Algebraic Topology II (FS '24, ETHZ)
Coordinator: Sennyou Abramyan

Alg Top I Top. Space X
Singular Chain Complex $C(x)=\cdots \rightarrow C_{1}(x) \xrightarrow{d_{1}} C_{0}(x) \rightarrow 0$ ξ
Homology groups $H_{i}(X)$
Alg Top II Spice up C(X) before taking homology to get more sensitive invariants and more geom. applications

Topics: * Homology with Coefficients (for abelian groups M define chain complex $C(X) \otimes M$
with homology groups $\left.H_{i}(X ; M)\right)$

* Cohomology (Cochain Complex Hoo ($((X), M)$ with Cohomology groups $\left.H^{i}(X ; M)\right)$
* Poincare Duality for compact n-dim manifolds X $\left(H_{i}(X ; M) \cong H^{n-i}(X ; M)\right.$, leading to intersection forms $H_{n / 2}(x) \times H_{n / 2}(x) \rightarrow \mathbb{Z}$ for even n)

Color Scheme: Sections, Date
Def / Thun / Proof etc.
Newly defined terms
References
Corrections
(1) Tensor Products of modules (Spaniel: Intro, Sec 4 \& Atiyah-MacDomald Ch 2 / Tensor Product of modules)

Let R be a commutative ring with 1 (after this section only $R=\mathbb{Z}$). Prop 1 Let M, N be R-modules. Then there exists an R-module T and a bilinear map $\mu: M \times N \rightarrow T$ such that:
For all R-modules K and bilinear maps $f: M \times N \rightarrow K$ there is a unique homomorphism $g: T \rightarrow K$ with $g \circ \mu=f$.

Proof $U:=$ free R-module with basis the set $M \times N$.
$I:=$ submodule of U generated by

$$
\left\{\left(\lambda x+x^{\prime}, y\right)-\lambda(x, y)-\left(x^{\prime}, y\right) \mid \lambda \in R, x, x^{\prime} \in M, y \in N\right\}
$$

$\cup\left\{\left(x, \lambda y+y^{\prime}\right)-\lambda(x, y)-\left(x, y^{\prime}\right) \mid \lambda \in R, x \in M, y, y^{\prime} \in N\right\}$
Let $T=U / I$ and $\mu: M \times N \rightarrow T, \mu(x, y)=[(x, y)]$ Check that μ is bilinear! Now let $f: M \times N \rightarrow K$ as above be given. Check existence of g :
Let $\tilde{g}: U \rightarrow K$ be the homomorphism with $\tilde{g}((x, y))=f(x, y)$. Check that $I \subseteq$ her $\tilde{g} \Rightarrow \tilde{g}$ induces $g: T \longrightarrow K$.
We have $g(\mu(x, y))=g([(x, y)])=\tilde{g}((x, y))=f(x, y)$ Check uniqueness of g :
If $g^{\prime}: T \rightarrow K$ with $g^{\prime} \circ \mu=f$, then $g^{\prime}([(x, y)])=g([(x, y)])$ for all $x \in M, y \in N$. But such $[(x, y)]$ generate $T \Rightarrow g=g^{\prime}$

Prop 2 If $\mu: M \times N \rightarrow T$ and $\mu^{\prime}: M \times N \rightarrow T^{\prime}$ both satisfy the condition in Prop 1, then there is a unique isomorphisen $\varphi: T \rightarrow T^{\prime}$ such that $\varphi_{0} \mu=\mu^{\prime}$.

Proof By assumption (existence of g), $\exists \varphi: T \rightarrow T^{\prime}$ with $\varphi_{0} \mu=\mu^{\prime}$ and $\exists \psi: T^{\prime} \longrightarrow T$ with $\psi \mu^{\prime}=\mu$. Then $\psi \circ \varphi: T \rightarrow T$ with $\psi \circ \varphi \circ \mu=\mu$. By assumption (uniqueness of g) $\Rightarrow \psi \circ \varphi=i d$. Similarly $\quad \varphi \cdot \psi=i d_{T}$.
Def T as in Prop 1 is called the tensor product of M and N over R, written $M \otimes_{R} N$. Drop R if there is no ambiguity. Write $x \otimes y=\mu(x, y) \in M_{R}^{\otimes} N$.

Notation x and \oplus is the same for finitely many modules.
Prop 3 (1) \exists iso $M \otimes N \rightarrow N \otimes M$ with $x \otimes y \longmapsto y \otimes x$.
(2) \exists iso $(M \oplus N) \otimes K \rightarrow(M \otimes K) \oplus(N \otimes K)$ with

$$
(x, y) \otimes z \longmapsto(x \otimes z)+(y \otimes z)
$$

(3) $I \subseteq \mathbb{R}$ ideal $\Rightarrow \exists$ iso $(R / I) \otimes M \rightarrow M / I M$ with $r \otimes m \longmapsto[\mathrm{rm}]$

Rok 4 Special case of (3): 1 so $R \otimes M \rightarrow M, \quad v \otimes m \mapsto r m$.

Proof of Prop 3 (1)

Let $h: M \oplus N \rightarrow N \oplus M$ be the haman. with $(x, y) \longmapsto(y, x)$.
Then $\mu_{N, M} \circ h: M \oplus N \rightarrow N \otimes M$ is bilinear.
By the universal property of $\otimes, \exists \varphi: M \otimes N \rightarrow N \otimes M$ with $\varphi \circ \mu_{M, N}=\mu_{N, M} \circ h$, ie $\varphi(x \otimes y)=y \otimes x$.
Let ψ be the analognous home with M,N switched \Rightarrow φ, ψ are mutually inverse homomorphisms.
In the lecture, a similar (but incorrect) proof was given, based on the erroneous assumption that h is bilinear (it is, in fact, linear).
Proof of (2)-(4): Exercises.
Rmk5 Using Prop 3, we can calculate $M \underset{R}{M} N$ for all finitely generated abelion gramps M, N.
Example $6 \mathbb{Z}^{2} \otimes \mathbb{R}^{2}=(\mathbb{R} \otimes \mathbb{Z}) \otimes(\mathbb{R} \oplus \mathbb{R}) \cong \mathbb{R}^{4}$
So $\mathbb{R}^{2} \otimes \mathbb{Z}^{2}$ is free with basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$. Careful! Not every element of $\mathbb{R}^{2} \otimes \mathbb{Z}^{2}$ is of the form $x \otimes y$, eg $e_{1} \otimes e_{1}+e_{2} \otimes e_{2}$ isn't (and isn't equal to $\left(e_{1}+e_{2}\right) \otimes\left(e_{1}+e_{2}\right)$).

Rok (1) Every element of $M \otimes N$ is equal to $\sum_{i=1}^{M} x_{i} \otimes y_{i}$ for some Finite $n, x_{i} \in M, y_{i} \in N$.
(2) $(\lambda x) \otimes y=x \otimes(\lambda y)$
(3) $\left(x+x^{\prime}\right) \otimes y=x \otimes y+x^{\prime} \otimes y$

Prop $8 \quad f: M \rightarrow N, \quad f^{\prime}: M^{\prime} \rightarrow N^{\prime} \quad R$-module homos. 23 Feb 5
(1) Z homo $f \otimes f^{\prime} M \otimes M^{\prime} \rightarrow N \otimes N^{\prime}$ with $x \otimes x^{\prime} \mapsto f(x) \otimes f^{\prime}\left(x^{\prime}\right)$.
(2) $\left(f \otimes f^{\prime}\right) \circ\left(g \otimes g^{\prime}\right)=(f \circ g) \otimes\left(f^{\prime} \circ g^{\prime}\right)$.
(3) $(f+g) \otimes f^{\prime}=f \otimes f^{\prime}+g \otimes f^{\prime}$ and similarly in second factor.

Pf (1) Induced by the bilinear map $M \times M^{\prime} \rightarrow N \otimes N^{\prime}$,

$$
\left(x, x^{\prime}\right) \longmapsto f(x) \otimes f^{\prime}\left(x^{\prime}\right)
$$

(2), (3) Check that $x \otimes x$ ' hae the same inge under both maps.

Prop 9 Man abelian group, S a commutative ring. Then $M \notin S$
Carries an S-module structure given by $S \cdot(x \otimes t)=x \otimes s t$.
For homom $f: M \rightarrow N$ and S-homom $g: S \rightarrow S$,
$f \otimes g: M \otimes S \rightarrow N \otimes S$ is an S-homom.
Proof: Exercise (careful: why is the function $x \otimes t \mapsto x \otimes s t$ well-def?).
Category theory intermezzo
Reminder A Category E consists of a class $|\varepsilon|$ of objects, for all $X, Y \in|\varepsilon|$ a set $\varepsilon(X, Y)$ of morplisums wite a distinguished identity momplism $1_{X} \in \varepsilon(x, x)$, and composition functions $0: \varepsilon(X, Y) \times \varepsilon(T, Z) \rightarrow \varepsilon(X, Z)$ such that $(f \circ g) \circ h=f \circ(g \circ h)$ and $f \circ 1_{x}=1_{x} \circ f=f$. A (covariant) functor $F: \varepsilon \rightarrow D$ consists of functions $|\varepsilon| \rightarrow|D|$ and $\varepsilon(X, Y) \rightarrow D(F X, F Y)$ with $F(f \circ g)=F f \cdot F_{g}$ and $F 1_{x}=1_{F x}$. For a contravariont functor, one has instead $E(X, Y) \rightarrow \infty(\mp Y, F X)$ and $F(f \circ g)=F g \circ F f$.

Def A preadditive category E is a category wite. abelian group structures on $\mathcal{E}(X, Y)$, such that compositions are bilinear. A functor F between preadditive $C \longrightarrow \infty$ is additive if the functions $\varepsilon(X, Y) \rightarrow D(F X, \bar{Y}) \quad($ or $\rightarrow \infty(\bar{Y}, F X)$ if F is contravariant) are linear.

Examples $10 \quad R$ commentative ring with 1.
(1) The category R-Mod of R-modules and R-homomorphisms is preadditive.
(2) Chain complex over a preadditive category E : sequence of $C_{0}, C_{1}, \ldots \in|E|$ and momplisms $d_{1}: C_{1} \rightarrow C_{0}, d_{2}: C_{2} \rightarrow C_{1}, \ldots$ with $d_{i} \circ d_{i+1}=0$. The cat. Cl (E) of \mathcal{E}-chain complexes and chain maps is again preadditive. Chain maps $f: C \rightarrow C^{\prime}$ are sequences for f_{1}, \ldots with $f_{i} \in \varepsilon\left(C_{i}, C_{i}^{\prime}\right)$ and $f_{i} \circ d_{i+1}$ $=\alpha_{i+1}^{\prime}$ of i+1 for all $i \geqslant 0$.
(3) Cat of Top space $\longrightarrow \mathrm{Ch}($ R-Mod $)$, $x \longmapsto C(x), \quad f \longmapsto f_{c}$ is a functor $\left(A \lg T_{o p} I\right)$
(3') Refinement of (3): Functor
Cat of Pairs of Top space $\rightarrow C h\left(\lambda-R_{0 d}\right)$
$(X, A) \longmapsto C(X, A)$,
$f \longmapsto f_{c}$
Objects: (X, A) with X Top space, $A \subseteq X$.
Morplisme $f:(X, A) \rightarrow(Y, B): \quad f: X \rightarrow Y$ cont. with $f(A) \subseteq B$.
(4) $\quad \operatorname{Ch}(R-\operatorname{Mod}) \longrightarrow R-\operatorname{Mod}, \quad C \mapsto H_{i}(C):=\operatorname{ker} d_{i} / \min d_{i+1}$ $f \longmapsto f_{k}$ are addilive functors for each fixed $i \geqslant 0$.
(5) Composing (3^{\prime}) and (4) gives functor

Pairs of top spaces $\longrightarrow \mathbb{Z}$-Mod, $(X, A) \longmapsto H_{i}(X, A)$, $f \longmapsto f *$.
(6) M a fixed R-module. Then R-Mod $\longrightarrow R$-Mod, $N \longmapsto N \otimes \underset{R}{\otimes}, \quad f \longmapsto f \otimes i d_{M}$ also written as $f \otimes M$ is an additive functor! (see Prop 8)
(6^{\prime}) \mathbb{Z}-Mod $\rightarrow S$ - Mod, $M \longmapsto M \underset{R}{\otimes} S, \quad f \longmapsto f \otimes i d s$ is another additive functor (see Prop 9)
(2) Homology with coefficients Spanier 5.1, Hatcher 2.2 X top. space, $A \subseteq X, M$ an abelion group.
Prop 1

$$
\cdots \underset{d_{2} \otimes i d_{M}}{\longrightarrow} C_{1}(x, A) \otimes M \underset{d_{1} \otimes i d_{M}}{\longrightarrow} C_{0}(x, A) \otimes M \longrightarrow 0
$$

is a chain complex.
Proof postponed.
Def We call the complex in Prop 1 the chain complex of (x, A) with coefficients in M. denoted by $C(X, A) \oplus M$. We call $H_{i}(C(X, A) \otimes M)$ the ii th homology group with coefficients in M, denoted by $H(X, A ; M)$.
Rok $2 C(X, A) \oplus \mathbb{R}$ is naturally isomopolic to $C(X, A)$.

Goal Chain complexes \& homology groups with any coefficients M 8 have all the good properties proven for \mathbb{Z} coefficients in Alg Top I. Rank 4 Recall $C_{i}(x)$ is a free 2 -module with basis the singular simplexes $\sigma: \Delta^{i} \rightarrow X \Rightarrow C_{i}(X) \otimes M \cong \bigoplus_{\sigma: \Delta^{i} \rightarrow x} M$. So one may think of a chain in $C_{i}(X) \otimes M$ as a finite linear combination with coefficients $m_{j} \in M$ of singular simplexes σ_{i} : $\sum_{j=1}^{n} \sigma_{j} \otimes m_{j}$.

Def (Eiteuberg-Steenrod Axioms, from Alg Top I)
A homology theory it the following.
Data: For all $x \in \mathbb{R}$:

* Functors h_{n} from Cat of pairs of spaces $\rightarrow \pi-$ Mod.
* Natural Homomorphisms $\partial: h_{n+1}(X, A) \rightarrow h_{n}(A):=h_{n}(A, \phi)$ $\longrightarrow \quad \ln n+1(x, A) \xrightarrow{\partial} \ln (A)$ Commutes for all Cont. $f:(x, A) \rightarrow(T, B)$

Axioms: (1) $f \simeq g \Rightarrow f_{*}=g_{*}$ (Homotopy)
(2) $\bar{u} \subseteq A^{0}$, inclusion i: $(x \backslash u, A \backslash u) \rightarrow(x, A) \Rightarrow i_{x}$ iso (Excision)
(3) hn (one point space) $=0$ for $n \neq 0$ (Dimension)
(4) For inclusions is: $X_{\alpha} \longrightarrow \frac{11}{\alpha} X_{\alpha}$,
$\left(\oplus \operatorname{hn}\left(X_{\alpha}\right) \xrightarrow{\sum_{\alpha}\left(i_{\alpha}\right)_{t}} \ln _{n}\left(\frac{11}{\alpha} X_{\alpha}\right)\right.$ is an iso. (Additivity)
(5) There are long exact sequences (Exactness)

$$
\ldots \rightarrow h_{n}(A) \xrightarrow{i n d_{*}} h_{n}(x) \xrightarrow{\text { ind }_{*}} h_{n}(x, A) \xrightarrow{\partial} h_{n-1}(A) \rightarrow \ldots
$$

A move precise Goal Thu $5 H_{n}(; M)$ is a homology theory.
Prop $6 F: 1$-Mod $\rightarrow \varepsilon$ an additive functor.
(1) An additive functor $C h(\lambda-M o d) \rightarrow C h(\varepsilon)$, which we also denote by F, is given by sending a chain complex C.

$$
F(c)=\ldots \rightarrow F C_{2} \xrightarrow{F d_{2}} F C_{1} \xrightarrow{F d_{1}} F C_{0} \longrightarrow 0
$$

and a chain map $f: C \rightarrow C^{\prime}$ to $F(f)$ with $F(f)_{i}=F\left(f_{i}\right)$.
(2) If $f, g: C \rightarrow C^{\prime}$ are homotopic, them so are $F(f)$ and $F(g)$.
(3) $f: C \longrightarrow C^{\prime}$ a homotopy equivalence \Rightarrow so is Ff.

