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PROBLEM 1

The duality relationship between the connecting homomorphisms §: H"(A; G) —
H" X, A;G) and 9: H,,1(X,A) — H,(A) is given by the following commutative
diagram:

H™"(A;G) —2—— H"WY(X, A;G)

Homgz(H,(A),G) —L— Homgz(H,1(X,A),G).

To verify commutativity, recall how the two connecting homomorphisms are defined,
via the diagrams

C”“(X7G) —— CHX,A5G)

e

C™(A;G) cn (X;G),

Cri1(X; Q) +—— Ch1(X, A;G)

Co(A;G) S Cu(X; Q).

The connecting homomorphisms are represented by the dashed arrows, which are
well-defined only when the cochain and chain groups are replaced by cohomology
and homology groups, respectively.

To show that evd = O%*ev, start with an element a € H"(A;G) represented
by a cocycle ¢ € C"(A;G). To compute §(«) we first extend ¢ to a cochain
v € C"(X; G), say by letting it take the value 0 on singular simplices not in A.
Then we compose ¢ with 9: C,,41(X) — C,(X) to get a cochain pd € C"™(X; G),
which actually lies in C""!(X, A; G) since the original ¢ was a cocycle in A. This
cochain 9 € C""1(X, A; G) represents §(a) in H"1(X, A; G). Now we apply the
map ev, which simply restricts the domain of ¢0 to relative cycles in C,;1(X, A)
that is, (n + 1)-chains in X whose boundary lies in A. On such chains we have
©0 = a0 since the extension of a to ¢ is irrelevant. The net result of all this is
that evd(a) is represented by ad. Let us compare this with 0*ev(«). Applying ev
to  restricts its domain to cycles in A. Then applying 9* composes with the map
which sends a relative (n 4 1)-cycle in X to its boundary in A. Thus 0*ev(«) is
represented by a0 just as evd(a) was, and so the square commutes.
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PROBLEM 2
Noah Stauble € Philip Sandt € Richard von Moos

Co-homology of the Klein Bottle K with coefficients in Z, H,(K;Z).
Consider the following delta-complex structure of K:

Resulting in the chain complex:

0= (e, ) 25 (b, ba, bs) 2 (a) — 0.
Where the boundary operators behave in the following way:

(1) dl(bl):a—a:0Vz:1,2,3
dg(cl) = bl + b2 - b3 dg(Cz) = bl - bg + bg

From this we can immediately deduce all interesting subgroups, except the kernel
of dy. To this end, consider o = ac; + ey € C£(K;Z) and observe
d(O’):(a—ﬁ)bl—i‘(a—i‘ﬂ)bg—(a—i—ﬁ)bg:0@&:620

Therefore, ker(dy) = 0 This yields the homology groups of the delta-complex
H2(K;Z) for the Klein Bottle with Z-coefficients:

HPK;Z) = (a)
(2) HA(K;Z) = (by, by, b3) /{by + by — bz, by — by + b3) = (by, by)/(2by)

HXK;Z) =0
In degrees n = 0, 1, the respective preceding groups of lower degrees are free. There-
fore, UCT states that ev™': Homg (H,(K;Z),Z) — H"(K;Z) is an isomorphism
and yields a basis of co-homology. Denote by ¢,: a — 1 € Homy (Hyo(K;Z),7Z),
¢b1: b1 — 1,b2 — 0 € Homy (Hl(K,Z),Z)
For degree n = 2 we can consider the dual basis of the simplicial cochain complex
CA(K;7Z) = (¢, bey), Where ¢i(c;) = 04, for 4,7 = 1,2 and manually calculate
the quotient of cocycles and coboundaries.

ZA(K:Z) = CR(K: Z)
Bi(K;Z) =Im(d*) = (¢, 0dy : i = 1,2, 3)
- <¢61 + ¢C27 ¢61 - ¢627 _¢61 + ¢02>
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This allows us to express the cohomology groups of K with Z-coefficients
H{(KGZ) = ($a) = Z
(3)  HA(KGZ) = (¢n,) = Z
HA(KGZ) = (@ers Gea) [/ (ber + beas ey — bez) = (Der) [ (200c,) = Z)2
To discover the ring structure of H*(K;Z) = Z & Z & Z/2 it remains to calculate
the behavior of the cup product. From the degree formula it follows that only
oy, — ¢p, can be non-zero, aside from products with the unit element ¢,.

