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Problem 1

Wang Xiwei
(a) Locally Euclidean: 𝑀 = [0, 1] × (0, 1)/ ∼ where (0, 𝑥) ∼ (1, 1 − 𝑥). Let
𝜋 : [0, 1]× (0, 1) →𝑀 be the projection map.
Define 𝑈 := 𝜋((0, 1)× (0, 1)) open in the quotient topology. Since (0, 1)× (0, 1) is
saturated open in [0, 1]× (0, 1). Define chart 𝜙 : 𝑈 → (0, 1)× (0, 1) with 𝜙([𝑥]) = 𝑥
and 𝜙 ∘ 𝜋 = 𝜋 ∘𝜙 = id. 𝜙 is continuous by characteristic property of quotient map.
Define 𝑉 := 𝜋([0, 1] × (0, 1) − {1/2} × (0, 1)) open since the set [0, 1] × (0, 1) −
{1/2}×(0, 1) saturated open in [0, 1]×(0, 1). Define the chart 𝜓 : 𝑉 → (0, 1)×(0, 1)

with 𝜓([(𝑎, 𝑏)]) =

⎧⎪⎨⎪⎩
(𝑎− 1/2, 𝑏) if 𝑎 ∈ (1/2, 1)

(𝑎+ 1/2, 1− 𝑏) if 𝑎 ∈ (0, 1/2)

(1/2, 𝑏) if 𝑎 = 0

which is continuous again by

characteristic property. The inverse is 𝜓−1 : (0, 1)× (0, 1) → 𝑉 with 𝜓−1((𝑢, 𝑣)) =⎧⎪⎨⎪⎩
[(𝑢+ 1/2, 𝑣)] if 𝑢 ∈ (0, 1/2)

[(𝑢− 1/2, 1− 𝑣)] if 𝑢 ∈ (1/2, 1)

[(0, 𝑣)] if 𝑢 = 1/2

which is continuous as composition of contin-

uous maps and quotient maps and 𝜙 ∘ 𝜓 = 𝜓 ∘ 𝜙 = id. Thus (𝑈,𝜙), (𝑉, 𝜓) are
charts covering 𝑀 .
Note the first map is the operation of cutting and pasting the two pieces into one
square drawn as below. And then easily find its inverse map.

Hausdorff: Assume [𝑥], [𝑦] ∈ 𝑈 . Then 𝑥, 𝑦 ∈ (0, 1)× (0, 1). There are open sets
separating them and do not intersect {0}× (0, 1)∪{1}× (0, 1). They are saturated
and their projection are open. If [𝑥] ∈ 𝜋({0} × (0, 1)) and [𝑦] ∈ 𝑈 . Then take one
ball and one open half ball 𝐵 to separate them. Then complement another open
half ball 𝐵′ to get 𝐵 ∪𝐵′. 𝐵 ∪𝐵′ is open and saturated. Choose 𝐵 small enough
such that 𝐵 ∪𝐵′ does not intersect 𝑦’s open ball. Then their projection are open
balls separating them, see figure below(left). If [𝑥], [𝑦] ∈ 𝜋({0} × (0, 1)). Then use
similar approach drawn below(right).
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Second countable: This quotient map is not open. We cannot use [0, 1]× (0, 1)
second countable to directly get 𝑀 is second countable. We need to show it by
definition. Consider the collection of balls of [0, 1]× (0, 1) with rational radii and
coordinates excluding those intersecting the boundary. Now add the collection W
to it where W contains the half open ball centered at the boundary complemented
with the other half ball. For instance 𝐵 ∪𝐵′ drawn below. Now the new collection
is countable many with their projections open. And their projections are a basis
of quotient space.

(b) T𝑛 = S1 × · · · × S1 is the product manifold.