Proof (1) $F d_{1} \circ F d_{2}=F\left(d_{1} \circ d_{2}\right)=F 0=0$

Check that F is an additive functor.
(2) $f \simeq g \Rightarrow \exists$ homotopy $h: C \longrightarrow C^{\prime}$, ie $h_{i}: C_{i} \rightarrow C_{i+1}^{\prime}$,

with

$$
h d+d^{\prime} h=f-g
$$

$\Rightarrow F h: F C \rightarrow F C^{\prime}$ homotopy and $F h F d+F d^{\prime} F h=F f-F g$.
(3) $g: C^{\prime} \rightarrow C$ and $f \cdot g \simeq i d_{C^{\prime}}, g \circ f \simeq i d C \Rightarrow$

$$
F(f) \cdot F(g) \simeq i d^{\prime} F\left(c^{\prime}\right)
$$

$$
F(g) \circ F(f) \simeq i d F(c)
$$

Corollary 7 (apply Prop 6 to $F=-\otimes M$)
(1) $((X, A) \otimes M$ is a chain complex (that was Prop 1)
(2) Cont. $f:(X, A) \rightarrow(Y, B)$ induce chain maps $f_{c} \otimes i d M: \quad C(X, A) \otimes M \rightarrow C(Y, B) \otimes M$.
(3) $f \simeq g \Rightarrow f_{c} \otimes M \simeq g_{c} \otimes M$.
(4) $f_{c} \otimes M$ induces $f_{*}: H_{m}(X, A ; M) \rightarrow H_{M}(Y, B ; M)$

Notation We'll write f_{c} for $f_{c} \otimes$ id M
Overview of functor

Rank 8 For a commutative ring $S, C(X, A) \otimes S$ is a chain complex over $S, H_{i}(x, A ; S)$ is an S-module, and f_{c} and f_{*} are S-linear. Particularly useful for S a field!

We have constructed half of the data to show $H_{m}(-; M)$ is a homology theory, and we have proved axiom (1) (Homotopy)

Proof of Axiom (2) (Excision) $i_{c}: C(x \backslash u, A \backslash u) \rightarrow C(x, A)$ is a homotopy equivalence (Alg Top I).
$-\otimes M: C h(\mathbb{Z}$-Mod $) \rightarrow C h(\Omega-\operatorname{Mod})$ preserves homotopy equiv. (by Prop 5(3)).
$\Rightarrow i_{c} \otimes M$ is a homs. equiv.
$\Rightarrow i_{*}: H_{\mu}(x>4, A \backslash U ; M) \rightarrow H_{\mu}(x, A: M)$ is an iso.

Proof of Axiom (3) (Dimension) For X the one-point space,

$$
\begin{align*}
& C(x) \cong \quad \cdots \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} 0 \\
& \Rightarrow C(x) \otimes M \cong \ldots \xrightarrow{\cong} M \xrightarrow{i d_{M}} M \xrightarrow{\circ} M \xrightarrow{i d M} \\
& \Rightarrow H_{n}(X, M) \cong \begin{cases}M & n=0 \\
0 & e l s e\end{cases}
\end{align*}
$$

Proof of Axiom (4) (Additivity) $\bigoplus_{\alpha} C\left(x_{\alpha}\right) \xrightarrow{\sum\left(i_{\alpha}\right) c} C(x)$ is a homolopy equiv. (Alg Top $I) \Rightarrow$ so is $\left(\oplus C\left(X_{\alpha}\right)\right) \otimes R \xrightarrow{(S(-i \alpha)) \otimes i d r} C(x) \otimes \pi$, which is isomumplic b $\oplus\left(C\left(X_{\alpha}\right) \otimes M\right) \xrightarrow{\sum\left(i_{\alpha}\right)_{c} \otimes d m} C(X) \otimes M \quad \square$

Construction of connecting maps D and Proof of Axiom (5) (Exactness)

$$
0 \longrightarrow C(A) \xrightarrow{\text { incl }} C(x) \xrightarrow{\text { incl }} C(x, A) \rightarrow 0 \text { is a SES of }
$$

Chain complexes of free abelian groups \Rightarrow

$$
0 \rightarrow C(A) \otimes \Pi \xrightarrow{\text { incl }} C(X) \otimes \Pi \xrightarrow{\text { incl }}((X, A) \otimes M \rightarrow 0
$$

is abs exact! (Exercise)
This concludes the proof, using:
Lemuria 8 ($A l_{s} T_{o p}$ I) if $0 \rightarrow C \xrightarrow{f} D \xrightarrow{g} E \rightarrow 0$ is a SES of chain complexes over a ring, then there is a LES in homology:

$$
\ldots \longrightarrow H_{m}(c) \xrightarrow{f_{*}} H_{m}(D) \xrightarrow{g_{*}} H_{m}(E) \xrightarrow{\partial} H_{m-1}(c) \rightarrow \ldots
$$

Moreover, the ∂ may be chosen naturally, which means:

$$
0 \rightarrow C \xrightarrow{f} D \xrightarrow{g} E \rightarrow 0
$$

If $\quad \alpha \downarrow \quad \beta \downarrow \quad \gamma \downarrow$ is commutative with exact rows $0 \rightarrow C^{\prime} \rightarrow D^{\prime} \longrightarrow E^{\prime} \rightarrow 0$

$$
H_{m}(E) \xrightarrow{\partial} H_{m-1}(C)
$$

then

Useful theorems for homology with 2 -coefficients may now be generalized to arbitrary coefficients M in one of the following ways:

* Deduce from Eilenberg - Steenvod axioms
* Dean ce from the \mathbb{Z}-version
* Prove in the same way as for $\mathbb{2}$
$\operatorname{Prop} 9 H_{0}(X ; M) \cong \bigoplus_{z \in \pi_{0}(X)} \underbrace{\left\{\left[\sigma_{z} \otimes m\right] \mid m \in M\right\}}_{\cong M}$, where one chooses $\sigma_{z}: \Delta_{\{*\}}^{0} \rightarrow X, \sigma(*) \in Z \quad$ for end path-comnocted comp. $Z \in \pi_{0}(X)$.

Theorem10(Mayer-Vietoris) if $A, B \subseteq X$ with $A^{\circ} \cup B^{\circ}=X$, then there

$$
\begin{aligned}
& \text { is a LES } \\
& \ldots \rightarrow H_{n}(A \cap B ; M) \xrightarrow{\left(\begin{array}{l}
\text { ind } l_{x} \\
\text { id x }
\end{array} H_{n}(A ; M) \oplus H_{m}(B ; \pi) \xrightarrow{(\text { ind* }} \text {-ind } d_{n}\right)} H_{m}(x ; \Pi) \rightarrow H_{n-1}(A \cap B ; \Pi) \rightarrow \ldots
\end{aligned}
$$

Theorem 11 if (x, A) is a good pair lie $A \subseteq X$ is closed and a strong deformation retract of X), then the projection map $p: X \rightarrow X / A$ induces iso

$$
P_{*}: H_{M}(X, A ; M) \rightarrow H_{M}(X / A, A / A ; M) \cong \tilde{H}_{M}(X / A ; M)
$$

Remark 12 Reduced homology groups $\tilde{H}_{m}(X, M)$ may be defined as over 2 coefficients for $x \neq \phi$. One has

$$
\tilde{H}_{n}(x ; M) \cong H_{n}\left(x,\left\{x_{0}\right\}: M\right\} \underset{i f n>0}{\cong} H_{m}(x)
$$

and $H_{0}(x ; M) \cong M \oplus \tilde{H}_{0}(X, M)$.
Def (AlgTopI) X a $C W$-complex with cells e_{α}^{u}. Let $C_{n}^{c w}(X)=$ free abblian group with basis $e_{\alpha}^{\mu} \quad$ and $d: C_{m}^{c w}(x) \rightarrow C_{m-1}^{c w}(x)$ given by $d e_{\alpha}^{\mu}=\sum_{\beta} d_{\alpha \beta} e_{\beta}^{m-1}$, where $d_{\alpha \beta} \in \mathbb{R}$ is the degree of

$$
\begin{aligned}
& S^{n-1} \underset{\substack{\text { attaching } \\
\text { map of } e_{\alpha}^{n}}}{ } X^{n-1} \underset{(n-1) \text {-shaletom of }}{\left(X^{n-1} \backslash e_{\beta}^{n-1}\right)} \underset{\substack{k<m \\
\alpha}}{ } e_{\alpha}^{k} S^{n-1}
\end{aligned}
$$

$C^{c w}(X)$ is the cellular claim complex of X and $H_{n}^{c w}(X):=H_{n}\left(C^{c w}(X)\right)$ the cellular homology of X.

Theorem 13 $H_{n}^{c w}(X ; M):=H_{n}\left(C^{c w}(X) \otimes M\right) \cong H_{n}(X ; M)$
(3) Calculations \& the theorem of Borsuk-lllam

Prop 1 For all $k \geqslant 0, \quad \tilde{H}_{n}\left(S^{k} ; M\right) \cong M$ if $n=k$, trivial otherwise Three ways to prove it (1) S^{k} has a CW structure with one O-all, one k-all.
(2) Mayer-Vietoris with $A=S^{k} \backslash e_{1}, B=S^{k} \backslash-e_{1}$
(3) LES of the good pair $\left(D^{k}, \partial D^{k}\right)$

Def Real Projective k-space $\mathbb{R} P^{k}:=S^{k} / x \sim-x$
$\operatorname{Rruk} 2 * \mathbb{R} P^{k} \cong\left(\mathbb{R} P^{k+\lambda} \backslash \overrightarrow{0}\right) / x \sim \lambda_{x}$ for all $\lambda \in \mathbb{R} \backslash 0$

* $\mathbb{R} P^{0}=$ one point space, $\quad \mathbb{R}^{1} \cong S^{1}$

$$
\text { * Alg Top I: } H_{n}\left(\mathbb{R} P^{k} ; \mathbb{Z}\right) \cong \begin{cases}\pi & n=0 \\ R / 2 & 1 \leq n \leq k-1, n \text { odd } \\ 0 & 1 \leq n \leq k-1, n \text { even } \\ \pi & n=k \text { odd } \\ 0 & n=k \text { even } \\ 0 & k+1 \leq n\end{cases}
$$

Prop $3 H_{n}\left(\mathbb{R} P^{k} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2$ if $0 \leq n \leq k$ and 0 otherwise.
Prop 4 Let $f: Y \rightarrow X$ be a twofold covering. Then there is a LES

$$
\ldots \rightarrow H_{n}(X ; \mathbb{Z} / 2) \rightarrow H_{n}(Y ; \mathbb{R} / 2) \xrightarrow{f_{*}} H_{n}(X ; \mathbb{R} / 2) \rightarrow H_{n-1}(X ; \mathbb{R} / 2) \rightarrow \ldots
$$

(a special case of the bysin LES)
Proof Recall that: a cont. map $\sigma: Z \rightarrow X$ on a contractible space Z has exactly two lift $\tilde{\sigma}_{1}, \tilde{\sigma}_{2}: Z \longrightarrow Y$. Here, a lift is a map $\tilde{\sigma}: Z \rightarrow Y$ so that

commutes.

Define the so-called transfer homomorphism $T: C_{n}(X) \longrightarrow C_{n}(Y) / 15$ by $T\left(\sigma: \Delta^{n} \rightarrow x\right)=\tilde{\sigma}_{1}+\tilde{\sigma}_{2}$. Check that T is a chain map. Well show that the short sequence of complexes

$$
0 \rightarrow C(x) \otimes \mathbb{R} / 2 \xrightarrow{T} C(y) \otimes \mathbb{R} / 2 \xrightarrow{f_{c}} C(x) \otimes \mathbb{Z} / 2 \longrightarrow 0
$$

is exact. This induces the derived (ES in homology (Lemma 2.9).

* f_{c} surgective Lith exist.
* Tis ingective. For a sing simplex $\tau: \Delta^{n} \rightarrow x$,
let $P_{\tau}: C(x) \otimes \pi / 2 \rightarrow \mathbb{R} / 2$ be the projection $\sum_{\sigma} \sigma \otimes \lambda_{\sigma} \mapsto \lambda_{\tau}$.
$c=\sum_{\sigma} \sigma \otimes \lambda_{\sigma} \neq 0 \Rightarrow \exists \tau$ with $\lambda_{\tau}=1$ for some τ
$\Rightarrow \lambda_{\tilde{\tau}}(T(c))=1$ for $\tilde{\tau}$ a lift of $\tau \Rightarrow T(c) \neq 0$.
* in $(T)=\operatorname{her} f_{c} \cdot f_{c}\left(c=\sum_{\sigma} \sigma \otimes \lambda_{\sigma}\right)=0$

$$
\Leftrightarrow p_{\tau}\left(f_{c}(c)\right)=0 \quad \forall \tau: \Delta^{n} \rightarrow X .
$$

Since $p_{\tau}\left(f_{c}(c)\right)=p_{\tilde{\tau}_{1}}(c)+p \tilde{\tau}_{2}(c)$, it follows that

$$
\begin{aligned}
f_{c}(c)=0 & \Leftrightarrow c=\sum_{\tau: \Delta^{n} \rightarrow x} \lambda_{\tau}\left(\tilde{\tau}_{1}+\tilde{\tau}_{2}\right)=T\left(\sum_{\tau} \lambda_{\tau} \tau\right) \\
& \Leftrightarrow c \in \operatorname{im}(T) .
\end{aligned}
$$

Last time
Prop 4 Let $f: Y \rightarrow X$ be a twofold covering. Then there is a LES

$$
\ldots \rightarrow H_{n}(X ; \mathbb{Z} / 2) \rightarrow H_{n}\left(Y ; \mathbb{Z}(2) \xrightarrow{f_{x}} H_{n}(x ; \mathbb{R} / 2) \rightarrow H_{m-1}(X ; \mathbb{R} / 2) \rightarrow \ldots\right.
$$

(a special case of the bysin LES)
Today For the remainder of (3): $H_{m}(x, A)$ means $H_{m}(x, A ; \mathbb{R} / 2)$
Prop $3 H_{n}\left(\mathbb{R} P^{k}\right) \cong \mathbb{Z} / 2$ if $0 \leqslant n \leqslant k$ and 0 otherwise.
Proof We already know this for $n=0,1$. So assume $n \geq 2$.
For the covering $f: S^{n} \rightarrow \mathbb{R} P^{n}$, the Gysin LES breaks into pieces:

$$
0 \rightarrow H_{1}\left(\mathbb{R} P^{u}\right) \xrightarrow{\partial} H_{0}\left(\mathbb{R} P^{m}\right) \xrightarrow{T_{*}} H_{0}\left(S^{u}\right) \xrightarrow{f_{*}} H_{0}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

All homology groups are $\pi / 2$-vector spaces (by Rush 2.8).
f_{*} surjective and $H_{0}\left(S^{\mu}\right) \Rightarrow H_{0}\left(\mathbb{R}^{\mu}\right) \cong \mathbb{R} / 2$ or 0 .

$$
\begin{aligned}
& \text { Exaction at } H_{0}\left(S^{n}\right) \Rightarrow H_{0}\left(\mathbb{R} P^{n}\right) \cong R / 2 \Rightarrow f_{*}=1 \Rightarrow T_{*}=0 \\
& \Rightarrow H_{1}\left(\mathbb{R} p^{n}\right) \cong \mathbb{R} / 2 \\
& 0 \rightarrow H_{k}\left(\mathbb{R} p^{n}\right) \xrightarrow{\partial} H_{k-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0 \text { if } k \notin\{0,1, n, n+1\}
\end{aligned}
$$

So, $H_{k}\left(\mathbb{R} P^{m}\right) \cong H_{k-1}\left(\mathbb{R} P^{M}\right) \Rightarrow H_{k}\left(\mathbb{R} P^{m}\right) \cong \mathbb{R} 2$ for $k \leqslant n-1$ by induction.

$$
0 \rightarrow H_{n+1}\left(\mathbb{R} P^{n}\right) \xrightarrow{\partial} H_{n}\left(\mathbb{R} P^{n}\right) \xrightarrow{T_{*}} H_{n}\left(S^{n}\right) \xrightarrow{f_{*}^{*}} H_{n}\left(\mathbb{R} P^{m}\right) \xrightarrow{\partial} H_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

Since \mathbb{R}^{2} has a $C W$-structure without k-cells for $k \geqslant n+1$ $\Rightarrow H_{k}\left(\mathbb{R}^{n}\right)=0$ for $k \geqslant n+1$.
$\Rightarrow H_{m}\left(\mathbb{R}^{m} P^{n}\right)$ surjects ono $R / 2$, and injects into $\mathbb{R} / 2$

$$
\Rightarrow H_{n}\left(\mathbb{R} p^{n}\right)^{\approx}=R / 2 .
$$

Prop 5 The Gysin sequence from Prop 4 is natural, ie if

Commutes and f, f^{\prime} are two fold coverings, then

$$
\begin{aligned}
& \cdots \rightarrow H_{n}(x) \xrightarrow{T_{*}} H_{\mu}(y) \xrightarrow{f_{*}} H_{\mu}(x) \xrightarrow{\partial} H_{n-1}(X) \rightarrow \ldots \\
& \int \beta_{*} \quad \downarrow \alpha_{*} \quad \int \beta_{*} \downarrow \beta_{*} \\
& \cdots \longrightarrow H_{n}\left(X^{\prime}\right) \underset{T_{*}}{\longrightarrow} H_{n}\left(y^{\prime}\right) \underset{f_{*}^{\prime}}{\longrightarrow} H_{n}\left(X^{\prime}\right) \underset{\partial}{\partial} H_{m-n}\left(X^{\prime}\right) \rightarrow \ldots
\end{aligned}
$$

Commutes.
Proof Check that

$$
\begin{aligned}
& 0 \rightarrow C_{n}(x) \otimes R / 2 \xrightarrow{T} C_{n}(y) \otimes R / 2 \xrightarrow{f c} C_{n}(x) \otimes R / 2 \rightarrow 0 \\
& \beta_{c} \downarrow \xrightarrow[\alpha_{c} \downarrow]{ } \beta_{c} \downarrow \\
& 0 \rightarrow C_{m}\left(x^{\prime}\right) \otimes R / 2 \underset{T}{\longrightarrow} C_{m}\left(y^{\prime}\right) \otimes R / 2 \xrightarrow[f_{c}^{\prime}]{ } C_{m}\left(x^{\prime}\right) \otimes R / 2 \rightarrow 0
\end{aligned}
$$

commutes, then use Lemma 2.8.

