H^{\bullet}(K ; \mathbb{Z}) \cong$ $\mathbb{Z}\left[X_{1}, X_{2}\right] /\left(X_{i} X_{j}, 2 X_{2}\right)$ with $\operatorname{deg}\left(X_{i}\right)=i$.

Co-homology of the Klein Bottle K with coefficients in $\mathbb{F}_{2}, H_{\bullet}\left(K ; \mathbb{F}_{2}\right)$. Analogously to \mathbb{Z}-coefficients UCT yields a dual basis in degrees $n=0,1$

$$
\left\{\begin{array}{l}
H^{0}\left(K ; \mathbb{F}_{2}\right)=\left\langle\phi_{a}\right\rangle \tag{4}\\
H^{1}\left(K ; \mathbb{F}_{2}\right)=\left\langle\phi_{b_{1}}, \phi_{b_{2}}\right\rangle
\end{array}\right.
$$

To get a basis of $H^{2}\left(K ; \mathbb{F}_{2}\right)$ we again work with the quotient of cocycles and coboundaries. Note that

$$
\begin{gathered}
Z_{\Delta}^{2}\left(K ; \mathbb{F}_{2}\right)=C_{\Delta}^{2}\left(K ; \mathbb{F}_{2}\right) \\
B_{\Delta}^{2}\left(K ; \mathbb{F}_{2}\right)=\operatorname{Im}\left(d^{2}\right)=\left\langle\phi_{c_{1}}+\phi_{c_{2}}\right\rangle
\end{gathered}
$$

Thus we can express $H_{\Delta}^{2}\left(K ; \mathbb{F}_{2}\right)$ as

$$
\begin{equation*}
\left\{H^{2}\left(K ; \mathbb{F}_{2}\right)=\left\langle\phi_{c_{1}}, \phi_{c_{2}}\right\rangle /\left\langle\phi_{c_{1}}+\phi_{c_{2}}\right\rangle \cong\left\langle\phi_{c_{1}}\right\rangle\right. \tag{5}
\end{equation*}
$$

As for products in $H^{\bullet}\left(K ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2} \oplus\left(\mathbb{F}_{2} \oplus \mathbb{F}_{2}\right) \oplus \mathbb{F}_{2}$, again because of degree, the only cochains in $H_{1}\left(K ; \mathbb{F}_{2}\right)$ can have a non-zero product, aside from products with ϕ_{a}. Let $\sigma=\alpha c_{1}+\beta c_{2} \in C_{2}^{\Delta}\left(K ; \mathbb{F}_{2}\right)$ and consider its value under a general cup product of $\phi_{b_{1}}, \phi_{b_{2}}, \phi_{b_{3}} \in C_{\Delta}^{2}\left(K ; \mathbb{F}_{2}\right)$.

$$
\begin{gathered}
\phi_{b_{i}} \smile \phi_{b_{j}}(\sigma)=\alpha \phi_{b_{i}}\left(\left.c_{1}\right|_{\left[e_{0}, e_{1}\right]}\right) \phi_{b_{j}}\left(\left.c_{1}\right|_{\left[e_{1}, e_{2}\right]}\right)+\beta \phi_{b_{i}}\left(\left.c_{2}\right|_{\left[e_{3}, e_{0}\right]} \phi_{b_{j}}\left(\left.c_{2}\right|_{\left[e_{0}, e_{2}\right]}\right)\right. \\
=\alpha \phi_{b_{i}}\left(b_{2}\right) \phi_{b_{j}}\left(b_{1}\right)+\beta \phi_{b_{i}}\left(b_{1}\right) \phi_{b_{j}}\left(b_{3}\right)
\end{gathered}
$$

which is only non-zero if

- $i=2, j=1$, which results in $\phi_{b_{1}} \smile \phi_{b_{2}}=\phi_{c_{1}}$.
- $i=1, j=3$, which descends in homology to the relation $\phi_{b_{2}} \smile \phi_{b_{1}}=\phi_{c_{1}}$. By which we satisfy the graded commutativity.
This allows, us to write the homology ring with \mathbb{F}_{2}-Coefficients as $H^{\bullet}\left(K ; \mathbb{F}_{2}\right) \cong$ $\mathbb{F}_{2}[X, Y] /\left\langle X^{2}, Y^{2}\right\rangle$, where the degree of both X, Y is $\operatorname{deg}(X)=\operatorname{deg}(Y)=1$.