(c) Locally Euclidean:𝜋 : R𝑛+1 − {0} → RP𝑛. Define ̃︀𝑈𝑖 to be the set with

i-th coordinate 𝑥𝑖 ̸= 0. Then 𝑈𝑖 := 𝜋(̃︀𝑈𝑖) is open since ̃︀𝑈𝑖 is saturated open.
Define 𝜙𝑖 : 𝑈𝑖 → R𝑛. 𝜙𝑖([𝑥1, . . . , 𝑥𝑛+1]) = (𝑥1/𝑥𝑖, . . . , 𝑥𝑖−1/𝑥𝑖, 𝑥𝑖+1/𝑥𝑖, . . . , 𝑥𝑛+1/𝑥𝑖)
which is continuous by characteristic property. The inverse 𝜓𝑖(𝑥1, . . . , 𝑥𝑛) =
[𝑥1, . . . , 𝑥𝑖−1, 1, 𝑥𝑖+1, . . . , 𝑥𝑛] continuous as the composition of continuous maps
and quotient map. 𝜙𝑖 ∘ 𝜓𝑖 = 𝜓𝑖 ∘ 𝜙𝑖 = id. Thus (𝜙𝑖, 𝑈𝑖) is the chart covering RP𝑛.
Second countable: The quotient map here is open. Assume open sets 𝑈 ∈
R𝑛+1 − {0}. Then 𝜋−1𝜋(𝑈) =

⋃︀
𝜆∈R−{0} 𝜆𝑈 open since 𝜆𝑈 := {𝜆𝑥|𝑥 ∈ 𝑈} open.

Thus 𝜋 is open. R𝑛+1 − {0} is second countable, RP𝑛 is second countable.
Hausdorff: Lemma: If 𝜋 is open quotient map, 𝑋/ ∼ is Hausdorff iff (𝑥1, 𝑥2) is
closed in 𝑋 ×𝑋 where 𝑥1 ∼ 𝑥2. In our case, 𝑥1 ∼ 𝑥2 iff 𝑥1 and 𝑥2 lie in one ray.
Just to show the space where 𝑥1 ≁ 𝑥2 is open which is equivalent to 𝑥1, 𝑥2 doe not
lie in one ray. We can extend 𝑥1, 𝑥2 to a basis (𝑥1, 𝑥2, . . . , 𝑥𝑛+1) which is linearly
independent ⇔ det([𝑥1, . . . , 𝑥𝑛+1]) ̸= 0 which is open since det continuous.
(d) The same as RP𝑛

(e) 𝐺𝐿(𝑛,R) is open since it is the preimage of det(∙) ̸= 0.
(f) Define the smooth map 𝐹 : 𝐴 ↦→ 𝐴𝑇𝐴. 𝐷𝐴𝐹 (𝑋) = d

d𝑥
|𝑡=0(𝐴+ 𝑡𝑋)𝑇 (𝐴+ 𝑡𝑋) =

𝐴𝑇𝑋+𝑋𝑇𝐴. Since 𝐴 ∈ 𝐺𝐿(𝑛,R) and𝑋 ∈𝑀𝑛×𝑛(R), then 𝐴𝑇𝑋 can be any matrix
in 𝑀𝑛×𝑛(R). The image of 𝐷𝐴𝐹 (𝑋) is the set {𝑋𝑇 +𝑋|𝑋 ∈𝑀𝑛×𝑛(R)} which is
of dimension 𝑛(𝑛 + 1)/2 for all 𝐴 ∈ 𝐺𝐿(𝑛,R). Thus by constant rank theorem
𝑂(𝑛,R) is a regular submanifold with dimension 𝑛2 − 𝑛(𝑛 + 1)/2. 𝑆𝑂(𝑛,R) =
det−1(1)∩𝑂(𝑛,R) = det−1((0,+∞))∩𝑂(𝑛,R) is open in 𝑂(𝑛,R). Thus 𝑆𝑂(𝑛,R)
is a submanifold with dimension 𝑛2 − 𝑛(𝑛+ 1)/2 = 𝑛(𝑛− 1)/2.

Problem 1a

Vladimir Nowak
Since the Möbius band 𝑀 is an open subset of the Klein bottle 𝐾 it suffices to
show that 𝐾 is a 2-manifold, since every open subset of a manifold is a manifold
in its own right. We use the following proposition from covering theory:
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proposition If 𝑀 is a connected topological manifold, and Γ < Homeo
(︀
𝑀

)︀
is

a group that acts freely and properly discontinuously on 𝑀 , then 𝑀/Γ is a
topological manifold (of the same dimension) and 𝑝 : 𝑀 →𝑀/Γ is a covering map,
with 𝑀/Γ =𝑀/∼ where 𝑝 ∼ 𝑞 if ∃𝛾 ∈ Γ such that 𝛾 (𝑝) = 𝑞. proposition
As our manifold, we take 𝑀 = R2, where 𝑝 = (𝑥, 𝑦) denote standard coordinates.
Let Γ < Homeo (R2) be the subgroup generated by the maps (𝑥, 𝑦) ↦→ (𝑥, 𝑦 + 1)
and (𝑥, 𝑦) ↦→ (𝑥+ 1,−𝑦). They certainly act freely on R2, as the former is a
non-trivial translation and the latter the composition of a non-trivial translation
along the 𝑥-axis with a reflection along the 𝑥-axis, and thus for 𝛾 ∈ Γ− id we have
𝛾(𝑝) ̸= 𝑝.
Since by Heine-Borel every compact set is closed and bounded on R2 if we
show that for all 𝐵𝑅(0) with 𝑅 > 0 (in the standard metric) the set {𝛾 ∈ Γ :
𝛾
(︀
𝐵𝑅(0)