Borsuk-Weam Theorem $f: S^{n} \rightarrow \mathbb{R}^{\mu}$ continuous \Rightarrow

$$
\exists x \in S^{M}: \quad f(x)=f(-x)
$$

Proof if no such x exists, let $g: S^{m} \longrightarrow S^{n-1}$, $g(x)=\frac{f(x)-f(-x)}{\|f(x)-f(-x)\|}$. Then $g(-x)=-g(x)$.

This contradict the following theorem.
Theorem 6 There is a cont. map $g: S^{n} \rightarrow S^{m}$ with and $g(-x)=-g(x) \Longleftrightarrow \quad n \leqslant m$.

Proof if $n \leqslant m$, the embedding $i:\left(x_{1}, \ldots, x_{n+1}\right)$
$\longrightarrow\left(x_{1}, \ldots, x_{n+1}, 0, \ldots 0\right)$ satisfies $i(-x)=-i(x)$.
For the other clirection, assume $n>m \geqslant 1$ and
let such a g be given. If $p_{n}(x)=p_{n}(y)$, then $p_{m} \circ g(x)=p_{m} \circ g(y)$. Because the covering p_{m} is a quotient map, these is $h: \mathbb{R} p^{m} \rightarrow \mathbb{R}^{m}$ s.t.

Commutes.
Now, apply Prop 5 (naturality of the Gean sequence) to the pieces of the Gysin (ES (see proof of Prop 3):

$$
\begin{aligned}
& 0 \rightarrow H_{k}\left(\mathbb{R} P^{n}\right) \xrightarrow{150} H_{k-1}\left(\mathbb{R} P^{n}\right) \\
& \int_{h_{*, k}} \rightarrow 0 \\
& 0 \rightarrow H_{k}\left(\mathbb{R} P^{m}\right) \rightarrow h_{i, k-1} \\
& 0\left(\mathbb{R} P^{m}\right) \rightarrow 0
\end{aligned}
$$

commutes for $1 \leq k \leq m-1$. Also, $h_{*, 0}$ iso because $\mathbb{R}^{P^{n}}, \mathbb{R} p^{m}$ path-connected $\Rightarrow h_{*, r}$ iso $\Rightarrow h_{*, 2}$ iso $\Rightarrow \ldots \Rightarrow h_{*, n-1}$ iso.

Contradiction!

The Ham Sandwich Theorem $A_{1}, \ldots, A_{n} \subseteq \mathbb{R}^{n}$ Lebesgue-measurable \& bounded $\Rightarrow \exists$ hyperplane in \mathbb{R}^{n} cutting each A_{i} in half by volume.
Proof Identify \mathbb{R}^{n} with $\mathbb{R}^{n} \times\{1\} \subseteq \mathbb{R}^{n+1}$.

For $x \in S^{n}$, let $H_{x}=\mathbb{R}^{n} x\{1\} \cap\left\{y \in \mathbb{R}^{n+1} \mid\langle x, y\rangle=0\right\}$

$$
V_{x}=\mathbb{R}^{\mu} \times\{\wedge\} \cap\left\{y \in \mathbb{R}^{n+n} \mid<x, y>\geqslant 0\right\}
$$

Let $f: S^{n} \rightarrow \mathbb{R}^{n}, \quad f i(x)=\operatorname{vol}\left(V_{x} \cap A_{i}\right)$.
f is continuous sine the A_{i} are bounded.
Borsuk_Ulam $\Rightarrow \exists x \in S^{n}: f(x)=f(-x)$

$$
\Rightarrow \operatorname{vol}\left(V_{x} \cap A_{i}\right)=\operatorname{vol}\left(V_{-x} \cap A_{i}\right)=\operatorname{vol}\left(A_{i} \backslash V_{x}\right)
$$

$\Rightarrow H_{x}$ cuts all A_{i} in half.
(4) The Universal Coefficient Theorem for Homology

The splitting Lemma For a SES $0 \rightarrow M \xrightarrow{f} N \stackrel{g}{\rightarrow} p \rightarrow 0$ of abelian groups, the following are equivalent:
(1) There is a commutative diagram with exact rows

(2) $\exists i: P \rightarrow N$ with goi $=i d p$.
(3) $\exists r: N \rightarrow M$ with $r \circ f=i d M$

SES satisfying these conditions are called Split.
UCT for Homology Let C be a chain complex of free abelian groups.
Let M be an abelian group.
(1) For all n, there is a split SES of abelian groups:

$$
0 \rightarrow H_{n}(C) \otimes M \xrightarrow{[x] \otimes m \mapsto[x \otimes m]} \rightarrow H_{n}(C ; M) \rightarrow \operatorname{Tor}\left(H_{m-1}(C), M\right) \rightarrow 0
$$

(2) This SES is natural, ie for a chain map $f: C \rightarrow C$,

$$
\begin{aligned}
& 0 \rightarrow H_{n}(C) \otimes M \rightarrow H_{n}(C ; M) \rightarrow \operatorname{Tor}\left(H_{m-1}(C), M\right) \rightarrow 0 \\
& \downarrow f_{*} \otimes i d m \quad \downarrow f_{*} \quad \downarrow \operatorname{Tor}\left(f_{*}, i d_{n}\right) \\
& 0 \rightarrow H_{n}\left(C^{\prime}\right) \otimes M \rightarrow H_{n}\left(C^{\prime} ; M\right) \rightarrow \operatorname{Tor}\left(H_{m-1}\left(C^{\prime}\right), M\right) \rightarrow 0
\end{aligned}
$$ Commutes.

(3) There is no natural choice of splitting maps \rightarrow Exercise 2.4

Connection 12 Marl
In the lecture it was erroneously claimed that "or" suffices here

Remark 1 Tor (N, M) will be defined for all abelian groups N, M.
We will show that for if M and N are finitely generated, then $T_{o r}(N, M) \cong T(N) \otimes T(M)$, where
$T(N)=\{x \in N \mid \exists \lambda \in \mathbb{R} \backslash\{0\}: \lambda x=0\}$ is the onion subgroup of N.

Remark The UCT implies that homology with any coefficients can be read off homology with 2 coefficients, ie. \mathbb{Z} coefficients are "universal". However, for a cont. map f, f_{*} on $H(-; M)$ is in general not determined by f_{x} on $H(-; R)$.
\rightarrow Exercise 2.4
Example 2 For $\mathbb{R} P^{3}, \quad H_{0} \cong R, H_{n} \cong \mathbb{R} 2, H_{2} \cong 0, H_{3}=\mathbb{R}$ UCT for $M=\mathbb{R} / 2$:

$$
\begin{aligned}
& 0 \rightarrow \underbrace{H_{1}\left(\mathbb{R} p^{3}\right) \otimes \mathbb{Z} / 2}_{\mathbb{R} / 2} \rightarrow \underbrace{H_{1}\left(\mathbb{R} p^{3} ; \mathbb{R} / 2\right)}_{\mathbb{R} / 2} \rightarrow \underbrace{\operatorname{Tor}\left(\tilde{H}_{0}\left(\mathbb{R} p^{3}\right), \mathbb{R} / 2\right)}_{0} \rightarrow 0 \\
& 0 \rightarrow \underbrace{H_{2}\left(\mathbb{R} p^{3}\right) \otimes \mathbb{R} / 2}_{0} \rightarrow \underbrace{H_{2}\left(\mathbb{R} p^{3} ; \mathbb{R} / 2\right)}_{\mathbb{R} / 2} \rightarrow \underbrace{\operatorname{Tor}(\overbrace{H_{1}\left(\mathbb{R} p^{3}\right)}^{H_{1}}, \mathbb{R} / 2)}_{\mathbb{R} / 2} \rightarrow 0
\end{aligned}
$$

Reminder M finitely generated abelion group \Rightarrow

$$
M=M^{a} \oplus \underset{\substack{p p+i m e \\ \tau \geqslant 1}}{ }\left(\pi / p^{*}\right)^{b_{p, r}} \text { with } a, b_{p, r} \text { uniqualy determined. }
$$

a is called the rank of M, written reM or rank M.
Prop 3 Assume $\bigoplus_{m} H_{m}(x)$ is finitely generated. Let IF be a field of characteriste p.

$$
\operatorname{dim}_{\mathbb{F}} H_{n}(x ; \mathbb{F})= \begin{cases}\operatorname{rank} H_{n}(x) & \text { if } p=0 \\ \operatorname{rank} H_{n}(x) & \text { else } \\ +\# \mathbb{R} / p^{\tau}-\text { summands of } H_{n}(x) & \\ +\# \mathbb{R} / p^{r} \text { - Summands of } H_{n-1}(x) & \end{cases}
$$

Proof $u c T \Rightarrow H_{n}(x ; \mathbb{F}) \cong H_{n}(x) \otimes \mathbb{F} \oplus \operatorname{Tor}\left(H_{n-1}(x), \mathbb{F}\right)$ Correction 12 March
The Proposition is true, but the proof doesn't work in general since \mathbb{F} need not be finitely generated. by Remark 1 We'll need to understand Tor better first to prove Prop 3

Now use $T(\mathbb{F})= \begin{cases}0 & \text { if } p=0 \\ \mid F & \text { else }\end{cases}$
and $\mathbb{Z} / m \otimes \mathbb{F} \cong \mathbb{F} / m \cong\left\{\begin{array}{cl}0 & p / m \\ \mathbb{F} & \text { else }\end{array}\right.$
Prop 4 Let x be a space sit. $H_{n}(x) \cong 0$ for sufficiently large n, and $H_{n}(x)$ finitely generated for all n. Then

$$
\sum_{n=0}^{\infty}(-1)^{n} \operatorname{dim}_{\mathbb{F}}\left(H_{n}(X ; \mathbb{F})\right) \in \mathbb{R}
$$

does not depend on the choice of a field \mathbb{F}. This integer is called the Enter characteristic of x, written $X(x)$.
Proof Note that (\# $2 / p^{-}$-summands of $H_{n}(x)$) appears as summand in $\operatorname{dim} H_{n}(X ; \mathbb{F})$ and in $\operatorname{din} H_{n+1}(X ; \mathbb{F})$. So, this cancels in X due to opposite signs.

To prove the UCT, we need a fundamental tool of homological algebra. Let R be a commutative ring.
Def A free resolution of an R-Modute M is a LES

$$
\ldots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

where the F_{i} are free R-Modules.

Last time
To prove the UCT, we need a fundamental tool of homological algebra. Let R be a commutative ring.
Def A free resolution F of an R-Module M is a LES

$$
\ldots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

where the F_{i} are free R-Modules.
Today
Note that..$\longrightarrow F_{1} \xrightarrow{d_{1}} F_{0} \longrightarrow 0$ is a chain complex. It is called deleted resolution, denoted \mp^{M}, with $H_{0}\left(\not \mp^{M}\right) \cong M, H_{n}\left(\not \Psi^{M}\right) \cong 0$ for $n \neq 0$. Understanding $H_{n}\left(F^{M} ; N\right)$ is a
special case of understanding $H_{n}(C \div N)$ for all complexes!

$$
\begin{aligned}
\rightarrow 0 & \rightarrow \pi \xrightarrow{3} \pi \rightarrow \pi / 3 \rightarrow 0 \\
\cdots 0 \rightarrow \pi & M \\
\ldots 0 & \rightarrow \pi \xrightarrow{(n)} \boldsymbol{\sim} \rightarrow \mathbb{R}^{2} \xrightarrow{(11)} \pi \rightarrow 0 \\
? & \rightarrow \mathbb{Q} \rightarrow 0
\end{aligned}
$$

Prop 5 Every module has a free resolution.
Lemma 6 For every module 1% there exits a free module F with a surjection $p: \mp \longrightarrow M$.

Proof $F:=\bigoplus_{x \in M} R_{x}$ with $R_{x} \cong R$. F_{i} free (with basis indexed by $M)$ and $p: \mp \rightarrow M, \quad R_{x} \ni 1 \longmapsto x$ is surjective

Proof of Prop 5 Pick $d_{0}: F_{0} \rightarrow M$ with d_{0} surjective, F_{0} free. Pick $d_{1}^{\prime}: F_{1} \rightarrow$ Ker do wite d_{1}^{\prime} surjèchive, F_{1} free and let $d_{1}: F_{1} \rightarrow F_{0}, \quad d_{1}=\left(\right.$ her $\left.d_{0} c F_{0}\right) \circ d_{1}^{\prime}$.
Pick $d_{2}^{\prime}: F_{2} \rightarrow$ her d_{1} with d_{2}^{\prime} surjective, F_{2} free... etc. Is
Thun 7 Every subgroup of a free abelion group is free abelian.
Proof using Zorn's Lemma (see eg Lang "Algebra" Appendix 2 \&2)

Prop 8 For $R=\mathbb{R}$: Every abelian group M has a free resolution of length 1, ie $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow 0$
Proof Pick $d_{0}: F_{0} \rightarrow M$ with do surjective, F_{0} free. By Thu, Yer d_{0} is free. So let $F_{1}=$ her d_{0}, and d_{1} the inclusion.

Prop 9 ("Comparison Thu", "Fundamental Thun of Homological Algebra")
(1) If $f: M \rightarrow N$ is R-linear and F, G are free resolutions of M, N, then f may be extended to a chain map $\hat{f}: \not{ }^{M} \rightarrow G^{N}$, ie
(2) \hat{f} is unique up to homotopy.
(3) F, G free resolutions of $M \Rightarrow$ The unique chain map $F^{M} \rightarrow G^{M}$ extending id m is a homotopy equivalence.

Since e_{0} surgective and F_{0} free, there is $\hat{f}_{0}: F_{0} \rightarrow G_{0}$ making the diagram Commute (proof: for each basis element b of F_{0}, pick $\hat{f}_{0}(b)$ such that $e_{0}\left(\hat{f}_{0}(b)\right)=f\left(d_{0}(b)\right)$.

$$
F_{1} \hat{f}_{0} \circ d_{1} \quad f\left(d_{0}\left(d_{1}(x)\right)\right)=0 \quad \forall x \Rightarrow e_{0}\left(\hat{f}_{0}\left(d_{1}(x)\right)\right)=0 \quad \forall x
$$

$$
G_{1} \xrightarrow[e_{1}]{\longrightarrow} G_{0}
$$

$\Rightarrow \operatorname{im} \hat{f}_{0} \circ d_{1} \subseteq$ ker $e_{0}=\operatorname{im} e_{1}$.
$\Rightarrow \exists \hat{f}_{1}: F_{1} \longrightarrow G_{1}$ making the diagr commute etc.
(2) Let two such chain maps be given, and let g be their difference.

Then:

commutes. $0=0 \circ d_{0}=e_{0} \circ g_{0} \Rightarrow$ in $g_{0} s$ her $e_{0}=$ in e_{1}.
$\Rightarrow \exists h_{0}$ with $e_{1} \circ h_{0}=g_{0}$

$$
e_{1} \circ\left(g_{1}-h_{0} \circ d_{1}\right)=e_{1} \circ g_{1}-g_{0} \circ d_{1}=0
$$

$\Rightarrow \exists h_{1}$ with $e_{2} \circ h_{1}=g_{1}-h_{0} \circ d_{1}$ etc.
(3) F, G free res. of $M \Rightarrow \exists$ chain maps $\hat{f}: F^{M} \rightarrow G^{M}$ and $\hat{g}: G^{M} \longrightarrow F^{M}$ that extend $i d_{M}: M \rightarrow M \Rightarrow \hat{g} \circ \hat{\delta}: F^{M} \rightarrow F^{M}$ and $\hat{f} \circ \hat{g}: G^{M} \longrightarrow G^{M}$ extend id, but so do id $F_{F^{M}}$, id $G_{G^{M}}$ \Rightarrow By uniqueness, $\hat{g} \circ \hat{f} \simeq i d F^{n}, \hat{f} \circ \hat{g} \simeq i d{ }_{G}{ }^{n}$.

Def Let M, N be R-Modutes, and F a free resolution of M, then $\operatorname{Tor}_{n}(M, N):=H_{n}\left(F^{M} ; N\right)$ for $n \geqslant 0$.

Proof that Tor does not depend on choice of F : F, G free res. of M

$$
\begin{aligned}
& \Rightarrow F^{M} \simeq G^{M} \Rightarrow F^{M} \otimes N \simeq G^{M} \otimes N \quad(\operatorname{Cor}(2) 7(3)) \Rightarrow \\
& H_{M}\left(F^{M} ; N\right) \cong H_{M}\left(G^{M} ; N\right) .
\end{aligned}
$$

Remark 10 Over $R=2$, $\operatorname{Tor}_{n}(M, N)=0 \quad \forall n \geqslant 2$ since M has a free res. of length 1 (Prop 8). So we write $\operatorname{Tor}(M, N):=\operatorname{Tor}_{1}(M, N)$.
Lemma $11 f: M \rightarrow N R$-linear, $P R$-module \Rightarrow (comer $f)_{\otimes} \otimes \operatorname{Coker}(f \otimes i d p)$. Proof Exercise.