Co-homology of $X=\mathbb{R} P^{2}$ with coefficients in $\mathbb{Z}, H_{\bullet}(X ; \mathbb{Z})$.

The non-vanishing part of the simplicial complex is

$$
\mathbb{Z} u \oplus \mathbb{Z} v \rightarrow \mathbb{Z} a \oplus \mathbb{Z} b \oplus \mathbb{Z} c \rightarrow \mathbb{Z} p \oplus \mathbb{Z} q
$$

where the first map is the differential d_{2} and the second is d_{1}. We have $u \mapsto c-a+b$, $v \mapsto a+c-b$, and $a \mapsto p-q, b \mapsto p-q$, and $c \mapsto 0$. Via manual computation we deduce

$$
\begin{gathered}
\operatorname{im} d_{1}=\langle p-q\rangle \\
\operatorname{ker} d_{1}=\langle a-b, c\rangle, \operatorname{im} d_{2}=\langle a-b+c, 2 c\rangle \\
\operatorname{ker} d_{2}=\langle 0\rangle
\end{gathered}
$$

So with \mathbb{Z}-coefficients we have

$$
\begin{gathered}
H_{0}(X)=\langle p, q\rangle /\langle p-q\rangle \cong\langle p\rangle \cong \mathbb{Z} \\
H_{1}(X)=\langle a-b, c\rangle /\langle a-b+c, 2 c\rangle \cong\langle-c, c\rangle /\langle 0,2 c\rangle \cong\langle c\rangle /\langle 2 c\rangle \cong \mathbb{F}_{2} \\
H_{2}(X)=0 .
\end{gathered}
$$

As the next step of our approach we consider the universal coefficient theorem:

$$
H^{n}(X ; \mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}\left(H_{n}(X), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{n-1}(X), \mathbb{Z}\right)
$$

Using the properties of Ext from the lecture we compute

$$
\begin{gathered}
\operatorname{Ext}\left(H_{2}(X), \mathbb{Z}\right) \cong \mathcal{T}\left(\mathbb{F}_{2}\right) \otimes \mathbb{Z} \cong \mathbb{F}_{2} \\
\operatorname{Ext}\left(H_{1}(X), \mathbb{Z}\right) \cong 0 \\
\operatorname{Ext}\left(H_{0}(X), \mathbb{Z}\right) \cong 0
\end{gathered}
$$

In degree 1 this implies

$$
\begin{gathered}
H^{1}(X ; \mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}\left(H_{1}(X), \mathbb{Z}\right) \\
\cong \operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{F}\left(H_{1}(X)\right), \mathbb{Z}\right) \oplus \operatorname{Hom}_{\mathbb{Z}}\left(\mathcal{T}\left(H_{1}(X)\right), \mathbb{Z}\right) \\
\cong \mathcal{F}\left(H_{1}(X)\right)=0
\end{gathered}
$$

where successively we use the equation for Ext, then we split the homology into free and torsion parts, and finally we use the canonical isomorphism that one can construct between a free group and its dual (basis elements map to their Kronecker delta), and the "lemma" that the dual of a torsion module vanishes; and in dimension 0

$$
H^{0}(X ; \mathbb{Z}) \cong \mathcal{F}\left(H_{0}(X)\right) \cong \mathbb{Z}
$$

Algebraic Topology II

with the same arguments. To be able to compute cup products, the isomorphism type of $H^{0}(X ; \mathbb{Z})$ is not enough: we need to find an explicit generator of $H^{0}(X ; \mathbb{Z})$. From $H_{0}(X)=\langle p, q\rangle /\langle p-q\rangle$, we compute that the kernel of d^{0} is given by $\phi_{p}+\phi_{q}$, and so $H^{0}(X)=\left\langle\left[\phi_{p}+\phi_{q}\right]\right\rangle$.
We now try to compute $H^{2}(X ; \mathbb{Z})$ manually. We use the proposition that simplicial and singular cochain complexes are homotopy equivalent, so their cohomologies are naturally isomorphic. We consider a $\varphi: C_{2}^{\Delta}(X) \rightarrow \mathbb{Z}$ that is in ker d^{2}. So by definition $\varphi \circ d_{3}=0$ as a map $C_{3}^{\Delta}(X) \rightarrow \mathbb{Z}$. Since $C_{3}^{\Delta}(X)=0$ we deduce ker $d^{2}=\operatorname{Hom}_{\mathbb{Z}}\left(C_{2}^{\Delta}(X), \mathbb{Z}\right)=:\left(C_{2}^{\Delta}(X)\right)^{\vee}$.
We have the equivalence

$$
\alpha \in \operatorname{im} d^{1} \Leftrightarrow \text { there is a } \varphi \in\left(C_{1}^{\Delta}(X)\right)^{\vee} \text { so that } \varphi \circ d_{2}=\alpha
$$