)︀
∩ 𝐵𝑅(0) ̸= ∅} is finite then Γ acts properly discontinuously. This is

certainly the case, because if we have shifted by more than 2𝑅 from 0 in either the
𝑥 or 𝑦 direction, we don’t intersect 𝐵𝑅(0) anymore. As R2/Γ = 𝐾 we are done.

Problem 2

a). As image of a compact space, the space 𝑋 is compact itself. For locally
Euclidian and second countable base we take open intervals around points (red
lines in the picture). The Excision Theorem with respect to complement of such
an interval gives an isomorphism

𝐻1(𝑋,𝑋 ∖ 𝑥) ∼= 𝐻1(𝑋 ∖ 𝑍, (𝑋 ∖ 𝑍) ∖ 𝑥) ∼= 𝐻1(𝑆
1).

The complement to double 1 is connected as an open interval, any of the 1s
can be connected with −1 by a path that is the image of the semicircle in the
corresponding circle.
Any neighbourhoods of two 1s intersect and therefore 𝑋 is not Hausdorff.

b). Consider the reduces Mayer-Vietoris sequence for 𝐴 and 𝐵 being images of
𝑆1 × {0} and 𝑆1 × {1} under the canonical projection 𝑆1 × {0, 1} → 𝑋:

· · · → ̃︀𝐻1(𝐴 ∩𝐵) → ̃︀𝐻1(𝐴)⊕ ̃︀𝐻1(𝐵) → ̃︀𝐻1(𝑋) → ̃︀𝐻0(𝐴 ∩𝐵) → · · ·
As 𝐴 and 𝐵 are both homeomorphic to 𝑆1 and their intersection is on open interval,
we have the sequence

· · · → 0 → Z⊕ Z → 𝐻1(𝑋) → 0 → · · ·
with the middle arrow Z⊕Z → Z⊕Z being an isomorphism. Therefore the arrow
Z⊕ Z → 𝐻1(𝑋) is an isomorphism as well.

c). The induction in Step 2 does not work, as we used the fact the intersection of
two compacts is compact again. This does not necessarily hold in a non-Hausdorff
space.
For 𝑋, the complement of each of the 1s is a compact space (homeomorphic to 𝑆1),
but their intersection is an open interval, thus not compact.
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Problem 3

For a point ̃︀𝑥 ∈𝑀 , let𝐷̃︀𝑥 its an open neighbourhood which maps homeomorphically
onto its image along the canonical projection 𝑝 : 𝑀 → 𝑀/𝐺. For the locally
consistent choice of local orientations we take classes 𝛼𝑥 ∈ 𝐻𝑛(𝑀/𝐺,𝑀/𝐺 ∖{𝑥})
that correspond to the given orientation under isomorphisms

𝐻𝑛(𝑀/𝐺,𝑀/𝐺∖{𝑥}) ∼= 𝐻𝑛(𝑝(𝐷̃︀𝑥), 𝑝(𝐷̃︀𝑥)∖𝑥) ∼= 𝐻𝑛(𝐷̃︀𝑥, 𝐷̃︀𝑥∖{̃︀𝑥}) ∼= 𝐻𝑛(𝑀,𝑀∖{̃︀𝑥}),
where 𝑝(̃︀𝑥) = 𝑥.

Problem 4

Vladimir Nowak
Assume 𝑀 is non-orientable. This is equivalent to saying that the orientation

double cover ̃︁𝑀 is connected.
Since 𝑀 is assumed to be connected, and is locally path connected (take a
coordinate ball) it is path connected. Furthermore, since 𝑀 is locally Euclidean,
it is semi-locally simply connected. Thus 𝑀 possesses a universal cover 𝑀𝑈 .
By the classification of connected covering spaces for spaces that possess a uni-
versal cover, the equivalence classes of covering spaces of 𝑀 are in one-to-one
correspondence to the subgroups of 𝜋1(𝑀), where for any subgroup 𝐺 < 𝜋1(𝑀)
there exists an equivalence class of covering maps 𝑝 : 𝑋 →𝑀 , s.t. 𝑝#(𝜋1(𝑋)) = 𝐺.
The index of these subgroups corresponds to the cardinality of the fiber of the

covering. Since 𝑝 : ̃︁𝑀 →𝑀 is a 2 : 1 covering, 𝜋1(𝑀) has a subgroup of index 2.