Proof of the UCT (1) Constructing the SES

$$
\underbrace{B_{n}=\text { in } d_{n+1}}_{n \text {-boundaries }} \subseteq \underbrace{Z_{n}=\text { her } d_{n}}_{n-\text { cycles }}
$$

Make B_{n}, Z_{m} into chair complexes, takin O as differential. There is a SES of chain complexes:

Proof of the UCT (1) Constructing the SES

$$
\underbrace{B_{n}=i m d_{n+1}}_{n-\text { boundaries }} \subseteq \frac{Z_{n}=\text { her } d_{n}}{n-\text { cycles }}
$$

Make B_{n}, Z_{m} into chair complexes, taking O as differential.
There is a SES of chain complexes:

$$
\begin{aligned}
& 0 \rightarrow Z_{m+1} \xrightarrow{\text { ind }}{ }_{0}^{\vdots} C_{m+1}^{d} \xrightarrow{d} \mathbb{B}_{m} \rightarrow 0 \\
& 0 \rightarrow Z_{n} \xrightarrow{\text { ind }}{ }^{d!} C_{m} \xrightarrow{d} B_{m-1} \rightarrow 0 \\
& \vdots
\end{aligned}
$$

Bn free by Tun $7 \Rightarrow$ each row splits \Rightarrow tensoring with M preserves exactness (Exercise). The SES $\otimes M$ induces a LES:

$$
\begin{aligned}
& \cdots \rightarrow B_{m} \otimes M \stackrel{r}{\rightarrow} Z_{\mu} \otimes M \rightarrow \frac{\operatorname{ker} d_{\mu} \otimes i d_{M}}{i m d_{m+1} \otimes i d_{M}} \rightarrow B_{n-1} \otimes \Pi \rightarrow Z_{m-1} \otimes M \rightarrow \ldots \\
& \Rightarrow \text { ES } \quad 0 \rightarrow H_{n}(C) \otimes M \rightarrow H_{M}^{112}(C ; M) \rightarrow \text { her incleidm } \rightarrow 0 \\
& \cong \text { cover }+\mathrm{b}_{\mathrm{y}} \\
& \text { Lena } 11
\end{aligned}
$$

These is a SES

$$
0 \rightarrow B_{n-1} \xrightarrow{\text { incl }} Z_{n-1} \longrightarrow H_{n-1}(c) \rightarrow 0
$$

which is a free resolution of H_{n-1} (C). So

$$
\text { her incl®idpe } \cong \text { Tor }\left(H_{n-1}(c), M\right)
$$

(1) The SES splits C_{n} free $\Rightarrow \exists p_{n}: C_{n} \rightarrow Z_{n}$ sst.
incl o $p_{n}=i d_{z_{n}}$. Correction 5 April $p: C \rightarrow Z$ is in general not a chain map! (Aided, p chain map \Rightarrow differential of C is zero). Proceed instead as follows: Let $\pi_{n}: Z_{n} \rightarrow H_{n}(C)=Z_{n} / B_{n}$ be the projection. Then $\pi_{n}{ }^{\circ} p_{n}$ is a map $C_{n} \longrightarrow H_{M}(C)$, and this is a chain map when one considers $H_{n}(C)$ as complex with zero differential (since for $x \in C_{n}: d_{n}(x) \in B_{n-1} \subseteq Z_{n-1}$, So $p_{m-1}\left(d_{N}(x)\right)=d_{M}(x)$ and $\left.\pi_{n-1}\left(p_{n-1}\left(d_{N}(x)\right)\right)=\left[d_{m}(x)\right]=0\right)$. Thus $\left(\pi_{n} \circ \rho_{n}\right) \otimes i d_{M}: C_{n} \otimes M \rightarrow H_{n}(C) \otimes M$ is also a chain mop, inducing a map $H_{m}(C ; M) \xrightarrow{q} H_{m}(C) \otimes M$ on homology. To see that q is a splitting map, check that $q([x \otimes m])=[x] \otimes m$ for all $x \in Z_{n}$ and $m \in M$.
(2) Naturality (Sheath)
$f: C \rightarrow C^{\prime}$ chain map $\Rightarrow f(Z) \subseteq Z^{\prime}, f(B) \subseteq B^{\prime}$.
So f induces a map between the SES of chain complexes $0 \rightarrow Z_{m} \rightarrow C_{m} \rightarrow B_{m-1} \rightarrow 0$ and $0 \rightarrow Z_{m}^{\prime} \rightarrow C_{m}^{\prime} \rightarrow B_{m-1}^{\prime} \rightarrow 0$, oho after $\otimes M$, and so ats between the anociated LES, and so abs between the SES in the UCT.
(3) Unnaturality of splitting: Exercise 2.4

Prop $12 \operatorname{Tor}_{0}(M, N) \cong M \otimes N$.
Proof $\cdots \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow 0$ deleted free res of M.

$$
\begin{aligned}
& \Rightarrow \operatorname{Tor}_{0}(M, N)=\operatorname{coker}\left(d_{1} \otimes i d_{N}\right) \cong \operatorname{coker}\left(d_{1}\right) \otimes N \\
& =H_{0}\left(F^{M}\right) \otimes N=M \otimes N
\end{aligned}
$$

Remark 13 For $f: M \longrightarrow M^{\prime}, g: N \longrightarrow N^{\prime}$, one may set
$\operatorname{Tor}_{m}(f, g): \operatorname{Tor}_{n}(M, N) \rightarrow \operatorname{Tor}_{n}\left(M^{\prime}, N^{\prime}\right)$ toke given by $(\hat{f} \otimes g)_{*}$. Fixing one argument then makes Torn into an additive functor $R-$ Mod $\rightarrow R$-Mod.

Prop 14 Let A, B, C be ablelian groups.
$(1) B$ free $\Rightarrow \operatorname{Tor}(A, B) \cong 0$
(2) If $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact, then

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}(D, A) \\
& \rightarrow \operatorname{Tor}(D, B) \rightarrow \operatorname{Tor}(D, C) \\
& \rightarrow D \otimes B \rightarrow D \otimes C \rightarrow 0
\end{aligned}
$$

is exact.
(3) $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(B, A)$.
(4) B torsion-free $\Rightarrow T(A, B) \cong 0$
(5) $T(A, B) \cong \operatorname{Tor}(T(A), T(B))$.
(6) $\operatorname{Tor}(72 / n, A) \cong\{x \in A \mid n x=0\}$
(7) $\operatorname{Tor}(A \oplus B, C) \cong \operatorname{Tor}(A, C) \oplus \operatorname{Tor}(B, C)$
(8) Tor $(A, B) \cong T(A) \otimes T(B)$ if A and B are $f . g$.

Proof (1) $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0$ free res of $A \Rightarrow$ $0 \rightarrow F_{A} \otimes B \rightarrow F_{0} \otimes B \rightarrow A \otimes B \rightarrow 0$ is exact $\Rightarrow \operatorname{Tor}(A, B 1 \cong 0$.
(2) Pick free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow 0 \rightarrow 0$

$$
\begin{aligned}
& 0 \rightarrow F_{1} \otimes A \xrightarrow{d_{E_{1}} \otimes f} F_{1} \otimes B \xrightarrow{i d_{E^{\prime}} \otimes g} F_{1} \otimes C \rightarrow 0 \\
& \Rightarrow \quad d_{1} \otimes i d A \downarrow \quad d_{1} \otimes i d_{B} \downarrow \quad \text { d.Bid } \downarrow \\
& 0 \rightarrow F_{0} \otimes A \underset{i d_{\mathrm{F}} \otimes f}{\longrightarrow} F_{0} \otimes B \underset{i \delta_{0} \otimes g}{\longrightarrow} F_{0} \otimes C \longrightarrow 0
\end{aligned}
$$

commutes and has exact rows. It is a SES of chain complexes! (Each complex made of two groups). The associated LES in homology is the desired sequence.
(3) Apply (1) to a free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow B \rightarrow 0$

- because F_{0} free
$\leadsto L E S$
O because F_{1} free

$$
\begin{aligned}
& 0 \rightarrow \widetilde{\sim}_{\operatorname{Tor}}\left(A, F_{1}\right) \rightarrow{\widetilde{\operatorname{Tor}}\left(A, F_{0}\right)}_{\operatorname{Tor}(A, B) \rightarrow}^{\operatorname{Tor}} \\
& \rightarrow A \otimes F_{1} \underset{i d_{A} \otimes d_{1}}{\longrightarrow} A \otimes F_{0} \longrightarrow A \otimes B \rightarrow 0
\end{aligned}
$$

$\Rightarrow \operatorname{Tor}(A, B) \cong \operatorname{ker}\left(i d_{A} \otimes d_{1}\right)=\operatorname{Tor}(B, A)$ by def of Tor , using $A \otimes B \cong B \otimes A$.
(4) Pick free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} A \rightarrow 0$.

It's enough to show that $F_{A} \otimes B \rightarrow F_{0} \otimes B$ is infective.
So let $\alpha \in F_{1} \otimes B$ with $d_{1} \otimes i d_{B}(\alpha)=0$ be given. To show: $\alpha=0$.
Claim There is a f.g. subgroup $B^{\prime} \subseteq B$ with $\alpha \in B^{\prime}$ and $d_{1} \otimes i d_{B^{\prime}}(\alpha)=0$.
Pf that $\mathrm{Claim} \Rightarrow \alpha=0 \quad B$ torsionfree $\Rightarrow B^{\prime}$ torsion free. B^{\prime} torrionfree and $f \cdot 8$.
$\Rightarrow B^{\prime}$ free by clanification of $8 \cdot g$. ab. groups. We already know that bensormig with a free module is exact $\Rightarrow d_{1} \otimes i d_{B^{\prime}}$ infective $\Rightarrow \alpha=0$.

Pf of Claim Use construction of $\otimes \otimes: F_{0} \otimes B \cong$ free module $U_{F_{0}, B}$ with basis $F_{0} \times B$ modulo submodule $I_{F_{0, B}} \subseteq l l$ generated by

$$
\begin{align*}
& \left(\lambda x+x^{\prime}, y\right)-\lambda(x, y)-\left(x^{\prime}, y\right) \\
& \left(x, \lambda y+y^{\prime}\right)-\lambda(x, y)-\left(x, y^{\prime}\right) \tag{t}
\end{align*}
$$

Write $\alpha=\sum_{i=1}^{n} f_{i} \otimes b_{i}$. Then $d_{1} \otimes i d_{B}(\alpha)=0 \Leftrightarrow \sum d_{1}\left(f_{i}\right) \otimes b_{i}=0$ $\Leftrightarrow \sum_{i=1}^{n}\left(d_{1}\left(f_{i}\right), b_{i}\right)=\sum_{j=1}^{k}$ elements of the form $(*) \in I_{F_{0}, B}$
Let $B^{\prime} \subseteq B$ be generated by b_{1}, \ldots, b_{n} and all elements of B appearnig in the sum on the RHS. Then $\alpha \in F_{1} \otimes B^{\prime}$, and $d_{1} \otimes \operatorname{id}_{B^{\prime}}(\alpha)=0$
the following proof were shipped in the lecture
(5) Apply (2) to the SES $O \rightarrow T(B) \rightarrow B \rightarrow B / T(B) \rightarrow 0$:

$$
0 \rightarrow \operatorname{Tor}(A, T(B)) \rightarrow \operatorname{Tor}(A, B) \rightarrow \underbrace{0 \text { by }(4) \text { Since }} \begin{aligned}
\operatorname{Tor}(A, B(T(B))
\end{aligned} \rightarrow \ldots
$$

$\Rightarrow \operatorname{Tor}(A, T(B)) \cong \operatorname{Tor}(A, B)$. Now use (3) and repeat the argument.
(6) $0 \rightarrow \mathbb{R} \xrightarrow{\mu} \mathbb{R} \mathbb{R} / n \rightarrow 0$ is a free res of $\mathbb{R}(m$.

$$
\Rightarrow \operatorname{Tor}(\mathbb{R} / n, A) \cong \operatorname{ker}(A \xrightarrow{n} A)=\{x \in A \mid n x=0\}
$$

$\left.\begin{array}{rl}\text { (7) } 0 & \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0 \\ 0 & \rightarrow G_{1} \rightarrow G_{0} \rightarrow B \rightarrow 0\end{array}\right\} \quad$ free res.
$\Rightarrow 0 \rightarrow F_{\lambda} \oplus G_{\lambda} \rightarrow F_{0} \oplus G_{0} \rightarrow A \oplus B \rightarrow 0$ freer res
Now $\operatorname{Tor}(A \oplus B, C) \cong \operatorname{ker}\left(\left(F_{1} \oplus G_{1}\right) \otimes C \longrightarrow\left(F_{0} \oplus G_{0}\right) \otimes C\right)$

$$
\cong \operatorname{ker}\left(F_{1} \otimes C \rightarrow F_{0} \otimes C\right)
$$

$\oplus \operatorname{ker}\left(G_{-} \otimes C \rightarrow G_{0} \otimes C\right)$

$$
\cong \operatorname{Tor}(A, C) \oplus \operatorname{Tor}(B, C)
$$

(8) Using (7), (3), (1) and the classification of $\delta \cdot g$. ab groups, it is enough to check this for $A \cong \mathbb{R} / a, B \cong \mathbb{R} 6$. This will be an Exercise on Sheet 3.
(5) Ediomology

Goal Dualize the singular chain complex, ie apply $\operatorname{Hom}(-, \lambda)$ Cor $\operatorname{Hom}(-, M)$ for any ablelian group M) \rightarrow cochain complex with cohomology. Why? Cohomology ...

* ... has more structure than a homology (it is a ring!)
* ... may arise in a natural way frown geometric applications

Def A cocham complex C over a commutative ring R is a collection C^{n}. δR-modules for $n \in \mathbb{Z}$ called Cochain modules, R-linear maps $d^{n}: C^{n} \rightarrow C^{n+1}$ with $d^{n+1} \circ d^{n}=0$ called differentials. The n-th co homology model of C is

$$
H^{n}(C)=\frac{\text { her } d^{n} K}{i m d^{n-1}}
$$

A cochin map $f: C \rightarrow D$ is a collection of R-linear $f^{n}: C^{n} \rightarrow D^{n}$ st $\quad f^{n+1} \circ d_{c}^{n}=d_{D}^{n} \circ f^{n} \forall n$. $f, g: C \rightarrow D$ are homotopic, written $f \simeq g$, if \exists a homotopy $h: C \rightarrow D$, is a collection of R-linear $h^{n}: C^{m} \longrightarrow D^{n-1}$, s.t. $f_{m}-g_{n}=d_{0}^{n-1} \cdot h_{m}+h_{m+1} \circ d_{c}^{n}$

Remark 1 Cochain complex
$\Leftrightarrow D$ with $D_{n}=C^{-\mu}, \quad d_{m}^{D}=d_{c}^{-m}$ is a chain complex Under this 1:1-correspondence, cohomology \leftrightarrows homology, cochin maps \leftrightarrow chaimaps, homotopies \leftrightarrow homotopies etc.

So everything that is true for chain complexes also holds true mutatis mutandis for cochain complexes, eg Prop 2.

Prop 2 (1) $f: C \rightarrow D$ a cochain map \Rightarrow

$$
f^{*}: H^{m}(C) \rightarrow H^{m}(D), f^{*}([x])=[f(x)] \text { is a }
$$ well-def. R-homom.

(2) $H^{n}(-)$ is an additive functor

$$
\operatorname{CoCh}(R) \longrightarrow R-\operatorname{Mod}
$$

Category of cochin complexes over R, cochain maps
(3) $f \simeq g \Rightarrow f^{*} \simeq g^{*}$.

No proof
Prop 3 if $F: R-$ Mod $\rightarrow R-M o d$ is a contravariant additive femator, then $F: C h(R) \longrightarrow C C C(R)$ is also contravariontadditive:

$$
\begin{aligned}
\ldots C_{m} \xrightarrow{d_{n}} C_{m-n} \ldots \longmapsto & \ldots F\left(C_{n}\right) \stackrel{F\left(d_{n}\right)}{\Vdash_{n}} F\left(C_{m-1}\right) \ldots \\
& \text { cochain complex } F(C) \\
& \text { with } F(C)^{n}=F\left(C_{n}\right), \\
& d^{n}(c)=F\left(d_{c}^{n-1}\right)
\end{aligned}
$$

No proof
Def X top. space, $A \subseteq X, M$ an abolion group. Then the cochain complex obtained from $C_{n}(X, A)$ by applying Hor $(-, M)$ is called the singular cochain complex of (X, A) with coefficients in M, denoted $C^{n}(X, A, M)$ and its cohomology the singular cohomology of (X, A) with Coefficients in B, denoted $H^{m}(X, A ; M)$. We may drop"; M"for $M=\lambda$. For $f:(X, A) \rightarrow(Y, B)$ continuous, write f^{c} for the cochin map $C^{n}(Y, B ; M) \rightarrow C^{n}(X, A ; M)$, $f^{c}=\operatorname{Ham}\left(f_{c}, M\right)$, and f^{*} for the induced homos. $H^{n}(Y, B=M) \rightarrow H^{n}(X, A: M)$.