From algebra we know that φ is then uniquely determined by $\varphi(t)$ for $t=a, b, c$. The same is the case for α with u, v. Assuming that we have a pair (α, φ) as described above we must have some very specific relations. We have no choice than to write them down in a seemingly random fashion.

$$
\begin{aligned}
& \alpha(u)=\varphi\left(d_{2}(u)\right)=\varphi(c-a+b)=\varphi(c)-\varphi(a)+\varphi(b) \\
& \alpha(v)=\varphi\left(d_{2}(v)\right)=\varphi(a+c-b)=\varphi(a)+\varphi(c)-\varphi(b)
\end{aligned}
$$

By ϕ_{u} we denote the map $C_{2}^{\Delta}(X) \rightarrow \mathbb{Z}, u \mapsto 1$, and $v \mapsto 0$ i.e. the identification we talked about earlier. Combining $\alpha=\varphi_{u} \phi_{u}+\varphi_{v} \phi_{v}=\varphi(a)\left(\phi_{v}-\phi_{u}\right)+\varphi(b)\left(\phi_{u}-\right.$ $\left.\phi_{v}\right)+\varphi(c)\left(\phi_{u}+\phi_{v}\right)$, as we can choose φ as we wish we obtain

$$
\operatorname{im} d^{1}=\left\langle\phi_{v}-\phi_{u}, \phi_{u}+\phi_{v}\right\rangle .
$$

Recall that $\left(C_{2}^{\Delta}\right)^{\vee}=\left\langle\phi_{u}, \phi_{v}\right\rangle$. So

$$
\begin{aligned}
H^{2}(X ; \mathbb{Z})= & \operatorname{ker} d^{2} / \operatorname{im} d^{1}=\left\langle\phi_{u}, \phi_{v}\right\rangle /\left\langle\phi_{u}+\phi_{v}, \phi_{v}-\phi_{u}\right\rangle \\
& \cong\left\langle\phi_{u}\right\rangle /\left\langle\phi_{u}+\phi_{u}\right\rangle \cong \mathbb{F}_{2} .
\end{aligned}
$$

Thus we obtain a formula for the cohomology ring

$$
H^{\bullet}(X ; \mathbb{Z})=\left\langle\left[\phi_{p}+\phi_{q}\right]\right\rangle \oplus\left\langle\phi_{u}\right\rangle /\left\langle 2 \cdot \phi_{u}\right\rangle .
$$

We have that $\left[\phi_{p}+\phi_{q}\right]$ has degree 0 and $\left[\phi_{u}\right]$ has degree 2 so then $\left[\phi_{p}+\phi_{q}\right] \smile\left[\phi_{u}\right]$ has degree 2. Hence $\left[\phi_{p}+\phi_{q}\right] \smile\left[\phi_{u}\right]=k\left[\phi_{u}\right]$ for $k \in\{0,1\}$. By definition,

$$
\left[\phi_{p}+\phi_{q}\right] \smile\left[\phi_{u}\right](u)=\phi_{p}\left(\left.u\right|_{\left[v_{0}\right]}\right) \phi_{u}(u)+\phi_{q}\left(\left.u\right|_{\left[v_{0}\right]}\right) \phi_{u}(u)=\phi_{p}(q) \cdot 1+\phi_{q}(q) \cdot 1=1
$$

where we use the notation $\left[v_{0}, \ldots, v_{j}\right]$ for a standard j-simplex. It follows that $k=0$.