To this end, let again o = ac; + Bey € C2(K;7Z) and denote by eg, ey, 2,63 € K
the vertices of ¢; = [eg, €1, ea] and ¢y = [eg, g, €3]

¢b1 ~ gbbl (U) = a¢b1 (Cl|[€0,€1])¢b1 (Cl|[€1,€2]> + B¢b1 (CQ|[€3,€0]>¢51 (02|[60,€2})

= ady, (b2) v, (b1) + By, (b1) ¢, (bs) =0
We found that all products except with ¢, vanish, resulting in H*(K;Z) =

Co-homology of the Klein Bottle K with coefficients in Fy, H,(K;F,).
Analogously to Z-coefficients UCT yields a dual basis in degrees n = 0, 1

H(K;Fy) = (@)
(4) {HI(K,FQ) - <¢b17¢b2>

To get a basis of H?(K;F,) we again work with the quotient of cocycles and
coboundaries. Note that

ZA(K; ) = CA(K o)

BZ(K; Fy) = Im(dQ) = (¢e; + bcs)
Thus we can express Ha (K ;Fy) as

(5) {HY K F2) = {90y, 60) (0 + 603 = (60,)

As for products in H*(K;Fy) 2 Fy @ (Fy @ Fy) @ Fy, again because of degree, the
only cochains in H;(K;Fs) can have a non-zero product, aside from products with

bq. Let 0 = ac; + Bey € C2(K;Fy) and consider its value under a general cup
pI'OdU.Ct of ¢b17 ¢b27 ¢b3 S Oi(K7 F?)

P, — ¢bj (0') = agy, (Cl‘[eo,eﬂ)(bbj (Cl|[€1762]) + By, <C2|[e3750}¢bﬂ' (62‘[60’621)
= Oé(bbi <b2>¢bj (bl> + B¢bz (bl)¢bj (b3)

which is only non-zero if
e i =2, j =1, which results in ¢y, — ¢p, = P,
e i =1, 7 = 3, which descends in homology to the relation ¢, — ¢p, = @, -
By which we satisfy the graded commutativity.

This allows, us to write the homology ring with Fy-Coefficients as H®(K;Fsy) =
Fo[ X, Y]/(X?,Y?), where the degree of both XY is deg(X) = deg(Y) = 1.
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Co-homology of X = RP? with coefficients in Z, H,(X;Z).

The non-vanishing part of the simplicial complex is
Zu®d Zv — Za ® Zb ® Zc — Zp & ZLq

where the first map is the differential dy and the second is d;. We have u — c¢—a+b,
v a+c—b anda—p—gq,b— p—gq, and c — 0. Via manual computation we
deduce

imdy = (p—q)
kerd; = (a — b,c), imdy = (a — b+ ¢, 2¢)
kerd2 = <O>

So with Z-coefficients we have
Hy(X) = ®a/ip—q = (p) 2L
H(X) =(a=00/a—b+c2) = (=€) [10,2¢) = () fi2c) = Ty
Hy(X)=0.
As the next step of our approach we consider the universal coefficient theorem:
H"(X;Z) = Homy, (H,(X),Z) ® Ext (H,_1(X),Z)
Using the properties of Ext from the lecture we compute
Ext (Ho(X),Z) 2 T(Fy) @ Z = Fy
Ext (Hy(X),Z) =0
Ext (Ho(X),Z) =0
In degree 1 this implies
HY(X:7Z) = Homg, (H,(X),Z)
=~ Homg, (F(H(X)),Z) ® Homg (T (H (X)), Z)
~ F(Hi(X))=0
where successively we use the equation for Ext, then we split the homology into
free and torsion parts, and finally we use the canonical isomorphism that one
can construct between a free group and its dual (basis elements map to their
Kronecker delta), and the "lemma” that the dual of a torsion module vanishes;

and in dimension 0

H(X;Z) = F(Ho(X)) = Z
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with the same arguments. To be able to compute cup products, the isomorphism
type of HY(X;Z) is not enough: we need to find an explicit generator of H°(X;Z).
From Hy(X) = 9 /(p— ), we compute that the kernel of d° is given by ¢, + ¢,
and so H°(X) = ([¢, + ¢,))-

We now try to compute H?(X;Z) manually. We use the proposition that simplicial
and singular cochain complexes are homotopy equivalent, so their cohomologies
are naturally isomorphic. We consider a p: C£(X) — Z that is in kerd?. So
by definition ¢ o d3 = 0 as a map C$(X) — Z. Since C£(X) = 0 we deduce
ker d? = Homg, (C§(X),Z) =: (C§(X))V.