Ex 4 $C^{0}(X ; M)=\operatorname{Hom}(C \cdot(X), M)$. Corresponds to
functions $X \rightarrow M$. Let $\varphi \in C^{0}(X ; M)$. Then $d^{0}(\varphi)$ sends

$$
\sigma: \Delta^{1}=[0,1] \rightarrow M \text { to } \varphi\left(d_{1}(\sigma)\right)=\varphi(\sigma(1))-\varphi(\sigma(0))
$$

So $\quad d^{\circ}(\varphi)=0 \Leftrightarrow \varphi(\sigma(0))=\varphi(\sigma(1)) \quad \forall \sigma \Leftrightarrow \varphi$ constant on path-connected components. Hence

Rink 5 A hands -or approach to cochains:
An n-cochain $\varphi \in C^{m}(X ; M)$ is a homom. $C_{n}(X) \rightarrow M$.
So n-chains correspond to functions

$$
\left\{\text { singular } n \text {-simplice } \sigma: \Delta^{n} \rightarrow x\right\} \longrightarrow \mathbb{Z}
$$

The ($n+1$)-cochain $d^{n}(\varphi)$ sends $\tau: \Delta^{n+1} \rightarrow x$ to $\varphi\left(d_{n+1}(\tau)\right)$.
So φ is an n-cocycle $\Leftrightarrow \varphi$ is zero on n-boundaries $\in B_{n}$.
φ is an n-coboundary $\Rightarrow \varphi(\sigma)$ is determined by $d_{n}(\sigma)$.
$\Rightarrow \varphi$ is zero on m-cycles $\in Z_{m}$
Correction 22 April The implication " \models " does not generally hold: there may be cochains φ that are zero on $n-c y c l e s$, but that are not coboundaries. Indeed, this happens if φ is a cocycle, $[\varphi] \neq 0 \in H^{n}(X ; M)$, and $\operatorname{ev}([\varphi])=0$.

Thus: An n-cocycle φ induces a hamom. $C_{n}(x) / B_{n} \rightarrow M$, by restriction it abs induces a homom.

$$
Z_{n} / B_{n}=H_{m}(x) \rightarrow M .
$$

For n-coboundaries φ, this homom is zero. Thus we have a homom. called the evaluation homomorphism

$$
\text { Cv: } H^{n}(X ; M) \longrightarrow \operatorname{Hom}\left(H_{n}(X), M\right)
$$

which may be seen to be natural in both X and M.

Univesal Coefficient ohem for Cohomology
Let C be a chain complex of free abelian groups and A an abelian group
(1) There is a split SES

$$
0 \rightarrow \underset{\uparrow}{\operatorname{Ext}}\left(H_{n-1}(C), A\right) \rightarrow H^{n}(C ; M) \underset{e v}{\rightarrow} \operatorname{Hom}\left(H_{n}(C), A\right) \rightarrow 0
$$ to be clefined!

(2) Thase SES are natural in C and A.
(3) The splittings camot be chogen maturally

Def Let M, N be R-modules, and F a free res. of M. Then bet

$$
E x t_{R}^{n}(M, N):=H^{n}\left(\operatorname{Hom}\left(F^{M}, N\right)\right)
$$

F^{M} unique up to homs. equiv. \Rightarrow Def of Ext independent of choice of F.

As with Tor, we have:

* $E \times t_{R}^{0}(M, N) \cong \operatorname{Hom}(M, N)$.
* $E x t_{R}^{n}(A, B)=0$ for all $n \geqslant 2$, so we write $\operatorname{Ext}(A, B)$ for $E_{x t_{R}^{1}}^{1}(A, B)$.

For the proof of the first point, one needs:
Lemma 6 M,N, $P R$-modules, $f: M \rightarrow N \quad R$-linear

$$
\Rightarrow \operatorname{Hom}(\operatorname{coker} f, P) \cong \operatorname{ker}(\operatorname{Hom}(f, P))
$$

Proof $M \rightarrow N \rightarrow$ cover $f \rightarrow 0$ exact
$\Rightarrow O \rightarrow \operatorname{Hom}($ conker $f, P) \longrightarrow \operatorname{Hom}(N, P) \rightarrow \operatorname{Hom}(M, P)$ is exact (same argument as in Ex Sheet 1, 2b)
$\operatorname{Rmh} 7$ * Ext is not symmetric: $E_{x} \in(\mathbb{Z} / \mathrm{m}, \mathbb{Z} 1 \cong \mathbb{Z} / \mathrm{m}$ $E x \in(\mathbb{Z}, \mathbb{Z} / m) \cong 0$
(as we shall see from Prop 8)

* Ext can behave unexpectedly:
$\operatorname{Ext}(\mathbb{Q}, \mathbb{Z}) \cong$ uncountably-dinensional (1)-vector space

Prop 8 For all ab groups A, B, C, the following hold:
(1) $\operatorname{Ext}(A \oplus B, C) \cong E \times t(A, C) \oplus E x t(B, C)$
(2) $\operatorname{Ext}(A, B \oplus C) \cong E x t(A, B) \oplus E x t(A, C)$
(3) A free $\Rightarrow \operatorname{Ext}(A, B) \cong 0$.
(4) Ext $(\pi / n, A) \cong A / n A$

Note this suffice to compute Ext (fig. group, $A)$.

$$
\text { (5) } E \times t(A, B) \cong T(A) \otimes B \text { if } A, B f . g \text {. }
$$

Compare (4), (5) to $\operatorname{Tor}: \operatorname{Tor}(R / n, A) \cong\{x \in A \mid n x=0\}$

$$
\operatorname{Tov}(A, B) \cong T(A) \otimes T(B) \text { for } A, B \text { fog. }
$$

Proof of $(4) \quad 0 \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \mathbb{Z} / n \longrightarrow 0$ free res. F

$$
\begin{array}{r}
\operatorname{Hom}\left(F^{\pi / n}, A\right)=0 \longleftarrow \underset{\cong A}{\operatorname{Hom}(R, A) \longleftarrow n} \operatorname{Hom}(\mathbb{R}, A) \leftarrow 0 \\
\cong A
\end{array}
$$

$$
\Rightarrow E \times t=H^{1} \text { of this cochain complex } \cong A / n A
$$

Rah 9 Let R-modules M, N be given. An extension of N by M is a SES $O \rightarrow N \rightarrow P \rightarrow M \rightarrow 0$. H is equivalent to another extension $0 \rightarrow N \rightarrow P^{\prime} \rightarrow M \rightarrow 0$ if $\exists f: P \rightarrow P^{\prime}$ st

commutes, Five-Lemma $\Rightarrow f$ is iso. So equivalence is an equiv. rel. One finds $\left\{\right.$ Extensions of N by M\}/equiv $\xrightarrow{1: 1}$ Ext $t_{R}^{1}(M, N)$.

Prop 10 Assume $H_{n}(x, A)$ is f.g. For all n. Then

$$
H^{n}(x, A ; \lambda) \cong \underbrace{\mp\left(H_{n}(x, A)\right)} \oplus T\left(H_{m-1}(x, A)\right)
$$

free part $\mp(B):=B / T(B)$
Proof UCT $\Rightarrow H^{n}(x, A ; \mathbb{R}) \cong \operatorname{Hom}\left(H_{m}(x, A), \mathbb{Z}\right)$

$$
\begin{aligned}
\left.\cong \operatorname{Hom}\left(F\left(H_{n}(X, A)\right)\right), \mathbb{R}\right) & \cong F\left(H_{n}(X, A)\right) \\
\oplus \operatorname{Hom}\left(T\left(H_{n}(x, A)\right), \mathbb{R}\right) & \cong 0
\end{aligned}
$$

$\Leftrightarrow \operatorname{Ext}\left(F\left(H_{n-1}(x, A)\right)\right.$,
2) $\cong 0$
$\oplus \operatorname{Ext}\left(T\left(H_{n-1}(x, A)\right)\right.$,
R) $\cong T\left(H_{n-1}(x, A)\right)$

Def The cellular cochain complex $C_{c w}^{\bullet}(x)$ of a $C W$-complex X is Ham $\left(C_{C \omega}^{\bullet}(X), M\right)$. Its cohomology $H_{c \omega}^{n}(X ; M)$ is the n-th cellular cohomology group.

Then $11 \quad H_{C \omega}^{n}(X ; M) \cong H^{n}(X ; M)$.
Example $12 \quad C_{0}^{c w}\left(\mathbb{R} p^{2}\right)=0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{O} \xrightarrow{0}$

$$
H_{0}^{c \omega} \cong \lambda, H_{2}^{c \omega} \cong \lambda / 2, \quad H_{2}^{C \omega}=0
$$

Hands-on Trick: C a chain complex of fig. free $a b$. groups with a chosen basis, then

$$
\left(\text { Matrix of } d_{n}\right)^{\top}=\text { Matrix of } \operatorname{Hom}\left(d_{n}, \mathbb{R}\right)
$$

wat to the basis wot the dual basis

$$
\Rightarrow C_{C \omega}^{\bullet}\left(\mathbb{R p}^{2}-\mathbb{R}\right)=0 \leftarrow \mathbb{R} \leftarrow \mathbb{2} \leftarrow \mathbb{R}
$$

and $H_{c w}^{0} \cong \mathbb{R}, H_{c w}^{1} \cong 0, H_{c w}^{2} \cong \mathbb{R} / 2$

Proof of UCT (1)
There is a SES of chain complexes:

$$
\begin{aligned}
& 0 \rightarrow Z_{n+1} \xrightarrow{\text { ind }} C_{m+1} \xrightarrow{d_{n+1}} B_{n} \longrightarrow 0 \\
& 0 \rightarrow 0 \downarrow \\
& 0 \longrightarrow Z_{n} \xrightarrow{\text { ind }}{d_{n+1}} C_{n} \xrightarrow{d_{n}} B_{n-1} \longrightarrow 0
\end{aligned}
$$

Bn free by The $4.7 \Rightarrow$ each row splits \Rightarrow SES of cochain complexes

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}\left(B_{n-1}, M\right) \xrightarrow{d^{n-1}} \operatorname{Hom}\left(C_{n}, M\right) \xrightarrow{\text { ind }} \operatorname{Hom}\left(Z_{m}, M\right) \rightarrow 0 \\
& 0 \rightarrow \operatorname{Hom}\left(B_{n}, M\right) \xrightarrow{d^{m}} \operatorname{dtam}\left(C_{m+1}^{m}, M\right) \xrightarrow{\text { ind }} \operatorname{Hom}\left(Z_{m+1}, M\right) \rightarrow 0
\end{aligned}
$$

This induces a LES

$$
\begin{aligned}
& \cdots \cdots \rightarrow \operatorname{Hom}^{\left(Z_{n-1}, M\right)} \\
& \stackrel{\partial}{m}_{\partial^{n-1}} \operatorname{Hom}\left(B_{n-1}, M\right) \rightarrow H^{n}(C ; M) \rightarrow \operatorname{Hom}\left(Z_{n}, M\right) \\
& \xrightarrow{\partial^{n}} \operatorname{Hom}\left(B_{n}, M\right) \rightarrow \ldots
\end{aligned}
$$

Check that $\partial^{i}=\operatorname{Hom}\left(B_{n} \hookrightarrow Z_{m}, M\right)$
\Rightarrow SIS

$$
\begin{aligned}
& 0 \rightarrow \underbrace{\text { cohen } \partial^{n-1}} \rightarrow H^{n}(C ; M) \rightarrow \underbrace{\text { Kor } \partial^{n}} \rightarrow 0 \\
& \cong \operatorname{Hom}\left(\text { cohen } B_{n} \rightarrow Z_{n}, M\right) \\
& \text { (by Lemuna 6) } \\
& \cong \operatorname{Hom}\left(H_{n}(C), M\right)
\end{aligned}
$$

because: free res $0 \rightarrow B_{n-1} \rightarrow Z_{n-1} \rightarrow H_{n-1}(C) \rightarrow 0$
\leadsto co Chain complex $0 \leftarrow \operatorname{Hom}\left(B_{n-1}, M\right) \longleftarrow \overbrace{}^{\partial^{n-1}} \operatorname{Ham}\left(Z_{m-1}, M\right)$ with $H^{1} \cong$ cover O^{n-1}, and $H^{\wedge} \cong$ Ext by def of Ext.

Prop 11 Singular cohomology satisfies axioms that are analogue to the Eitenbery-Steenrod axioms for homology (see (D):
Data
$H^{n}(-i M)$ are contravariant functor s \{Paivs of Spaces\} ~ $\rightarrow \mathbb{R}$-Mod
There are natural connecting homom. $\partial: H^{n}(A ; M) \rightarrow H^{n+1}(X, A ; M)$
Axioms
Homotopy (1) $f \simeq g \Rightarrow f^{*}=g^{*}$
Excision (2) $\bar{u} \subseteq A^{0} \Rightarrow$ incl $^{*}: H^{n}(X, A ; M) \rightarrow H^{n}(X \backslash U, A \backslash u ; M)$ is o
Dimension (3) $H^{n}(\{*\} ; M) \cong M$ for $n=0$, trivial for $\mu \neq 0$.

Additivity (4) $H^{n}\left(\frac{11}{\alpha} X_{\alpha} ; M\right) \xrightarrow{i} \prod_{\alpha} H^{n}\left(X_{\alpha} ; M\right)$ is an iso, with i given by $i_{\alpha}=\left(\text { indusion } X_{\alpha} \rightarrow \frac{11}{\alpha} X_{\alpha}\right)^{*}$.
Exactness (5) There are LESs

$$
\ldots \rightarrow H^{n}(X, A ; M) \xrightarrow{\text { incl }^{*}} H^{m}(X ; M) \xrightarrow{\text { incl }^{*}} H^{m}(A ; M) \xrightarrow{\partial} H^{n+1}(X, A ; M) \rightarrow \ldots
$$

Similarly as for Homology with coefficients, all axioms follow more or lens divectly from homotopy equivalences of singular chain complexes being send to com. equiv. of singular Cochin complexes by the additive (tom (-, M) functor.

Proof of (4) Alg Top I: $\quad \sum_{\alpha}\left(\text { incl } 1_{\alpha}\right)_{c}: \bigoplus_{\alpha} C_{0}\left(x_{\alpha}\right) \longrightarrow C_{0}\left(\frac{11}{\alpha} x_{\alpha}\right)$
is a homotopy equivalence \Rightarrow so is

$$
\begin{aligned}
& \operatorname{Hom}\left(C_{0}\left(\frac{11}{\alpha} X_{\alpha}\right), M\right) \xrightarrow{\operatorname{Hom}\left(\sum_{\alpha}\left(\text { incl }_{\alpha}\right)_{c}, M\right)} \operatorname{Hom}\left(\underset{\alpha}{\oplus} C_{0}\left(X_{\alpha}\right), M\right)
\end{aligned}
$$

$\left(i n c l_{\alpha}\right)_{c}$
Further good properties of cohomology:
$T h m 12$ (Mayer-Vietoris) $A, B \subseteq X, A^{0} \cup B^{0}=X \Rightarrow L E S$

$$
\ldots \rightarrow H^{n}(X ; M) \rightarrow H^{n}(A ; M) \oplus H^{n}(B ; M) \rightarrow H^{m}(A \cap B ; M) \rightarrow H^{n+1}(X) \rightarrow \ldots
$$

Remark 13 Understanding the connectin homomorphisms in the
Maye-Vietoris-sequence:
Homology $H_{n}(x) \longrightarrow H_{n-1}(A \cap B)$:
Represent a homology clan $[x] \in H_{M}(x)$ as $[y+z]$, where $y \in C_{n}(A)$ and $z \in C_{n}(B)$. (Here, we abuse notation and write y abs for the image of y under $C_{M}(A) \hookrightarrow C_{M}(X)$, Similarly for z.$) Now send [x] \longmapsto[d y]$. (since $0=d x=d(y+z) \Rightarrow d y=-d z$, so $d y \in C_{n-1}(A \cap B)$, again abusing notation).

A similar understanding for cohomology is more complicated. The following wasn't discussed in the lecture.

Colomology $H^{n}(A \cap B) \longrightarrow H^{n+1}(X)$:

Extend a cohomology class $[\varphi] \in H^{n}(A \cap B)$, which is a map $C_{n}(A \cap B) \rightarrow R$, to a map $\Psi: C_{m}(A) \rightarrow R$, ie a cochin $\psi \in C^{n}(A)$. \qquad
For each $x \in C_{n+1}(x)$, choose $y \in C_{n+1}(A), z \in C_{n+1}(B)$ such that $x-(y+z)$ is a boundary. Then send $[\varphi]$ to the cohonologg class in $H^{n+1}(x)$ that sends each x to $\psi(d y)$.