An analogous computation implies that $\left[\phi_{p}+\phi_{q}\right] \smile\left[\phi_{p}+\phi_{q}\right]=\left[\phi_{p}+\phi_{q}\right]$ which makes sense because $\left[\phi_{p}\right]$ should be the unit element in the ring. We can thus write the formula

$$
H^{2}(X ; \mathbb{Z}) \cong \mathbb{Z}\langle y\rangle /\left(y^{2}, 2 y\right)
$$

Co-homology of $X=\mathbb{R} P^{2}$ with coefficients in $\mathbb{F}_{2}, H_{\bullet}\left(X ; \mathbb{F}_{2}\right)$. Analogously to \mathbb{Z}-Coefficients, the UCT yields a dual basis in degree $n=1,0$

$$
\left\{\begin{array}{l}
H^{0}\left(X ; \mathbb{F}_{2}\right)=\left\langle\phi_{p}\right\rangle \tag{6}\\
H^{1}\left(X ; \mathbb{F}_{2}\right)=\left\langle\phi_{c}\right\rangle
\end{array}\right.
$$

To get a basis of $H^{2}\left(X ; \mathbb{F}_{2}\right)$ we once again work with the quotient of cocycles and coboundaries. Note that

$$
\begin{gathered}
Z_{\Delta}^{2}\left(X ; \mathbb{F}_{2}\right)=C_{\Delta}^{2}\left(X ; \mathbb{F}_{2}\right) \\
B_{\Delta}^{2}\left(X ; \mathbb{F}_{2}\right)=\operatorname{Im}\left(d^{1}\right)=\left\langle\phi_{u}+\phi_{v}\right\rangle
\end{gathered}
$$

Thus we can express $H_{\Delta}^{2}\left(X ; \mathbb{F}_{2}\right)$ as

$$
\begin{equation*}
\left\{H^{2}\left(K ; \mathbb{F}_{2}\right)=\left\langle\phi_{u}, \phi_{v}\right\rangle /\left\langle\phi_{u}+\phi_{v}\right\rangle=\left\langle\phi_{u}\right\rangle\right. \tag{7}
\end{equation*}
$$

By the same argumentation of degree, we must only search for non-zero products among co-chains of degree 1. To this end, let $\sigma=\alpha u+\beta v \in C_{2}^{\Delta}\left(X ; \mathbb{F}_{2}\right)$ for vertices $e_{0} \ldots e_{3}$ such that $u=\left[e_{0}, e_{2}, e_{3}\right], v=\left[e_{1}, e_{2}, e_{3}\right]$ and $\phi_{i}, \phi_{j} \in C_{\Delta}^{2}\left(X ; \mathbb{F}_{2}\right)$ for $j, i \in\{a, b, c\}$. Investigating the image of a cup product on σ yields

$$
\begin{gathered}
\phi_{i} \smile \phi_{j}(\sigma)=\alpha \phi_{i}\left(\left.u\right|_{\left[e_{0}, e_{2}\right]}\right) \phi_{j}\left(\left.u\right|_{\left[e_{2}, e_{3}\right]}\right)+\beta \phi_{i}\left(\left.v\right|_{\left[e_{1}, e_{2}\right]}\right) \phi_{j}\left(\left.v\right|_{\left[e_{2}, e_{3}\right]}\right) \\
=\alpha \phi_{i}(b) \phi_{j}(c)+\beta \phi_{i}(a) \phi_{j}(c)
\end{gathered}
$$

Which yields a non-zero product, if

- $i=b, j=c$, which results in $\phi_{b} \smile \phi_{c}=\phi_{u}$, descending to $\phi_{c} \smile \phi_{c}=\phi_{u}$ in homology.
- $i=a, j=c$, which yields $\phi_{a} \smile \phi_{c}=\phi_{v}$, descending to $\phi_{c} \smile \phi_{c}=\phi_{u}$

Thus we can write the cohomology group of the real projective space $\mathbb{R} P^{2}$ with \mathbb{F}_{2}-Coefficitnes as $H_{\bullet}\left(X ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[X] /\left\langle X^{3}\right\rangle$, where $\operatorname{deg}(X)=1$