We have the equivalence

a € imd" < there is a p € (CP(X))Y so that pody = a

(u,v) —— 7Z
o) A
{a,b,c)

From algebra we know that ¢ is then uniquely determined by ¢(t) for t = a, b, c.
The same is the case for o with w,v. Assuming that we have a pair (a, ) as

described above we must have some very specific relations. We have no choice
than to write them down in a seemingly random fashion.

a(u) = ¢(da(u)) = p(c —a+b) = p(c) — p(a) + ¢(b)

a(v) = ¢(da(v)) = pla+c—b) = p(a) + ¢(c) — ¢(b)
By ¢, we denote the map C2(X) — Z, u — 1, and v +— 0 i.e. the identification

we talked about earlier. Combining oo = ¢y + @uty = @(a)(dy, — ) + () (dn —
b)) + @(c)(Pu + by), as we can choose ¢ as we wish we obtain

imd" = (¢y — Gus bu + o)
Recall that (C2)Y = (¢pu, ¢u). So
H*(X;7Z) = kerd®[imat = ($u:80) (6, + 60, 60 — bu)
o (64} /(g + 6u) = T,
Thus we obtain a formula for the cohomology ring
H*(X52) = (|¢p + ¢q]) ® @) fi2-60).

We have that [¢, + ¢,] has degree 0 and [¢,] has degree 2 so then [¢, + ¢4] — [Pu]
has degree 2. Hence [¢), + ¢,4] — [¢.] = k[¢,] for k € {0,1}. By definition,

[Dp + @] — [Dul(u) = ¢p(u’[vo])¢u(u) + qu(u‘[vo})(bu(u) = ¢p(q) - 1+ ¢ylq)- 1 =1

where we use the notation [vy,...,v;] for a standard j-simplex. It follows that
k= 0.
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An analogous computation implies that [¢, + ¢4] — [¢p + ¢4] = [Pp + ¢4 Which
makes sense because [¢,] should be the unit element in the ring. We can thus
write the formula

H?(X;Z) =2 2} (42, 29)

Co-homology of X = RP? with coefficients in Fy, H,(X;F;). Analogously
to Z-Coeflicients, the UCT yields a dual basis in degree n = 1,0

(6) HO(X§ Fy) = <¢p>

HI(X; ]F2> = <¢c>
To get a basis of H*(X;Fy) we once again work with the quotient of cocycles and
coboundaries. Note that

ZA(X;Fa) = CA(X;T2)

BA(X;F2) = Tm(d') = (¢u + ¢0)
Thus we can express HA(X;Fy) as

(7) {2 (K F2) = (60, 00) /(0 + 60) = ()

By the same argumentation of degree, we must only search for non-zero products
among co-chains of degree 1. To this end, let ¢ = au + fv € CL(X;Fy) for
vertices € ... ez such that u = [eg, eq, €3], v = [e1, €9, €3] and ¢;, ¢; € CA(X;Fy)
for j,i € {a,b,c}. Investigating the image of a cup product on o yields
¢i — ¢;(0) = a¢i(u|[€o762})¢j(u|[62,63]) + ﬁﬁbi(U‘[61,62])¢j(v|[62,e3])
= agi(b)¢;(c) + Boi(a)¢;(c)

Which yields a non-zero product, if

e | = b, j = ¢, which results in ¢, — ¢. = ¢y, descending to ¢, — ¢. = ¢, in

homology.

e | =a, j = ¢, which yields ¢, — ¢. = ¢,, descending to ¢. — ¢. = ¢y,
Thus we can write the cohomology group of the real projective space RP? with
Fo-Coefficitnes as Ho(X;Fy) = Fy[X]/(X?), where deg(X) = 1
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PROBLEM 3

Maria Morariu

By Algebraic Topology 1, the homology groups with Z-coefficients of M, are:
Ho(M,) = Z, Hi(M,) = Z*, Hy(M,) = Z, Hp(M,) = 0 for k > 2. These are all
free, so by the UCT for cohomology,

H*(M,) = Hom(H(M,),Z). Hence, H*(M,) = Z, H'(M,) = 7?9, H*(M,) =2 Z
and H*(M,) = 0 for k > 2. Let x1,y1, ..., 24, y, correspond to the generators of
H'(M,) and let z correspond to the generator of H?(M,). Since all higher coho-
mology groups are zero, we can immediately deduce that the only pairs of non-zero
elements whose cup product might be nonzero are (z;,y;), (2, z;), (Yi, y;), (vi, ;)
fori,j € {1,...,n}.