Thu 14 (Good Pairs) $A \subseteq X$ nom-empty closed, A a deformation retract of an open neighbourhood of A is $X \Rightarrow$
the projection $(X, A) \rightarrow(X / A,\{*\})$ induces an iso

$$
\underbrace{H^{n}(X / A,\{*\})}_{\cong \tilde{H}^{n}(X / A)} \longrightarrow H^{n}(X, A)
$$

Def For $X \neq \phi$, the meth reduced cohomology group $\tilde{H}^{M}(X ; M)$ is the n-th cohomology group of the augmented cochair complex

$$
0 \rightarrow M \xrightarrow{\varepsilon} C^{0}(x ; \pi) \longrightarrow C^{1}(x ; M) \longrightarrow \ldots
$$

with $\varepsilon(m)(\sigma)=m$ for all $\sigma: \Delta^{0} \rightarrow X$.
Prop $15 H^{n}(x ; M) \cong \tilde{H}^{m}(x ; M)$ for $n \geq 1$,

$$
H^{0}(x ; M) \cong \tilde{H^{0}}(x ; M) \oplus M
$$

Ex $16 \quad \tilde{H}^{m}\left(S^{k}\right) \cong \mathbb{R}^{\delta(n, k)}$
$k=0: \sqrt{ }$. Assume now $k \geqslant 1$.
1st Proof $C_{c w}^{0}\left(S^{k}\right) \cong \operatorname{Hom}\left(C_{0}^{c w}\left(S^{k}\right), \pi\right) \cong C_{0}^{c w}\left(S^{k}\right)$
and Proof $H_{0}\left(S^{k}\right)$ free $\stackrel{\text { uct }}{\Longrightarrow} H^{n}\left(S^{k}\right) \cong H_{m}\left(S^{k}\right)$
Ord Proof $A=S^{k} \backslash\left\{e_{1}\right\}, B=S^{k} \backslash\left\{-e_{n}\right\} \Rightarrow A, B$ contractible \Rightarrow Mayer-Vietoris gives is. $H^{i}(\underbrace{A \cap B}_{\simeq S^{k-1}}) \longrightarrow H^{i+1}\left(S^{k}\right)$

Proceed by induction.
th Proof $H^{i}\left(S^{k}\right)$
iso d LES of Pair $\left(D^{k+1}, S^{k}\right)$

$$
H^{i+1}\left(D^{k+1}, S^{k}\right)
$$

iso due to good pair

$$
H^{i+1}\left(S^{k+1}\right)
$$

Prop 17 Let $x \geqslant 1$. If $f: S^{\mu} \rightarrow S^{\mu}$ has degree $k \in \mathbb{Z}$, then

$$
f^{*}: H^{n}\left(S^{m}\right) \longrightarrow H^{m}\left(S^{n}\right) \text { is multiplication by } k
$$

Reminder " f has degree k " is by def equivalent to:
$f_{*}: H_{M}\left(S^{M}\right) \longrightarrow H_{M}\left(S^{M}\right)$ is multiplication by k
Mst Proof

$$
\begin{aligned}
& \cdots \stackrel{0}{\longrightarrow} C_{n}^{c w}\left(S^{n}\right) \stackrel{0}{\longrightarrow} \cdots \\
& f_{c}=\text { malt by } k \quad \xrightarrow[0]{\text { apply }} \underset{\operatorname{sinctar}}{\text { som }(\cdot, \lambda)} \\
& \ldots\left(-C_{C W}^{n}\left(S^{n}\right) \leftarrow^{0} \ldots\right. \\
& \int \begin{array}{l}
f^{c}=\operatorname{Hom}_{\text {om }}\left(f_{c, \pi}\right) \\
=\text { malt by }
\end{array} \\
& \ldots \stackrel{0}{\longrightarrow} C_{m}^{c w}\left(S^{n}\right) \xrightarrow{0} \ldots \\
& \ldots \leftarrow C_{c w}^{m}\left(S^{m}\right) \leftarrow^{0} \cdots
\end{aligned}
$$

Ind Proof Use naturality of UCT. (Shipped in lecture)
$\operatorname{Ext}\left(H_{n-1}\left(S^{m}\right), \mathbb{Z}\right) \cong 0$ since $H_{m-1}\left(S^{m}\right)$ is free (namely, it is $O($ if $n \geqslant 2)$ or $\mathbb{Z}($ if $n=1)$. So we have an iso

$$
\text { er: } H^{n}\left(S^{m}\right) \rightarrow \operatorname{Hom}\left(H_{n}\left(S^{m}\right), \mathbb{Z}\right)
$$

It is natural, so the following commutes:

$$
\begin{aligned}
& H^{m}\left(S^{\mu}\right) \xrightarrow[\text { iso }]{\text { av }} \operatorname{Hom}\left(\mathrm{H}_{m}\left(S^{m}\right), \mathbb{R}\right)
\end{aligned}
$$

(6) The cup product

Reminder about simplexes If $v_{0}, \ldots, v_{n} \in \mathbb{R}^{l}$ s.t. $V_{1}-v_{0}, \ldots, v_{n}-v_{0}$ are lin indef., then the convex hull of $\left\{v_{0}, \ldots, v_{n}\right\}$, ie

$$
\left\{\sum_{i=0}^{n} \lambda_{i} v_{i} \mid \sum_{i=0}^{n} \lambda_{i}=1,\left(\lambda_{0}, \ldots, \lambda_{m}\right) \in[0,1]^{n+1}\right\} \subseteq \mathbb{R}^{e}
$$

together with the tuple $\left(v_{0}, \ldots, v_{n}\right)$, is called an n-simplex, denote $\left[v_{0}, \ldots, v_{n}\right]$. Every pair of n-simplexes $\left[v_{0}, \ldots, v_{n}\right],\left[v_{0}^{\prime}, \ldots, v_{m}^{\prime}\right]$ is naturally homeomorphic via $\sum \lambda_{i} v_{i} \longmapsto \sum \lambda_{i} v_{i}$.
The standard n-simplex is $\Lambda^{n}:=\left[e_{0}, \ldots, e_{n}\right] \subseteq \mathbb{R}^{n+1}$.
A singular n-simplex of a top. space X is a cont. map $\sigma: \Delta^{m} \rightarrow X$.
They form the basis of $C_{n}(x)$. The boundary operator $d: C_{n}(x) \rightarrow C_{n-1}(x)$ is given by $d(\sigma)=\sum_{i=0}^{n} \sigma \mid[\underbrace{e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}}]$. means e_{i} is left out
(where we implicitly identify the nom-standard simplex $\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{m}\right]$ with Δ^{n-1} via the natural homes).

Throughout, let R be a commutative unital ring.
Def x top space, $\varphi \in C^{n}(x ; R), \psi \in C^{k}(X ; R)$.
Let the cup-product $\varphi \underset{\uparrow}{\underbrace{}_{\Lambda}} \psi \in C^{n+k}(X ; R)$
\hat{L} (smile, not \cup, in LaTeX
be given sending singular simplexes $\sigma: \Delta^{n+k}=\left[e_{0}, \ldots, e_{n+h}\right] \rightarrow X$ to

$$
(\varphi \smile \psi)(\sigma)=\varphi(\underbrace{\left.\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n}\right]}\right)}_{\Gamma} \uparrow \underbrace{\substack{\text { grout face" } \\
\text { of } \sigma}}_{\substack{\text { multiplication } \\
\text { in } R}} \begin{array}{c}
\left.\sigma e_{n}, \ldots, e_{n+k}\right]
\end{array}
$$

Prop 1 (1) $: C^{n}(X ; R) \times C^{k}(X ; R) \longrightarrow C^{n+k}(X ; R)$
, is R-bilinear. (uses distributivity \& associativity of R)
$(2) \smile$ is associative: $(\varphi \cup \psi) \smile_{\eta}=\varphi \smile(\psi \smile \eta)$ (uses associativity of R)
(3) Let $\varepsilon \in C^{0}(X ; R), \varepsilon(\sigma)=1 \in R$ for all σ. Then $\varphi \smile \varepsilon=\varepsilon \smile \varphi=\varphi$. (uses unit of R)

Proof Exercise.
Remark 2 makes $C^{0}(X ; R)=\bigoplus_{n=0}^{\infty} C^{n}(X ; R)$ into a
(generally nom-commutative) unital R-algebra (by Prop 1).
Moreover, $C^{\bullet}(X ; R)$ is graded:
a grading on an R-algebra S is a decomposition
$S=\bigoplus_{n \in \pi} S_{n}$ as an R-module, such that $S_{n} S_{k} \subseteq S_{n+k}$.
We write deg $x=n$ for $x \in S_{n}, x \neq 0$. deg is not defined if $x \notin S_{n} \forall n$.
Example $3 C^{0}(\phi ; R)=$ the zero ring
$C^{\bullet}(\{*\} ; R)$: For all $n \geqslant 0, C_{n}(\{*\})$ is generated by the constant $\sigma_{n}: \Delta^{n} \rightarrow\{*\}$, and $C^{n}(\{*\} ; R)$ by $\varphi_{n}: \sigma_{n} \longmapsto 1$.
Check $\varphi_{n} \cup \varphi_{k}=\varphi_{n+k}$. So we have an iomorghisen of graded R-algebras: $C^{\bullet}(\{*\} ; R) \longrightarrow R[x], \varphi_{n} \longmapsto x^{\mu}$.
Here, deg on $R[x]$ is different for the usual deg of polynomials: $\operatorname{deg}\left(r x^{n}\right)=n$, deg not defined for non-monomials.
Prop 4 (Graded Leibniz rule). For $\varphi \in C^{n}(X ; R), \psi \in C^{k}(X ; R)$:

$$
d(\varphi \cup \psi)=(d \varphi) \cup \psi+(-1)^{n} \varphi \cup d \psi
$$

Koszul sign rule:
"when d jumps over something of degree be, $(-1)^{k}$ appears"

Proof
Calculate:

$$
\begin{aligned}
((d \varphi) & \cup \psi)\left(\sigma:\left[e_{0}, \ldots, e_{n+k+1}\right] \rightarrow x\right) \\
& \left.=(d \varphi)\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n+1}\right]}\right)\right) \cdot \psi\left(\left.\sigma\right|_{\left.\left[e_{n+1}, \ldots, e_{n+k+1}\right]\right)}\right) \\
& =\varphi\left(\left.d \sigma\right|_{\ldots} \ldots(\ldots)\right. \\
& =\varphi\left(\left.\sum_{i=0}^{n+1}(-1)^{i} \sigma\right|_{\left[e_{0}, \ldots, \widehat{e_{i}}, \ldots e_{n+1}\right]}\right) \cdot \psi(\ldots) \\
& =\sum_{i=0}^{n+1}(-1)^{i} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{i}, \ldots e_{n+1}\right.}\right) \psi\left(\left.\sigma\right|_{\left[e_{n+1}, \ldots, e_{n+k+1}\right]}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
& (\varphi \cup d \psi)(\sigma)= \\
& \left.=\sum_{j=0}^{k+1}(-1)^{j} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n}\right]}\right)^{\psi\left(\left.\sigma\right|_{\left[e_{n}\right.}, \ldots, e_{n+j}, \ldots, e_{n+k+1}\right]}\right)
\end{aligned}
$$

Now plug this into:

$$
((d \varphi) \cup \psi)(\sigma)+(-1)^{n}(\varphi \vee d \psi)(\sigma)
$$

Notice the last summand $(i=n+1)$ conch the first $(j=0)$!

$$
\begin{aligned}
& =\sum_{i=0}^{n}(-1)^{i} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]}\right) \psi\left(\left.\sigma\right|_{\left[e_{n+1}, \ldots, e_{n+n+1}\right]}\right) \\
& +\sum_{m=n+1}^{n+n+1}(-1)^{m} \varphi\left(\left.\sigma\right|_{\left.\left[e_{0}, \ldots, e_{n}\right]\right)} \psi\left(\left.\sigma\right|_{\left[e_{n}, \ldots, e_{m}, \ldots, e_{n+h+1}\right]}\right)\right.
\end{aligned}
$$

index shift $m=j+n$

$$
=(d(\varphi \vee \psi))(\sigma)
$$

Prop 5 (1) cocycle \smile cocycle $=$ cocycle
(2) coboundary - cocycle $=$ coboundary
and
Cocyele \cup coboundary $=$ - \cdot -
(3) For $[\varphi] \in H^{m}(x ; R), \quad[\psi] \in H^{k}(x ; R)$, $[\varphi] \cup[\psi]:=[\varphi \cup \psi] \in H^{n+k}(X \neq R)$ is well-def
(4) \smile makes $H^{\bullet}(X ; R):=\bigoplus_{i=0}^{\infty} H^{i}(X ; R)$ into a graded R-algebra.

Proof (1) if $d \varphi=d \psi=0 \Rightarrow d(\varphi-\psi)=(d \varphi) \smile \psi \pm \varphi \smile d \psi=0$.
(2) if $\varphi=d \eta$ and $d \psi=0 \Rightarrow \varphi \smile \psi=(d \eta) \smile \psi=d(\eta \smile \psi)$.
(3) $\varphi \cup \psi$ is a cocycle by (1).
if $\varphi^{\prime}=\varphi+d \eta, \quad \psi^{\prime}=\psi+d \xi$, then
$\left[\varphi^{\prime} \cup \psi^{\prime}\right]=[\varphi \smile \psi]+\underbrace{[\varphi \smile d \zeta]}_{=0}+\underbrace{\left[d \eta-\psi^{\prime}\right]}_{=0}{ }_{\text {by }}(2)$
(4) Follows from Prop 1

Example 6 if $l \geqslant 1$, then $H^{\bullet}\left(S^{l}, R\right) \cong R[x] /\left(x^{2}\right)$ with $\operatorname{deg} x=l \quad\left(x^{2}=0\right.$ since since there is no nou-trivial cohomology clan of $\operatorname{deg} 2 l$).
Def For a Δ-complex X, define \checkmark in the same way as before on the simplicial cochain complex $C_{\Delta}^{\bullet}(X ; R)=$ $\operatorname{Hom}\left(C_{0}^{\Delta}(X), R\right)$, and on its cohomology $H_{\Delta}^{\bullet}(X ; R)$.

Prop 7 The chain homotopy equivalence $C_{0}^{\Delta}(x) \longrightarrow C_{0}(x)$, sending simplex to simplex, induces a chain homotopy equivalence $C^{\bullet}(x) \rightarrow C_{\Delta}^{\bullet}(x)$ that preserves the cup product.

Proof Immediate from def
Example $8 \quad x=S^{1} \times S^{1}$. Know $H^{0}(x) \cong R, H^{1}(x) \cong \pi^{2}$, $H^{2}(x) \cong \mathbb{R}$. So may be interesting on $H^{1}(x)$.
Put a \triangle-comple x-structure on X :

$$
\begin{aligned}
& a \in C_{0}^{\Delta}(x), \quad b_{1}, b_{2}, b_{3} \in C_{1}^{\Delta}(x) \\
& c_{1}, c_{2} \in C_{2}^{\Delta}(x) \Rightarrow \\
& d b_{i}=0, \\
& d c_{1}=d c_{2}=b_{1}-b_{3}+b_{2}
\end{aligned}
$$

One computes that:

$$
\begin{aligned}
& H_{0}^{\Delta}(X ; \mathbb{R}) \text { has basis }[a] \\
& H_{1}^{\Delta}(X ; \mathbb{R})-\cdot \cdot\left[b_{1}\right],\left[b_{2}\right] \\
& H_{2}^{\Delta}(X ; \mathbb{R})-\cdots-\left[c_{1}-c_{2}\right]
\end{aligned}
$$

Since $H_{0}^{\Delta}(X ; \mathbb{R})$ is torion-free, the UCT implies $H_{\Delta}^{\bullet}(X ; \mathbb{R}) \cong \operatorname{Hom}\left(H_{\bullet}^{\Delta}(X ; \mathbb{R})\right)$. So the dual basis of the basis $[a],\left[b_{1}\right],\left[b_{2}\right],\left[c_{1}-c_{2}\right]$ is a basis for $H_{\Delta}^{0}(X ; \lambda)$:

$$
[4],\left[\psi^{1}\right],\left[\psi^{2}\right],[\eta]
$$

with $\varphi(a)=1, \psi^{i}\left(b_{j}\right)=\delta_{i j}, \eta\left(c_{1}-c_{2}\right)=1$. Let's calculate $\left[\psi^{1}\right] \cup\left[\psi^{2}\right]$! Since $\left[\psi^{2}\right] \cup\left[\psi^{2}\right] \in H^{2}(X ; \mathbb{R})$

$$
\Rightarrow \quad\left[\psi^{1}\right]-\left[\psi^{2}\right]=\lambda[\eta] \text { for some } \lambda \in \mathbb{Z} \text {. }
$$

Evaluate both sides on $\left[c_{1}-c_{2}\right]$:

$$
\begin{array}{rlrl}
\lambda & =e v\left(\left[\psi^{1}\right] \cup\left[\psi^{2}\right]\right)\left(\left[c_{1}-c_{2}\right]\right) & \\
& =e v\left(\left[\psi^{1} \cup \psi^{2}\right]\right)\left(\left[c_{1}-c_{2}\right]\right) & & \text { by def of } \smile \text { on cohomology } \\
& =\left(\psi^{1} \cup \psi^{2}\right)\left(c_{1}-c_{2}\right) & \text { by def of ev } \\
& =\left(\psi^{1} \cup \psi^{2}\right)\left(c_{1}\right)-\left(\psi^{1}-\psi^{2}\right)\left(c_{2}\right) & \text { by linearity } \\
& =\psi^{1}\left(\left.c_{1}\right|_{\left[e_{0}, e_{1}\right]}\right) \psi^{2}\left(\left.c_{1}\right|_{\left[e_{1}, e_{2}\right]}\right)-\psi^{1}\left(\left.c_{2}\right|_{\left[e_{0}, e_{1}\right]}\right) \psi^{2}\left(\left.c_{2}\right|_{\left[e_{1}, e_{2}\right]}\right) \\
& =\psi^{1}\left(b_{2}\right) \psi^{2}\left(b_{1}\right)-\psi^{1}\left(b_{1}\right) \psi^{2}\left(b_{2}\right) \\
& =-1 & \text { on cochains of } \\
\Rightarrow & {\left[\psi^{1}\right] \cup\left[\psi^{2}\right]=-[\eta] .}
\end{array}
$$

Similarly, one computes $\left[\psi^{2}\right] \cup\left[\psi^{1}\right]=[\eta]$ and $\left[\psi^{i}\right] \cup\left[\psi^{i}\right]=0$.