Problem 3

Maria Morariu

By Algebraic Topology 1, the homology groups with \mathbb{Z}-coefficients of M_{g} are: $H_{0}\left(M_{g}\right) \cong \mathbb{Z}, H_{1}\left(M_{g}\right) \cong \mathbb{Z}^{2 g}, H_{2}\left(M_{g}\right) \cong \mathbb{Z}, H_{k}\left(M_{g}\right) \cong 0$ for $k>2$. These are all free, so by the UCT for cohomology,
$H^{k}\left(M_{g}\right) \cong \operatorname{Hom}\left(H_{k}\left(M_{g}\right), \mathbb{Z}\right)$. Hence, $H^{0}\left(M_{g}\right) \cong \mathbb{Z}, H^{1}\left(M_{g}\right) \cong \mathbb{Z}^{2 g}, H^{2}\left(M_{g}\right) \cong \mathbb{Z}$ and $H^{k}\left(M_{g}\right) \cong 0$ for $k>2$. Let $x_{1}, y_{1}, \ldots, x_{g}, y_{g}$ correspond to the generators of $H^{1}\left(M_{g}\right)$ and let z correspond to the generator of $H^{2}\left(M_{g}\right)$. Since all higher cohomology groups are zero, we can immediately deduce that the only pairs of non-zero elements whose cup product might be nonzero are $\left(x_{i}, y_{j}\right),\left(x_{i}, x_{j}\right),\left(y_{i}, y_{j}\right),\left(y_{i}, x_{j}\right)$ for $i, j \in\{1, \ldots, n\}$.
In the lecture, we have seen that $H^{\bullet}\left(T^{2}\right) \cong \mathbb{Z}\langle x, y\rangle /\left(x y+y x=x^{2}=y^{2}=0\right)$.
Consider the map $q: M_{g} \rightarrow \bigvee_{i=1}^{g} T^{2}$ as shown in the given figure. q induces a homomorphism
$q^{*}: H^{\bullet}\left(\bigvee_{i_{1}}^{g} T^{2}\right) \rightarrow H^{\bullet}\left(M_{g}\right)$. We will use it to determine the other cup products.
Let us explicitly label the generators of the homology and cohomology groups. We visualize M_{g} as a polygon with $4 g$ edges which are grouped into g tuples, each consisting of 4 consecutive edges labelled in counterclockwise order by $a_{k}, b_{k}, a_{k}^{-1}, b_{k}^{-1}$ for $1 \leq k \leq g$, by identifying edges according to the labelling (see figure for a depiction of the case $g=2$). The a_{i}, b_{i} are in fact cycles, representing generators of $H_{1}\left(M_{g}\right)$. Also, let σ be a cycle representing the generator of $H_{2}\left(M_{g}\right)$. Let us denote $a_{i}^{\prime}, b_{i}^{\prime}$ the respective cycles corresponding to generators of $H_{1}\left(\bigvee_{i_{1}}^{g} T^{2}\right) \cong \bigoplus_{i=1}^{g} H_{1}\left(T^{2}\right)$, meaning $a_{i}^{\prime}=q_{c}\left(a_{i}\right)$ and $b_{i}^{\prime}=q_{c}\left(b_{i}\right)$, where by q_{c} we denote the chain map induced by q. Let $\sigma_{1}^{\prime}, \ldots, \sigma_{g}^{\prime}$ be cycles generating $H_{2}\left(T^{2}\right)$ for each of the $H_{2}\left(T^{2}\right)$ in $H_{2}\left(\bigvee_{i_{1}}^{g} T^{2}\right) \cong \bigoplus_{i=1}^{g} H_{2}\left(T^{2}\right)$. For each i, let $\varphi_{i}^{\prime} \in C^{1}\left(\bigvee_{i_{1}}^{g} T^{2}\right)$ be the dual of a_{i}^{\prime} and $\psi_{i}^{\prime} \in C^{1}\left(\bigvee_{i_{1}}^{g} T^{2}\right)$ be the dual of b_{i}^{\prime}. Also, let $\eta_{i}^{\prime} \in C^{2}\left(\bigvee_{i_{1}}^{g} T^{2}\right)$ be the dual of σ_{i}^{\prime}. Set