In the lecture, we have seen that H*(T?) = Z(z,y)/(zy + yx = 2% = y*> = 0).

g
Consider the map ¢: M, — \/ T? as shown in the given figure. ¢ induces a
i=1

homomorphism

g9
q*: H*(\/ T?%) — H*(M,). We will use it to determine the other cup products.

11
Let us explicitly label the generators of the homology and cohomology groups. We
visualize M, as a polygon with 4g edges which are grouped into g tuples, each con-
sisting of 4 consecutive edges labelled in counterclockwise order by as, by, a;l, b;l
for 1 < k < g, by identifying edges according to the labelling (see figure for a
depiction of the case g = 2). The a;, b; are in fact cycles, representing generators of
H,(M,). Also, let o be a cycle representing the generator of Hy(M,). Let us denote

9 g
al, b, the respective cycles corresponding to generators of Hy(\/ T?) = @ H,(T?),
i=1

(R
11
meaning a; = q.(a;) and b, = q.(b;), where by ¢. we denote the chain map in-

duced by ¢q. Let of,...,0; be cycles generating Hy(T?) for each of the Hy(T")
9 9 9

in Hy(\/T?) = @ Ho(T?). For each i, let ¢} € C'(\/ T?) be the dual of a} and
i=1 i

i1

g g
Yl € CY(\/ T?) be the dual of b}. Also, let n/ € C*(\/ T?) be the dual of o/. Set

1 i1

FIGURE 1. Visualization of M, for g = 2
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;i = ¢, oqand ¥; = . oq. Then ¢*([¢l]) = [¢} oq] = [p:]. We observe that
for each i, p;(a;) = ¢i(a}) = d;; and p;(b;) = @;(V)) = 0, so ; is the dual map
of a;. Hence, [p;] is a generator of H*(M,), let it correspond to ;. Similarly,
1; is the dual map of b; and we let it correspond to y;. Let n € C*(M,) be the
dual map of o € Cy(M,). [n] generates H?*(M,), let it correspond to z. Note that

g
q(0) = 0y + ... + 0y, so for each i, n; o q(0) = Y mi(o}) = 1,50 gjoqg=rn.
j=1

The computation done in the lecture for the cohomology ring of the torus, together
with the explicit description of H*(T? V ... V T?), shows [p}] — [¢}] = [¥] —
[¢i] = 0 for each i. Therefore, using naturality of the cup product, we obtain

[oi] — [pi] = ¢ (lgi] — [#i]) = 0 and [1hi] — 3] = ¢*([¢)i] — [1)i]) = O for each i.

Also by the computation in the lecture, we have [p}] — [1)}] = [n}]. Hence,

[oi] — il = ¢*(l@i] — [¢i]) = ¢"([n]) = [ 0 ¢] = [n]. Similarly, we obtain for any
J [¥j] — [¢;] = —[n]. This means that for any i, : [p;] — [¥i] + [¥;] — [¢;] = 0.
Now for i # j, we have [p;] — [¢;] = ¢"([¢i] — [¢)]) = ¢*(0) = 0. Similarly,

[i] — [1;] = 0.
Therefore,
H*(M,) = Z{x1,y1, s Ty, Yg)/
(wy; + yjz; = OV, j, 2y, = yix; = OVi # j, zx; = yy; = OV, j),

where all z; and y; have degree 1.
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PROBLEM 4