Problem 5

We have to check the axioms for graded right-modules. Let us write 𝑥, 𝑦 for
elements of the total homology, and 𝑟, 𝑠 for elements of the cohomology ring, and
𝜀 for the unit of the cohomology ring.

∙ 𝑥 ⌢ 𝜀 = 𝑥. This is Proposition 8.1 (2).
∙ 𝑥 ⌢ (𝑟 ⌣ 𝑠) = (𝑥 ⌢ 𝑟)⌢ 𝑠. This follows from Proposition 8.1 (3).
∙ (𝑥+ 𝑦)⌢ 𝑟 = 𝑥 ⌢ 𝑟 + 𝑦 ⌢ 𝑟. This follows from Proposition 8.1 (1).
∙ 𝑥 ⌢ (𝑟 + 𝑠) = 𝑥 ⌢ 𝑟 + 𝑥 ⌢ 𝑠. This follows from Proposition 8.1 (1).
∙ If 𝑥 and 𝑟 are homogeneous, then so is 𝑥𝑟, and deg 𝑥 ⌢ 𝑟 = deg 𝑥+ deg 𝑟.
This follows immediately from the definition of the cap product.

Problem 6

a). The answer is yes.
Indeed, let 𝑡 ∈ 𝐻2(𝑀 ;Q) be a generator. By Poincaré duality for 𝑀 , there is a
class 𝛼𝑡 ∈ 𝐻2(𝑀 ;Q) such that 𝑡 · 𝛼𝑡 = 𝛼𝑡2 ̸= 0. In particular, 0 ̸= 𝑡2 ∈ 𝐻4(𝑀 ;Q).
Taking 𝑡2 as the generator of 𝐻4(𝑀 ;Q) gives an isomorphism of graded rings

𝐻*(𝑀 ;Q) ∼= Q[𝑡]/(𝑡3) ∼= 𝐻*(C𝑃 2;Q).
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b). The answer is no.
Consider 𝑀 = 𝑆2×𝑆4. There is a CW-structure on 𝑀 with one cell in dimensions
0, 2, 4 and 6 and no other cells. As all the differentials are trivial, 𝐻2(𝑆2 ×
𝑆4;Q) ∼= Q. Projection of 𝑆2 × 𝑆4 onto the first factor induces a ring homorphism
𝐻*(𝑆2;Q) → 𝐻*(𝑆2 × 𝑆4;Q) that is an isomorphism on the second cohomology
group. In particular, any element in the second cohomology of 𝑀 is zero once
squared and

𝐻*(𝑆2 × 𝑆4;Q) ≇ Q[𝑡]/(𝑡4) ∼= 𝐻*(C𝑃 3;Q).

Problem 7

Let 𝑓 : C𝑃 3 → C𝑃 3 be a continuous map of degree 𝑑. For 𝑓 * : 𝐻2(C𝑃 3) →
𝐻2(C𝑃 3) define 𝑑′ by 𝑓 *(𝑥) = 𝑑′𝑥, where 𝑥 ∈ 𝐻2(C𝑃 3) is a generator. From our
computation of 𝐻∙(C𝑃 3), we know that 𝑥∪𝑥∪𝑥 is a generator of 𝐻6(C𝑃 3), which
evaluates to 1 on the fundamental class [C𝑃 3]. We have

(𝑑′)3 = ev(𝑑′𝑥 ⌣ 𝑑′𝑥 ⌣ 𝑑′𝑥, [C𝑃 3])

= ev(𝑓 *(𝑥 ⌣ 𝑥 ⌣ 𝑥), [C𝑃 3])

= ev(𝑥 ⌣ 𝑥 ⌣ 𝑥, 𝑓*([C𝑃 3]))

= ev(𝑥 ⌣ 𝑥 ⌣ 𝑥, 𝑑[C𝑃 3])

= 𝑑.