Figure 1. Visualization of M_{g} for $g=2$
$\varphi_{i}:=\varphi_{i}^{\prime} \circ q$ and $\psi_{i}:=\psi_{i}^{\prime} \circ q$. Then $q^{*}\left(\left[\varphi_{i}^{\prime}\right]\right)=\left[\varphi_{i}^{\prime} \circ q\right]=\left[\varphi_{i}\right]$. We observe that for each $i, \varphi_{i}\left(a_{j}\right)=\varphi_{i}^{\prime}\left(a_{j}^{\prime}\right)=\delta_{i, j}$ and $\varphi_{i}\left(b_{j}\right)=\varphi_{i}^{\prime}\left(b_{j}^{\prime}\right)=0$, so φ_{i} is the dual map of a_{i}. Hence, $\left[\varphi_{i}\right]$ is a generator of $H^{1}\left(M_{g}\right)$, let it correspond to x_{i}. Similarly, ψ_{i} is the dual map of b_{i} and we let it correspond to y_{i}. Let $\eta \in C^{2}\left(M_{g}\right)$ be the dual map of $\sigma \in C_{2}\left(M_{g}\right)$. $[\eta]$ generates $H^{2}\left(M_{g}\right)$, let it correspond to z. Note that $q(\sigma)=\sigma_{1}^{\prime}+\ldots+\sigma_{g}^{\prime}$, so for each $i, \eta_{i}^{\prime} \circ q(\sigma)=\sum_{j=1}^{g} \eta_{j}^{\prime}\left(\sigma_{i}^{\prime}\right)=1$, so $\eta_{i}^{\prime} \circ q=\eta$.
The computation done in the lecture for the cohomology ring of the torus, together with the explicit description of $H^{\bullet}\left(T^{2} \vee \ldots \vee T^{2}\right)$, shows $\left[\varphi_{i}^{\prime}\right] \smile\left[\varphi_{i}^{\prime}\right]=\left[\psi_{i}^{\prime}\right] \smile$ $\left[\psi_{i}^{\prime}\right]=0$ for each i. Therefore, using naturality of the cup product, we obtain $\left[\varphi_{i}\right] \smile\left[\varphi_{i}\right]=q^{*}\left(\left[\varphi_{i}^{\prime}\right] \smile\left[\varphi_{i}^{\prime}\right]\right)=0$ and $\left[\psi_{i}\right] \smile\left[\psi_{i}\right]=q^{*}\left(\left[\psi_{i}^{\prime}\right] \smile\left[\psi_{i}^{\prime}\right]\right)=0$ for each i.
Also by the computation in the lecture, we have $\left[\varphi_{i}^{\prime}\right] \smile\left[\psi_{i}^{\prime}\right]=\left[\eta_{i}^{\prime}\right]$. Hence, $\left[\varphi_{i}\right] \smile\left[\psi_{i}\right]=q^{*}\left(\left[\varphi_{i}^{\prime}\right] \smile\left[\psi_{i}^{\prime}\right]\right)=q^{*}\left(\left[\eta_{i}^{\prime}\right]\right)=\left[\eta_{i}^{\prime} \circ q\right]=[\eta]$. Similarly, we obtain for any $j\left[\psi_{j}\right] \smile\left[\varphi_{j}\right]=-[\eta]$. This means that for any $i, j:\left[\varphi_{i}\right] \smile\left[\psi_{i}\right]+\left[\psi_{j}\right] \smile\left[\varphi_{j}\right]=0$. Now for $i \neq j$, we have $\left[\varphi_{i}\right] \smile\left[\varphi_{j}\right]=q^{*}\left(\left[\varphi_{i}^{\prime}\right] \smile\left[\varphi_{j}^{\prime}\right]\right)=q^{*}(0)=0$. Similarly, $\left[\psi_{i}\right] \smile\left[\psi_{j}\right]=0$.
Therefore,

$$
\begin{aligned}
H^{\bullet}\left(M_{g}\right) \cong & \mathbb{Z}\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right\rangle / \\
& \left(x_{i} y_{i}+y_{j} x_{j}=0 \forall i, j, x_{i} y_{j}=y_{i} x_{j}=0 \forall i \neq j, x_{i} x_{j}=y_{i} y_{j}=0 \forall i, j\right),
\end{aligned}
$$

where all x_{i} and y_{i} have degree 1 .