So $H^{\bullet}\left(S^{1} \times S^{1} ; \mathbb{R}\right) \cong \underbrace{\mathbb{Z}\langle x, y\rangle} /\left(x y=-y x, x^{2}=y^{2}=0\right)$

Prop 9 (Naturality of \sim)
$f: X \rightarrow Y$ cont. map of top. spaces, $[\varphi] \in H^{n}(Y ; R),[\Psi] \in H^{k}(Y ; R)$

$$
\Rightarrow f^{*}([\varphi]-[\psi])=\left(f^{*}[\varphi]\right)-\left(f^{*}[\psi]\right)
$$

Proof (skipped in the lecture)
For all $(n+k)$-simplexes $\sigma:\left(f^{c}(\varphi \smile \psi)\right)(\sigma)=\varphi \smile \psi(f \circ \sigma)$

$$
\begin{aligned}
& =\varphi\left(\left.f \circ \sigma\right|_{\left[e_{0}, \ldots, e_{m}\right]}\right) \psi\left(\left.f \circ \sigma\right|_{\left[e_{m}, \ldots, e_{n+k}\right]}\right) \\
& =f^{c} \varphi(\sigma \mid \ldots) \cdot f^{c} \psi(\sigma / \ldots)=\left(\left(f^{c} \varphi\right) \cup\left(f^{c} \psi\right)\right)(\sigma) .
\end{aligned}
$$

Now $f^{*}([\varphi] \smile[\psi])=f^{*}([\varphi \smile \psi])=\left[f^{c}(\varphi \smile \psi)\right]$

$$
=\left[\left(f^{c} \varphi\right) \smile\left(f^{c} \psi\right)\right]=\left[f^{c} \varphi\right] \smile\left[f^{c} \psi\right]=
$$

$$
f^{*}([\varphi]) \smile f^{*}([\psi])
$$

In other words: f^{*} is a homomoupliam of graded R-algebras!
Prop $10 X, Y$ top space \Rightarrow We have graded R-algebra is os
$(1) H^{\bullet}(X \cup Y ; R) \xrightarrow[\binom{\text { incl* }}{\text { incl* }}]{ } H^{\bullet}(X ; R) \times H^{\bullet}(Y ; R)$
(2) $H^{*}(X \sim Y ; R) \longrightarrow$ Subalgetra of $H^{\bullet}(X ; R) \times H^{\bullet}(Y ; R)$ $\left(\begin{array}{l}\text { incl } 1^{*} \\ \text { incl* }\end{array} \quad \begin{array}{l}\text { containing in } \operatorname{deg} 0 \text { only } \\ \text { with }\end{array}\left(x_{0}\right)=\psi\left(y_{0}\right) \quad\right.$ those (φ, ψ)
wedge product $X L Y /\left\{x_{0}\right\} \sim\left\{y_{0}\right\}$ for some $x_{0} \in X, y_{0} \in Y$ that are deformation retracts of neighbourhoods N_{X}, N_{T}.
Proof (1) We know ($\begin{aligned} & \text { rick* } \\ & \dot{u} c^{*}\end{aligned}$) is an R-module isom. (eg use MV). It's ans algebra homos by Prop?
(2) Mayer-Vietoris gives iss for $n \geqslant 1$, and a $S E S$

$$
0 \rightarrow H^{0}(X \vee Y ; R) \rightarrow H^{0}(\underbrace{x \cup N_{y}}_{\approx x} ; R) \oplus H^{0}(\underbrace{\Psi \cup N_{x}}_{\approx Y} ; R) \rightarrow H^{0}(\underbrace{\left.N_{x} \cap N_{Y} ; R\right) \rightarrow 0}_{\simeq\{*\}}
$$

the learned is
the desired subalgebra

Example $11 H^{\bullet}\left(S^{1} \vee S^{1} \vee S^{2}\right) \cong$

$$
\begin{aligned}
& \mathbb{R}\left\langle x_{1}, x_{2}, x_{3}\right\rangle /\left(x_{i} x_{j}=0 \text { for all } i, j\right) \\
& \operatorname{deg} x_{1}=\operatorname{deg} x_{2}=1, \operatorname{deg} x_{3}=2
\end{aligned}
$$

This is not isomouplic to the ring $H^{0}\left(S^{1} \times S^{1}\right)$, which contains elements of degree 1 with non-zero product.

$$
\Rightarrow S^{1} \sim S^{1} \sim S^{2} \nsim S^{1} \times S^{1}
$$

Theorem $13 X$ sop. space, $A \subseteq X, \varphi \in H^{n}(X, A ; R)$, $\psi \in H^{k}(X, A: R)$. Then

$$
\varphi \smile \psi=(-1)^{n k} \psi \smile \varphi
$$

Proof: next lecture.

This property of the grated R-alg. $H^{\bullet}(X, A, R)$ is called graded commutative.
(12 was shipped in enumeration)
Theorem $13 X$ top. space, $[\varphi] \in H^{n}(X ; R)$,
$[\psi] \in H^{k}(X: R)$. Then

$$
[\varphi] \smile[\psi]=(-1)^{n k}[\psi] \smile[\varphi] .
$$

Proof For $\sigma: \Delta^{\mu} \rightarrow x$, let $\bar{\sigma}: \Delta^{\mu} \rightarrow x$
be $\bar{\sigma}=\sigma 0\left(\right.$ natural homer $\left.\left[e_{0}, \ldots, e_{m}\right] \rightarrow\left[e_{m}, e_{m-1}, \ldots, e_{1}, e_{0}\right]\right)$, ie. $\bar{\sigma}\left(e_{i}\right)=\sigma\left(e_{n-i}\right)$. Let $p: C_{0}(x) \longrightarrow C_{0}(x), \sigma \mapsto(-1)^{\varepsilon_{n}} \bar{\sigma}$, where $\varepsilon_{n}=\frac{(n+1) n}{2}$.
Claim 1: ρ is a chain map.
Claim 2: $\rho \simeq$ id $_{C .}(x)$
Pf that claim 18-2 \Rightarrow Thu:

$$
\begin{align*}
& \left(\rho^{*}(\varphi \smile \psi)\right)(\sigma)=(-1)^{\varepsilon_{n+k}} \varphi\left(\left.\sigma\right|_{\left[e_{n+k}, \ldots, e_{k}\right]}\right) \psi\left(\left.\sigma\right|_{\left[e_{k}, \ldots, e_{0}\right]}\right) \\
& \left(\left(\rho^{*} \psi \mid \smile\left(\rho^{*} \varphi\right)\right)(\sigma)=(-1)^{\varepsilon_{n}+\varepsilon_{k}} \psi\left(\left.\sigma\right|_{\left[e_{k}, \ldots, e_{0}\right]}\right) \psi\left(\left.\varphi\right|_{\left[e_{n+k}, \ldots, e_{k}\right]}\right)\right. \\
& \Rightarrow[\varphi] \smile[\psi]=[\varphi \smile \psi]=\left[e^{*}(\varphi \smile \psi)\right] \\
& =(-1)^{\varepsilon_{n+k}+\varepsilon_{n}+\varepsilon_{k}}\left[\left(e^{*} \psi\right) \smile\left(\rho^{*} \varphi\right)\right]=(-1)^{n k}\left[\rho^{*} \psi\right] \smile\left[e^{*} \varphi\right] \\
& =(-1)^{n k}[\psi] \smile[\varphi] . \quad \text { Check that } \varepsilon_{n+k}+\varepsilon_{n}+\varepsilon_{k} \equiv n k \quad(2) . \tag{2}
\end{align*}
$$

Pf of Claim 1: $\quad \rho d \sigma=\rho\left(\left.\sum_{i=0}^{n}(-1)^{i} \sigma\right|_{\left.\left[e_{0}, \ldots, \widehat{e}_{i}, \ldots, e_{n}\right]\right)}\right.$

$$
\begin{aligned}
& \left.=\left.\sum_{i=0}^{n}(-1)^{i+\varepsilon_{n-1}} \sigma\right|_{\left[e_{n}, \ldots, e_{i}\right.}, \ldots, e_{0}\right] \\
d \rho \sigma & =\left.\sum_{j=0}^{n}(-1)^{j+\varepsilon_{n}} \quad \sigma\right|_{\left[e_{n}, \ldots, \widehat{e_{n-j}}, \ldots, e_{0}\right] \quad n-j=i} \\
& =\left.\sum_{i=0}^{n}(-1)^{n-i+\varepsilon_{n}} \quad \sigma\right|_{\left[e_{m}, \ldots, e_{i}, \ldots, e_{0}\right]} \quad
\end{aligned}
$$

Check: $\varepsilon_{n-1} \equiv n+\varepsilon_{n}(2) \Leftrightarrow n+\frac{n(n-1)}{2} \equiv \frac{n(n+1)}{2}$

Pf of Claim 2: Need homotopy s: $C_{n}(x) \rightarrow C_{n+1}(x)$ with

$$
\begin{equation*}
d_{n+1} s_{n}+s_{n-1} d_{n}=\rho_{n}-i d_{C_{n}} . \tag{*}
\end{equation*}
$$

Construction of s s inspired by the p ism operator:
cut the prism $\Delta^{n} \times[0,1] \subseteq \mathbb{R}^{n+1} \times \mathbb{R}=\mathbb{R}^{n+2}$
into $n+1$ many $(n+1)$-simplices.
Let $v_{i}=\left(e_{i}, 0\right)$ and $\omega_{i}=\left(e_{i}, 1\right)$ for $i=0, \ldots, n$.

Let $\pi: \Delta^{m} \times[0,1]$ be the projection, so that $\pi\left(\omega_{i}\right)=\pi\left(v_{i}\right)=e_{i}$. Define

$$
S_{n}(\sigma):=\sum_{i=0}^{n}(-1)^{i+\varepsilon_{n-i}} \sigma \circ \pi\left(\left[v_{0}, \ldots, v_{i}, \omega_{n}, \ldots, \omega_{i}\right]\right)
$$

Let us check by calculation that (*) holds.

$$
d_{n+1}\left(s_{n}(\sigma)\right)=\sum_{0 \leqslant j \leqslant i \leqslant n}^{(1)}(-1)^{i+\varepsilon_{m-i}+j} \begin{aligned}
& \text { Skipped in lecture } \\
& \sigma 0 \pi\left(\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, v_{i}, \omega_{n}, \ldots, \omega_{i}\right]\right)
\end{aligned}
$$

$$
+\sum_{0 \leq i \leq j \leq n}^{(2)}(-1)^{\varepsilon_{m-i+n j+1}} \sigma_{0} \pi\left(\left[v_{0}, \ldots, v_{i}, \omega_{n}, \ldots, \hat{\omega}_{j}, \ldots \omega_{i}\right]\right)
$$

Consider the summands with $i=j$:

$$
\begin{aligned}
& (-1)^{\varepsilon_{n}} \sigma_{0} \pi\left(\left[\omega_{n}, \ldots, \omega_{0}\right]\right)+ \\
& +\sum_{i=1}^{n+1}(-1)^{\varepsilon_{n-i}} \sigma 0 \pi\left(\left[v_{0}, \ldots, v_{i-1}, \omega_{n}, \ldots, \omega_{i}\right]\right) \\
& \begin{array}{l}
\left.+\sum_{k=0}^{n}(-1)^{\varepsilon_{m-n}+n+k+1} \sigma_{0} \pi\left(\left[v_{0}, \ldots, v_{k}, \omega_{n}, \ldots, \omega_{k+1}\right]\right)_{V}\right) \\
+(-1)^{\varepsilon_{0}} \sigma_{0} \pi\left(\left[v_{0}, \ldots, v_{n}\right]\right) \quad \text { these cancel: }
\end{array} \\
& =(-1)^{\varepsilon_{n}} \bar{\sigma}+\sigma=\rho \sigma-\sigma \\
& \text { these cancel } \\
& \text { index shift } k=i-1 \text {, check } \\
& \varepsilon_{m-i} \neq \varepsilon_{m-i+1}+n+i \text { (2) }
\end{aligned}
$$

So, to prove ($*$), one has to check that the summands with $i \neq j$ equal $-S_{m-1}\left(d_{m}(\sigma)\right)$

$$
\begin{aligned}
& =-S_{n-1}\left(\sum_{j=0}^{n}(-1)^{j} \sigma /\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, v_{n}\right]\right) \\
& =\sum_{0 \leqslant j \leqslant k \leqslant n}(-1)^{1+j+k+\varepsilon_{n-k-1}} \sigma_{0} \pi\left(\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, v_{k+1}, \omega_{n}, \ldots, \omega_{k+1}\right]\right)
\end{aligned}
$$

index shift: $k=i-1$. Check $i+\varepsilon_{n-i}+j \equiv 1+j+i-1+\varepsilon_{n-i}$ \Rightarrow equals summands of (1) with $j<i$

$$
+\sum_{0 \leqslant i<j \leqslant n}(-1)^{1+j+i+\varepsilon_{n-i-1}} \sigma_{0} \pi\left(\left[\dot{v}_{0}, \ldots, v_{i}, \omega_{n}, \ldots \hat{\omega}_{j}, \ldots \omega_{i}\right]\right)
$$

check: $\quad \varepsilon_{n-i}+n+j+1 \equiv 1+j+i+\varepsilon_{n-i-1}$
\Rightarrow equals summands of (2) with $i<j$

Remark 14 Well prove later that:
$H^{\bullet}\left(\mathbb{C} P^{n}\right) \cong \mathbb{R}[x] /\left(x^{n+1}\right)$ with $\operatorname{dog} x=2$
(commutative since $H^{k}\left(\mathbb{C} P^{n}\right)=0$ for odd k)
$H^{\bullet}\left(\mathbb{R} p^{n} ; \mathbb{R} / 2\right) \cong \mathbb{R} / 2[x] /\left(x^{n+1}\right)$ with $\operatorname{deg} x=1$
(commutative because of $2 / 2$ coefficients)

$$
H^{\bullet}\left(\left(S^{1}\right)^{\times n}\right) \cong \mathbb{Z}\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left(x_{i} x_{j}+x_{j} x_{i}, x_{i}^{2}\right)
$$

with $\operatorname{deg} x_{i}=1$
(not commutative, but graded commentative)
Reminder from $A \lg$ Top $1 \quad X$ top. space, $A, B \subseteq X$.
$C_{n}(A+B) \subseteq C_{n}(A \cup B)$ is generated by $C_{n}(A) \cup C_{n}(B) \subseteq C_{n}(A \cup B)$.
$C_{m}(A+B)$ is a chain complex, and $C_{0}(A+B) \stackrel{i}{\hookrightarrow} C_{0}(A \cup B)$ is a homotopy equivalence (proved by barycentric subdivision).

Lemma 14 There is a (natural) iso $H^{n}(X, A \cup B ; R) \xrightarrow{j} H^{n}(X, A+B ; R)$ induced by i.
Proof (shipped in lecture)

$$
\left.\begin{array}{rl}
0 & \rightarrow C_{n}(A+B) \\
\rightarrow C_{n}(x) & \rightarrow C_{n}(x, A+B)
\end{array}\right)
$$

communes, has split exact rows. Apply $\operatorname{Hom}(-, R)$ and take the natural LESS in cohomology:

$$
\begin{aligned}
& \cdots \leftarrow H^{n}(A+B ; R) \leftarrow H^{m}(X ; R) \leftarrow H^{n}(X, A+B ; R) \leftarrow \cdots \\
& \text { iso } \uparrow_{i}{ }^{*} \text { id } \hat{j}_{j} \\
& \ldots \leftharpoonup H^{n}(A \cup B ; R) \longleftarrow H^{n}(X ; R) \longleftarrow H^{n}(X, A \cup B) ; R \leftarrow \cdots
\end{aligned}
$$

j is an iso by the five lemma.