Wang Xiwes
Calculate the cohomology ring,

H*(CP*% Z) = Z[a]/ (2%

with z the generator of degree 2 and
H*(S*Z) & H*(SY Z) = Zly)/(v*) & Z[2]/(2*)
with y the generator of degree 2 and z the generator of degree 4.
The cohomology and its reduced version only differ in degree 0. We consider the
generator of degree 2. The degree 2 generator of H*(S* Z) ® H*(S*Z) is y and it
is the generator of degree 2 of the reduced cohomology H*(S* Z) @ H*(S*; Z), and
can be identified as the generator of degree 2 of H*(S*VS*;Z) by H*(S*VS*, Z) =
H*(S*Z) & H*(S*;Z), and again is the generator of degree 2 of H*(S* vV S$*;Z).
We have y?> = 0, but z is the generator of degree 2 of H?(CP* Z) and 22 is the
generator of H*(CP?;Z) which is nonzero. We have H*(CP* Z) % H*(S* v %, 7Z).
The two spaces have different cohomology ring, they are not homotopic equivalent.
Remark 1: B B B
H*(XVY;R)= H*(X;R)® H*(Y;R)

can be proved by typical method as we seen in AlgebraicTopology I:
— ﬁ[iil(NXmNy; R) — ﬁz(XVY, R) — Itji(XUNy; R)EBIEP(YUNX, R) — ﬁi<NXﬁNy; R) —
for + > 1 and
0— H(XVY;R) —» H°(X UNy;R)® H°(Y UNy;R) — H°(Nx N Ny; R) —
with Nx, Ny be open neighbourhoods of the connecting point deformation retract-

ing to it. Thus N N N
H(XVY;R) =2 H'(X;R)® H(Y;R)

for ¢+ > 0.
HYXVY:R) =P H (X VY;R) = PH(X;R) & H(Y;R))
=0 =0

= @ H'(X;R)) & (é H'(Y:R)) = H*(X;R) ® H*(Y; R)

Concretely, H*(X V Y; R) is the subalgebra of H*(X; R) x H*(Y; R) containing
in degree 0 only those (¢, 1) with ¢(x¢) = 1(yo). While H* (X VY, R) contains
exactly (¢,v¢) € H*(X;R) x H*(Y;R).
Remark 2:

H*X VY;R)= H*(X;R)& H*(Y;R)
is not correct for the 0-th cohomology. For instance, the sum of cohomology ring

of S? and S* is of rank 2 in degree 0 whereas the cohomology ring of the wedge is
of rank 1 in degree 0.
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PROBLEM 5

5 a). Let Uy,...,Ug be an open cover of X such that each inclusion U; — X is
nullhomotopic. For 1 <i <k, let a; € H™(X) with n; > 1 be given. We need to
show that a; — - — o, = 0.

Since each cohomology restriction map H" (X;F) — H"i(U;F) is trivial, the
classes «; lift to classes (3; in the relative cohomology groups H" (X, U;; F). From
the naturality of the relative cup product, it follows that a; — --- — a4 is the
image of 31 — --- — [, and the latter is an element of

H'(X,| JU:; F) = H¥X, X; F) = 0.

Hence the product oy — --- — a4 equals zero, as desired.

5 b). By Problem 5.a), the Lusternik-Schnirelmann category of the sphere S™ is
at least two. The corresponding open cover is given by complements to north and
south poles Uy == {5"\ {(0,...,0,£1)}}

5 c¢). By Problem 5.a), the Lusternik-Schnirelmann category of the projective
space CP" is at least n + 1. The corresponding open cover is given the canonical
charts U; == {[z0 : -+ : z,] | 2: # 0}.

5 d). Since there are n classes in H'(T™;F) whose cup product is nonzero, Problem
5.a) implies that 7™ has Lusternik-Schnirelmann category at least n + 1.

One can construct an explicit open covering of T™ with n 4+ 1 open sets as follows.
Let p: R™ — T™ be the usual universal covering projection sending (t1,...,%,) to
(e2mitr . e*™n) and let ag,...,a, be distinct points in the half-open interval
[0,1), so that the points z, = e?™@ € S1 are distinct. Now let W, C R" be the
set of all points such that a; < t; < ax + 1 for all i, and take V, C T to be the
image of Wy, under p. By construction each set Vj is contractible. A point of T"
will lie in 7™ — Vj, if and only if at least one of its coordinates is equal to z;. The
intersection of the sets 7™ — Vj. will consist of all points (by,...,b,) such that for
each k, there is some j for which b; = z;. Since there are n + 1 values of z;, and
only n coordinates b;, this is impossible. Therefore (), (1" — V;) = @, so that
T = U, Vi
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