Problem 4

Wang Xiwei

Calculate the cohomology ring,

$$
H^{\bullet}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right) \cong \mathbb{Z}[x] /\left(x^{3}\right)
$$

with x the generator of degree 2 and

$$
H^{\bullet}\left(\mathbb{S}^{2} ; \mathbb{Z}\right) \oplus H^{\bullet}\left(\mathbb{S}^{4} ; \mathbb{Z}\right) \cong \mathbb{Z}[y] /\left(y^{2}\right) \oplus \mathbb{Z}[z] /\left(z^{2}\right)
$$

with y the generator of degree 2 and z the generator of degree 4 .
The cohomology and its reduced version only differ in degree 0 . We consider the generator of degree 2. The degree 2 generator of $H^{\bullet}\left(\mathbb{S}^{2} ; \mathbb{Z}\right) \oplus H^{\bullet}\left(\mathbb{S}^{4} ; \mathbb{Z}\right)$ is y and it is the generator of degree 2 of the reduced cohomology $\widetilde{H}^{\bullet}\left(\mathbb{S}^{2} ; \mathbb{Z}\right) \oplus \widetilde{H}^{\bullet}\left(\mathbb{S}^{4} ; \mathbb{Z}\right)$, and can be identified as the generator of degree 2 of $\widetilde{H} \bullet\left(\mathbb{S}^{2} \vee \mathbb{S}^{4} ; \mathbb{Z}\right)$ by $\widetilde{H}^{\bullet}\left(\mathbb{S}^{2} \vee \mathbb{S}^{4} ; \mathbb{Z}\right) \cong$ $\widetilde{H}^{\bullet}\left(\mathbb{S}^{2} ; \mathbb{Z}\right) \oplus \widetilde{H}^{\bullet}\left(\mathbb{S}^{4} ; \mathbb{Z}\right)$, and again is the generator of degree 2 of $H^{\bullet}\left(\mathbb{S}^{2} \vee \mathbb{S}^{4} ; \mathbb{Z}\right)$. We have $y^{2}=0$, but x is the generator of degree 2 of $H^{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ and x^{2} is the generator of $H^{4}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ which is nonzero. We have $H^{\bullet}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right) \not \neq H^{\bullet}\left(\mathbb{S}^{2} \vee \mathbb{S}^{4} ; \mathbb{Z}\right)$. The two spaces have different cohomology ring, they are not homotopic equivalent.

Remark 1:

$$
\widetilde{H}^{\bullet}(X \vee Y ; R) \cong \widetilde{H}^{\bullet}(X ; R) \oplus \widetilde{H}^{\bullet}(Y ; R)
$$

can be proved by typical method as we seen in AlgebraicTopology I:
$\rightarrow \widetilde{H}^{i-1}\left(N_{X} \cap N_{Y} ; R\right) \rightarrow \widetilde{H}^{i}(X \vee Y ; R) \rightarrow \widetilde{H}^{i}\left(X \cup N_{Y} ; R\right) \oplus \widetilde{H}^{i}\left(Y \cup N_{X} ; R\right) \rightarrow \widetilde{H}^{i}\left(N_{X} \cap N_{Y} ; R\right) \rightarrow$ for $i \geq 1$ and

$$
0 \rightarrow \widetilde{H}^{0}(X \vee Y ; R) \rightarrow \widetilde{H}^{0}\left(X \cup N_{Y} ; R\right) \oplus \widetilde{H}^{0}\left(Y \cup N_{X} ; R\right) \rightarrow \widetilde{H}^{0}\left(N_{X} \cap N_{Y} ; R\right) \rightarrow
$$

with N_{X}, N_{Y} be open neighbourhoods of the connecting point deformation retracting to it. Thus

$$
\widetilde{H}^{i}(X \vee Y ; R) \cong \widetilde{H}^{i}(X ; R) \oplus \widetilde{H}^{i}(Y ; R)
$$

for $i \geq 0$.

$$
\begin{array}{r}
\widetilde{H}^{\bullet}(X \vee Y ; R):=\bigoplus_{i=0}^{\infty} \widetilde{H}^{i}(X \vee Y ; R) \cong \bigoplus_{i=0}^{\infty}\left(\widetilde{H}^{i}(X ; R) \oplus \widetilde{H}^{i}(Y ; R)\right) \\
\quad \cong\left(\bigoplus_{i=0}^{\infty} \widetilde{H}^{i}(X ; R)\right) \oplus\left(\bigoplus_{i=0}^{\infty} \widetilde{H}^{i}(Y ; R)\right)=: \widetilde{H}^{\bullet}(X ; R) \oplus \widetilde{H}^{\bullet}(Y ; R)
\end{array}
$$

Concretely, $H^{\bullet}(X \vee Y ; R)$ is the subalgebra of $H^{\bullet}(X ; R) \times H^{\bullet}(Y ; R)$ containing in degree 0 only those (φ, ψ) with $\varphi\left(x_{0}\right)=\psi\left(y_{0}\right)$. While $\tilde{H}^{\bullet}(X \vee Y ; R)$ contains exactly $(\varphi, \psi) \in \widetilde{H}^{\bullet}(X ; R) \times \widetilde{H} \bullet(Y ; R)$.