Therefore, the degree has to be a cube, in particular, the answer to a) is no.
For b), consider the map 𝑓 : C𝑃 3 → C𝑃 3 given by the formula:

𝑓
(︀
[𝑧0 : · · · : 𝑧3]

)︀
:= [𝑧20 : · · · : 𝑧23 ].

Applying Problem 9a) to the point 𝑥 = [1 : 1 : 1 : 1] we get that the degree of 𝑓
is exactly 8.
In (real) local coordinates in chart 𝑈3 the map is given by

(𝑥0, 𝑦0, 𝑥1, 𝑦1, 𝑥2, 𝑦2) ↦→ (𝑥20 − 𝑦20, 2𝑥0𝑦0, 𝑥
2
1 − 𝑦21, 2𝑥1𝑦1, 𝑥

2
2 − 𝑦22, 2𝑥2𝑦2),

which has degree one in the given preimages.

Problem 8

no solutions for starred problems
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Problem 9

Jeyakumar Aparna
(a) Let 𝑦 ∈ 𝐵 and 𝑥𝑖 ∈ 𝐵𝑖 be such that 𝑓(𝑥𝑖) = 𝑦. We fix the following notation,

𝐻𝑛(𝑀) 𝐻𝑛(𝑀,𝑀 ∖ 𝑥𝑖) 𝐻𝑛(𝐵𝑖, 𝐵𝑖 ∖ 𝑥𝑖)

[𝑀 ] 𝜇𝑥𝑖
𝜎𝑥𝑖

𝐻𝑛(𝑁) 𝐻𝑛(𝑁,𝑁 ∖ 𝑦) 𝐻𝑛(𝐵,𝐵 ∖ 𝑦)

[𝑁 ] 𝜇𝑦 𝜎𝑦

∼=

∼=

and 𝑓*([𝑀 ]) = deg𝑓.[𝑁 ], 𝑓*(𝜎𝑥𝑖
) = 𝜖𝑖𝜎𝑦. Consider the following commutative

diagram.

𝐻𝑛(𝐵𝑖, 𝐵𝑖 ∖ 𝑥𝑖) 𝐻𝑛(𝐵,𝐵 ∖ 𝑦)

𝐻𝑛(𝑀,𝑀 ∖ 𝑥𝑖) 𝐻𝑛(𝑀,𝑀 ∖ {𝑥𝑖}𝑖) 𝐻𝑛(𝑁,𝑁 ∖ 𝑦)

𝐻𝑛(𝑀) 𝐻𝑛(𝑁)

𝑓*

∼=
incl* ∼=

incl* 𝑓*

incl*
incl*

𝑓*

incl*

The two isomorphisms are due to excision. Again by excision, we see that

𝐻𝑛(𝑀,𝑀 ∖ {𝑥𝑖}𝑖) ∼=
⨁︁
𝑖

𝐻𝑛(𝐵𝑖, 𝐵𝑖 ∖ 𝑥𝑖)

Then, we have the following mappings.

𝜎𝑥𝑖
𝜖𝑖𝜎𝑦

𝜇𝑥𝑖

∑︀
𝑗 𝜇𝑥𝑗

∑︀
𝑖 𝜖𝑖𝜇𝑦

[𝑀 ] deg𝑓.[𝑁 ]

𝑓*

𝑓*

𝑓*

Due to the commutativity of the lower square, deg𝑓 =
∑︀

𝑖 𝜖𝑖.

(b) Suppose 𝑓 : 𝑋 → 𝑌 is a 𝑝-sheeted covering map. Then, there is an open
cover {𝑉𝑖}𝑖 of 𝑌 such that 𝑓−1(𝑉𝑖) = ⊔𝑝

𝑗=1𝑈
𝑖
𝑗 and 𝑓 restricted to each 𝑈 𝑖

𝑗 is a
homeomorphism onto 𝑉𝑖.
Define a map 𝜑 : 𝑋 → {±1} as follows: For 𝑥 ∈ 𝑋, choose 𝑉𝑖 with 𝑓(𝑥) ∈ 𝑉𝑖 and
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𝑥 ∈ 𝑈 𝑖
𝑘 if 𝑓−1(𝑉𝑖) = ⊔𝑝

𝑗=1𝑈
𝑖
𝑗 and set 𝜑(𝑥) = 𝜖𝑥 where 𝜖𝑥 = ±1 according to whether

𝑓 : 𝑈 𝑖
𝑘 → 𝑉𝑖 is orientation preserving or reversing. The definition does not depend

on the choice of the open set 𝑉𝑖.
Note that 𝜑 is locally constant. Since 𝑀 is connected, 𝜑 is constant. Let 𝑦 ∈ 𝑌
and 𝑓−1(𝑦) = {𝑥1, ..., 𝑥𝑝}. From (a), deg 𝑓 =

∑︀𝑝
𝑗=1 𝜖𝑥𝑗

=
∑︀𝑝

𝑗=1 𝜖𝑥1 = ±𝑝.