Remark 2:

$$
H^{\bullet}(X \vee Y ; R) \cong H^{\bullet}(X ; R) \oplus H^{\bullet}(Y ; R)
$$

is not correct for the 0 -th cohomology. For instance, the sum of cohomology ring of \mathbb{S}^{2} and \mathbb{S}^{4} is of rank 2 in degree 0 whereas the cohomology ring of the wedge is of rank 1 in degree 0 .

Problem 5

5 a). Let U_{1}, \ldots, U_{k} be an open cover of X such that each inclusion $U_{i} \hookrightarrow X$ is nullhomotopic. For $1 \leq i \leq k$, let $\alpha_{i} \in H^{n_{i}}(X)$ with $n_{i} \geq 1$ be given. We need to show that $\alpha_{1} \smile \cdots \smile \alpha_{k}=0$.
Since each cohomology restriction map $H^{n_{i}}(X ; \mathbb{F}) \rightarrow H^{n_{i}}\left(U_{i} ; \mathbb{F}\right)$ is trivial, the classes α_{i} lift to classes β_{i} in the relative cohomology groups $H^{n_{i}}\left(X, U_{i} ; \mathbb{F}\right)$. From the naturality of the relative cup product, it follows that $\alpha_{1} \smile \cdots \smile \alpha_{k}$ is the image of $\beta_{1} \smile \cdots \smile \beta_{k}$, and the latter is an element of

$$
H^{*}\left(X, \bigcup_{i} U_{i} ; F\right)=H^{k}(X, X ; F)=0 .
$$

Hence the product $\alpha_{1} \smile \cdots \smile \alpha_{k}$ equals zero, as desired.
5 b). By Problem 5.a), the Lusternik-Schnirelmann category of the sphere S^{n} is at least two. The corresponding open cover is given by complements to north and south poles $U_{ \pm}:=\left\{S^{n} \backslash\{(0, \ldots, 0, \pm 1)\}\right\}$

5 c). By Problem 5.a), the Lusternik-Schnirelmann category of the projective space $\mathbb{C} P^{n}$ is at least $n+1$. The corresponding open cover is given the canonical charts $U_{i}:=\left\{\left[z_{0}: \cdots: z_{n}\right] \mid z_{i} \neq 0\right\}$.
$5 \mathbf{d})$. Since there are n classes in $H^{1}\left(T^{n} ; \mathbb{F}\right)$ whose cup product is nonzero, Problem 5.a) implies that T^{n} has Lusternik-Schnirelmann category at least $n+1$.

One can construct an explicit open covering of T^{n} with $n+1$ open sets as follows. Let $p: \mathbb{R}^{n} \rightarrow T^{n}$ be the usual universal covering projection sending $\left(t_{1}, \ldots, t_{n}\right)$ to $\left(e^{2 \pi i t_{1}}, \ldots, e^{2 \pi i t_{n}}\right)$, and let a_{0}, \ldots, a_{n} be distinct points in the half-open interval $[0,1)$, so that the points $z_{k}=e^{2 \pi i a_{k}} \in S^{1}$ are distinct. Now let $W_{k} \subset \mathbb{R}^{n}$ be the set of all points such that $a_{k}<t_{i}<a_{k}+1$ for all i, and take $V_{k} \subset T^{n}$ to be the image of W_{k} under p. By construction each set V_{k} is contractible. A point of T^{n} will lie in $T^{n}-V_{k}$ if and only if at least one of its coordinates is equal to z_{k}. The intersection of the sets $T^{n}-V_{k}$ will consist of all points $\left(b_{1}, \ldots, b_{n}\right)$ such that for each k, there is some j for which $b_{j}=z_{k}$. Since there are $n+1$ values of z_{k} and only n coordinates b_{j}, this is impossible. Therefore $\bigcap_{k}\left(T^{n}-V_{k}\right)=\varnothing$, so that $T^{n}=\bigcup_{k} V_{k}$.