(c) (We follow the hint given in Hatcher, page 258):
Let 𝑌 be a covering space over 𝑌 with fundamental group Im(𝑓*) ⊂ 𝜋1(𝑌 ). Then,

there exists a lift of 𝑓 , that is, 𝑓 : 𝑋 → 𝑌 such that the following diagram

𝑌

𝑋 𝑌

𝑝
𝑓

𝑓

commutes. Now, 𝑓 = 𝑝 ∘ 𝑓 implies that deg𝑓 = 1 = deg 𝑝 deg 𝑓 . So, deg 𝑝 = ±1.
If the covering 𝑌 is finite-sheeted, then (b) gives that 𝑌 is a one-sheeted covering
of 𝑌 . Hence, Im𝑓* is an index 1 subgroup of 𝜋1(𝑌 ), that is, 𝑓* is surjective. If 𝑌 is
∞−sheeted covering then 𝑌 is non-compact which implies that 𝐻𝑛(𝑌 ) = 0. This
contradicts the fact that deg 𝑝 = ±1.

(d) Firstly, we claim that in the situation as above, we also have that 𝑓* : 𝐻1(𝑋) →
𝐻1(𝑌 ) is also surjective. Indeed, we have the following commutative diagram

𝜋1(𝑋) 𝜋1(𝑌 ) 𝐻1(𝑌 )

𝐻1(𝑋)

𝑓*

𝑓*

where the dotted line is due to the universal property associated with abelianiza-
tion. From the commutativity of the diagram, we get that 𝑓* : 𝐻1(𝑋) → 𝐻1(𝑌 ) is
surjective.

( =⇒ ) Suppose there is a continuous map 𝑓 : Σ𝑔 → Σℎ of degree 1. Then,
using (c), 𝑓* : 𝐻1(Σ𝑔) → 𝐻1(Σℎ) is surjective. That is, there is a surjective map
𝜑 : Z2𝑔 → Z2ℎ. Then, 𝑔 ≥ ℎ.
One way to see this is by tensoring the sequence Z2𝑔 → Z2ℎ → 0 by a field over
Z, say Q. Then, Z2𝑔 ⊗Z Q → Z2ℎ ⊗Z Q → 0 is exact and we get a surjective map
Q2𝑔 → Q2ℎ. Now, using dimension argument for vector spaces over Q, we get the
inequality.

( ⇐= ) Suppose 𝑔 ≥ ℎ. We have the ∆− complex structure on Σ𝑔 as shown
in the picture. Then, [Σ𝑔] is represented by the sum of all 4𝑔 2-simplices with the
indicated sign.
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Define 𝑓 : Σ𝑔 → Σℎ on each of the 2-simplex as follows:
𝛼𝑖 ↦→ 𝛾𝑖 𝛽𝑖 ↦→ 𝜔𝑖 for 1 ≤ 𝑖 ≤ 2ℎ
𝛼2ℎ+𝑖 ↦→ 𝛾1 𝛽2ℎ+𝑖 ↦→ 𝜔2 for 1 ≤ 𝑖 ≤ 2𝑔 − 2ℎ− 1 and 𝑖 odd
𝛼2ℎ+𝑖 ↦→ −𝜔2 𝛽2ℎ+𝑖 ↦→ −𝛾1 for 1 ≤ 𝑖 ≤ 2𝑔 − 2ℎ and 𝑖 even.
Then,

𝑓*([Σ𝑔]) = 𝑓*(

2𝑔∑︁
𝑖=1

([𝛼𝑖]− [𝛽𝑖]))

=

2𝑔∑︁
𝑖=1

[𝑓(𝛼𝑖)]−
2𝑔∑︁
𝑖=1

[𝑓(𝛽𝑖)]

=
2ℎ∑︁
𝑖=1

𝛾𝑖 −
2ℎ∑︁
𝑖=1

𝜔𝑖

= [Σℎ]

Hence, 𝑓 is a continuous map with degree 1.
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