Def Let X be a top. space and $A, B \subseteq X$. Let the relative cup product

$$
\text { - } H^{n}(X, A ; R) \times H^{k}(x, B ; R) \rightarrow H^{n+k}(X, A \cup B ; R)
$$

be the portcomporition with j^{-1} of the bilinear map on cohomology indued by

$$
\begin{array}{r}
\text { v: } C^{n}(x, A ; R) \times C^{k}(x, B ; R) \rightarrow C^{m+k}(X, A+B ; R) \\
(\varphi \smile \psi)(\sigma)=\underbrace{\varphi\left(\sigma\left(\left[e_{0}, \ldots, e_{m}\right]\right)\right.}_{\substack{\hat{\jmath} \\
\text { in } \sigma \subseteq A \text { or } \\
\text { in } \sigma \subseteq B}} \underbrace{}_{\text {if in } \sigma \leq A} \underbrace{\Psi\left(\left.\sigma\right|_{\left[e_{m}, \ldots, e_{n+k}\right]}\right)}_{0 \text { if in } \sigma S B}
\end{array}
$$

Chapter 7: Manifolds and Orientations
(I)Motivation
Def (Poincare algebra) A connected $\left(\Leftrightarrow A^{0}=k\right)$ gca $A^{0}=\oplus \oplus_{j=0}^{j} A^{j}$ over a field k is called a Poincaré algebra of formal dimension n if.
(i) $A^{j}=0$ for $j>n$.
(ii) $A^{n} \cong \mathbb{k}$
(iii) the bilinear pairing $A^{j} \otimes A^{n-j} \longrightarrow A^{n} \cong \mathbb{K}$ is now-degenerate
\Longleftrightarrow the map $A^{j} \longrightarrow \operatorname{Hom}_{k}\left(A^{n-j}, k\right)$ is an isomorphism m.
Claim Let M^{n} be a closed connected orientable manifold
Then $H^{\prime}(M ; Q)$ is a Paincase' algebra of formal dimension n.
(II) Manifolds

Def (Topological manifold) A Hausdorff second countable topological space M is called a topological manifold (resp. top. mend with boundary) of dimension n if each paint $x \in M$ has a neighborhood homeomorplic to an open subset of \mathbb{R}^{n} (resp of $\mathbb{R}_{20} \times \mathbb{R}^{n-1}$).

Def (Boundary) Let M be a manifold with boundary. The subset ∂M of points $x \in M$ that do not have a neighborhood ho meromorphic to an open subset of \mathbb{R}^{n} is called the boundary of M.

Def (Closed manifold) A compact manifold without boundary is called closed.
Examples: (i) \mathbb{R}^{n} any any pau subset of \mathbb{R}^{n}.
(ii) $S^{n}:=\left\{\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}^{n+1} \mid \sum^{\prime \prime}\left(x^{i}\right)^{2}=1\right\}$

Two charts: $\varphi_{n}: S^{n+i}\left\{\{n\} \longrightarrow \mathbb{R}^{n}\right.$

$$
\begin{aligned}
\left(x_{0}^{0}, \ldots, x^{-}\right) & \longrightarrow\left(\frac{x^{0}}{1-x^{j}} ; \ldots ; \frac{x^{n-1}}{1-x^{n}}\right) \\
\varphi_{s}: S^{n} \backslash\{s\} & \longrightarrow \mathbb{R}^{n} \\
\left(x_{0}^{0}, \ldots, x^{-}\right) & \longmapsto\left(\frac{x^{0}}{1+x^{0}} ; \ldots ; \frac{x^{n-1}}{1+x^{n}}\right)
\end{aligned}
$$

with transition maps: $\left.\varphi_{s} \circ \varphi_{n}^{-1}, \varphi_{n} \circ \varphi_{i}^{-1}: \mathbb{R}^{n}\{00\} \longrightarrow \mathbb{R}^{n} \backslash 10\right\}$.

$$
\left(t^{n}, \ldots, t^{\prime}\right) \longmapsto\left(\frac{t^{\prime}}{n+t^{2}} ; \ldots ; \frac{t^{n}}{\|t\|^{2}}\right)
$$

(iii) n-dimensional torus T^{n};
(iv) real and complex projective spaces $\mathbb{R P}^{n} \& \mathbb{E P}^{n}$.
... with boundary: (i) D^{n},
(ii) solid torus $S^{\prime} \times D^{2}$.

Non-examples.
(i) λ
(ii) $R P^{\infty}:=\bigcup_{n=0}^{\infty} R P^{n}$ \& $\mathbb{C} P^{\infty}=\bigcup_{n=0}^{\infty} \mathbb{C} P^{n}$.

Proposition 1 Let M^{n} be a topological manifold. Then for any $x \in M: H_{i}(M, M \backslash\{x\} ; R) \cong \begin{cases}0 & \text { if } i \neq n \text {; } \\ R & \text { if } i=n .\end{cases}$
\square Let B be an open ball around x (sits inside of a neighborhood of x homeorphic to a subset of \mathbb{R}^{n})
$\Longrightarrow Z:=M 1 B$ is closed.

By excision theoreom, $H_{i}(M, M \backslash\{x\} ; R) \cong H_{i}(M \backslash Z ;(M \backslash\{x\}) \backslash Z ; R) \cong H_{i}(B, B \backslash\{x\} ; R)$

Def (Local (co)homdogy) local homology group
$\left.H_{i}(M, M \mid 4 x) ; R\right) \quad$ local cohomology group.
$\left.H^{\prime}(\underline{M}, M \mid 4 x) ; R\right) \quad$ lo al
Def (Homology manifold) A Hausdorff second countable space is a homology R-manifold of dimension n if for any $x \in M \quad H .(M, M \mid n x\} ; R) \cong H_{1}\left(S^{n} ; R\right)$.
(iii) Orientations

Def (Local orientations) A local orientation μ_{x} in $x \in M$ is a generator of the local homology group $\left.H_{n}(M, M \backslash h x\} ; \mathbb{Z}\right) \cong \mathbb{Z}$.

Note that there are two choices of a generator in \mathbb{Z}.
\Longrightarrow At each point there are two possible orientations.
Def (Orientation) An orientation of an n-dimensional manifold is a choice of a local orientation $\mu_{x} \in H_{n}(M, M \mid n \times j ; 2)$ at every $x \in M$, st. it is locally consistent, i.e. if $x, y \in M$ can be covered by a ball B within one chart. then μ_{x} and μ_{y} map one to each other under the iso morphisms:

$$
\left.H_{n}(M, M|3 x| ; \mathbb{Z}) \cong H_{n}(M, M \backslash B ; \mathbb{Z}) \cong H_{n}(M, M| | y\} ; \mathbb{Z}\right)
$$

Def ((non-) Orientable manifold) A manifold is orientatle if there exists an orientation on M.
A manifold is non-orientable if it is not orientable.

Examples: (i) S^{n} is orientable.
(ii) The Möbius band is non-orientable.

Proposition 2 Let M be a closed connected mauifolal of dimension n.
(i) The homomorphism $H_{n}\left(M, \mathbb{F}_{2}\right) \rightarrow H_{n}\left(M, M \backslash\{x\} ; \mathbb{F}_{2}\right)$ is an isomorphism for any $x \in M$.
(ii) If M is orientable, then $H_{n}(M ; \mathbb{Z}) \longrightarrow H_{n}(M, M \backslash h \times s ; \mathbb{Z})$ is an isomorphism for any $x \in M$. If M is non-orientable, then $H_{n}(M ; Z)=0$.
(iii) $H_{i}(M, Z)=0$ for $i>n$.

Main Lemma 3 Let $A \leq M$ be a compact subset of a manifold M of dimension n. (not necessary compact).
(i) $H_{i}(M, M \backslash A ; R)=0$ if $i>n$.
$\alpha \in H_{n}(M, M \backslash A ; R)$ is zero iff its image in $H_{n}(M, M \backslash\{x\} ; R)$ is zero for every $x \in A$.
(ii) For every locally consistent choice of orientations $\mu_{x}, x \in A$, exists a unique $\mu_{A} \in H_{n}(M, M \backslash A ; R)$ s.t. is μ_{x} for all $x \in A$.
$\triangle S_{T E P}$ 1. If the assertion holds for compact A, B and $A \cap B$, then it holds for $A \cup B$.
Relative Mayer-Vietoris sequence:

$$
H_{n+1}(M, M \backslash(A, B)) \longrightarrow H_{n}^{\|}(M, M \backslash(A \cup B)) \xrightarrow{\Phi} H_{n}(M, M \backslash A) \oplus H_{n}(M, M \mid B) \xrightarrow{\Psi} H_{n}(M, M \backslash(A, B))
$$

For $i>n$ we have $H_{i}(M, M \backslash(A, B))=H_{i}(M, M \backslash A)=H_{i}(M, M \mid B)=0 \quad \Longrightarrow H_{i}(M, M \backslash(A \cup B))$ is locked between two zeros \Rightarrow zero itself.
If $\mu \in H_{n}\left(M, M_{1}(A, B)\right)$ is st. $\mu_{x} \in H_{n}\left(M, M \backslash\{2 x)\right.$ is zero for all $x \in A \cup B \Rightarrow$ its images in $H_{n}(M, M \backslash A)$ and $H_{n}(M, M(B)$ are zero by the assumption. \Rightarrow Since Φ is injective, $\mu=0$. (Proves (i)).

Let $\mu_{x}, x \in A \cup B$ be a locally consistent choice of orientations $\Rightarrow \exists!\mu_{A} \in H_{n}(M, M \backslash A), \mu_{s} \in H_{n}(M, M \backslash B)$
$\Psi\left(\mu_{A}, \mu_{B}\right)=\left.\mu_{A}\right|_{A \cap B}-\left.\mu_{B}\right|_{A \cap B} \in H_{M}(M, M \backslash(A, B))$. its image is zero in $H_{M}(M, M, M \times 3)$ since Φ is injectiv
for any $x \in A \cap B$
\Longrightarrow it is zero itself by assumption on $A_{\cap} B \Rightarrow B_{y}$ exactness, $\left(\mu_{A}, \mu_{B}\right)$ is the image of a unique element $\mu_{A, B} \in H_{n}(M, M \backslash(A \cup B))$.

STEP 2. It is enough to prove the assertion for a compact subset of a single chart. (ie. in \mathbb{R}^{n})
Any compact subset $A \leq M$ is a union of a finite number of compact subsets, sit. each belongs to a chart \rightarrow We can apply induction and STEP 1.
If L is a chart, then $H_{i}(M, M \backslash A) \approx H_{i}(L, L \backslash A)$ by excision.
\Rightarrow From now on wo assume $M=\mathbb{R}^{n}$.
$S_{\text {EP } 3}$ If $A \subseteq \mathbb{R}^{n}$ is a finite simplicial complex, st. its simplices are linearly embedded, then the assertion follows by induction, and it is enough to prove for one simplex. The latter follows from the definition of local consistency.
$S_{\text {TEP 4. }} A \subseteq \mathbb{R}^{n}$ compact
$\alpha \in H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash A\right)$ is represented by a relative cycle z and let $C \subseteq \mathbb{R}^{n} \backslash A$ be a union of the images of the singular simplices of ∂z.
A and C are compact \Rightarrow they have positive distance $\delta>0$ between them.
Cover A with a finite piecewise linear simplicial complex K with $K \cap C=\phi$ (i) cover A by one big enough simplex j^{\prime} from $S_{\text {Tee }} 3$
(ii) take barycentric subdiusion st the diameter of a piece is less than g I
(iii) take simplices that intersect A.

The same chain z represents a class $\alpha_{k} \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{\prime \prime} \backslash k\right)$ that maps to $\alpha \in H_{n}\left(\mathbb{R}^{\prime}, \mathbb{R}^{n} \backslash A\right)$.
By $S_{\text {SEP } 3}, \alpha_{k}=0$ for $i>n \Rightarrow \alpha=0$ and $H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \mid A\right)=0$ for $i>n$.
Finally, assume $i=n$. If $\alpha_{k, x}=0 \in H_{n}\left(\mathbb{R}^{\prime}, \mathbb{R}^{i} i\{x\}\right)$ for all $x \in A$, then it also holds for all $x \in K$.
Indeed, for any simplex $\Delta \in K$ and any $x \in \Delta$ the map $H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}: \Delta\right) \rightarrow H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}(\Delta x)\right)$ is an iso.
$S_{\text {SEP } 3}$ now implies that $\alpha_{K}=0 \Rightarrow \alpha=0$, which concludes the proof of (i) and uniqueness part in (ii).
Existence: let $\alpha_{A} \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash A\right)$ be the image of $\alpha_{\beta} \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \mid B\right)$, where B is a big tall containing A exists by definition
of local consistency.

Last time: Proof of
Lemma $3 M^{n}$ without boundary, $A \subseteq M$ compact, R commutative unital ring.
(i) $H_{i}(M, M \backslash A ; R)=0$ for $i>n$.
$\alpha \in H_{M}(M, M \backslash A ; R)$ i zero \Leftrightarrow
image of α in $H_{M}(M, M \backslash\{x\}, R)$ is zero for all $x \in A$.
(ii) μ_{x} locally consistent choice of orientation for $x \in A$
\Rightarrow exist unique $\mu_{A} \in H_{M}(M, M \backslash A ; R)$ mapping to μ_{x} for all $x \in A$
Today:
Prop $2 M^{n}$ closed (\Leftrightarrow compact, no boundary) connected.
(i) $H_{n}\left(M ; \mathbb{F}_{2}\right) \rightarrow H_{n}\left(M, M \backslash\{x\} ; \mathbb{F}_{2}\right)$ iso for all $x \in M$.
(ii) M orientable $\Rightarrow H_{M}(M ; \mathbb{R}) \rightarrow H_{M}(M, M \backslash\{x\} ; \mathbb{R})$ is $\forall x \in M$.
M non-orientable $\Rightarrow H_{M}(M ; \mathbb{R})=0$.
(iii) $H_{i}(M ; \mathbb{R})=0$ for $i>n$.

Note that (iii) follows from Lemma 3 (i) with $A=M$. For (i) \& (ii), weill also use Lemma 3, but need some move tools.

For M^{M} without boundary, let
$\tilde{M}:=\left\{\mu_{x} \mid x \in M\right.$ and $\mu_{x} \in H_{M}(M, M \backslash\{x\})$ a local orientation $\}$
Note $p: \tilde{M} \rightarrow M, \mu_{x} \mapsto x$ is a $2: 1$ surjection. For $B \subseteq$ chart $\subseteq M$ an open ball and a generator $\mu_{B} \in H_{M}(M, M \backslash B)$, let

$$
\begin{aligned}
& U_{\left(\mu_{B}\right)}:=\left\{\mu_{x} \in \tilde{M} \mid\right. x \in B, \mu_{x} \text { image of } \mu_{B} \text { under } \\
&\left.H_{\mu}(M, M \backslash B) \rightarrow H_{\mu}(M, M \backslash\{x\})\right\}
\end{aligned}
$$

Exercise The $U_{\left(\mu_{B}\right)}$ form the base of a topology on \tilde{M}, st P is a $2: 1$ covering.
Def $p: \tilde{M} \rightarrow M$ i called the

Each $\mu_{x} \in \tilde{M}$ has a canonical orientation $\tilde{\mu}_{x} \in H_{n}\left(\tilde{M}, \tilde{M} \backslash \mu_{x}\right)$
corresponding to μ_{x} under the ios

$$
\begin{aligned}
H_{n}\left(\tilde{M}, \tilde{M} \backslash \mu_{x}\right) & \underset{\text { exciton }}{\rightleftarrows} H_{m}\left(U_{\left(\mu_{B}\right)}, U_{\left(\mu_{B}\right)} \backslash \mu_{x}\right) \\
& \longrightarrow H_{n}(B, B \backslash x) \underset{\text { excision }}{\longrightarrow} H_{n}(M, M \backslash x)
\end{aligned}
$$

These are locally consistent, so \tilde{M} has a canonical orientation.
Prop 4 if M is connected, then: \tilde{M} mom-cormected $\Leftrightarrow M$ orientable
Proof M has orientation $\mu_{x} \Rightarrow \mathbb{M}=\underbrace{\left\{\mu_{x} \mid x \in M\right\}}_{\text {open }} \cup \underbrace{\left\{-\mu_{x} \mid x \in M\right\}}_{\text {open }}$
If \tilde{M} has two components N_{1}, N_{2}, then they inherit an orientation from \tilde{M}. Check that $p l_{N_{i}}: N_{i} \rightarrow M$ are coverings. Then, they must be one-Sheeted coverings, i.e. hormeomarghisms.
Example $\widetilde{S}^{2} \cong S^{2} u S^{2}, \quad \widetilde{\mathbb{R} p^{2}} \cong S^{2}, \quad$ Klein Bottle $\cong S^{1} \times S^{1}$
Note that $S^{3} \rightarrow \mathbb{R} P^{3}$ is an orientable double covering, but not the orientation covering, which is $\mathbb{R} P^{3} \longrightarrow \mathbb{R} P^{3} \rightarrow \mathbb{R} P^{3}$ (since \mathbb{R}^{3} is onentable).
Def A section of p is a cont. map $s: M \rightarrow M_{R}$ with $p s=i d M$.
Note that a section of a covering map has a component of M as image
Prop $5 \mu_{x}$ is an orientation $\Leftrightarrow x \longmapsto \mu_{x}$ is a section of ρ
Pf Exercise
Def R commutative unital ring, M^{n} without boundary.
Local R-orientation: μ_{x} is a generator of $H_{M}(M, M \backslash x ; R)$ R-orientation: locally consistent choice of local R-orientations.
MR-orientable: \Leftrightarrow There exist an R-orientation
Example Every M is \mathbb{F}_{2}-orientate, since there is precisely one local \mathbb{F}_{2}-orientation at every point.

Def Let $M_{R}:=\left\{\alpha_{x} \mid x \in M, \alpha_{x} \in H_{m}(M, M \backslash\{x\} ; R)\right\}$, with similar topology as \tilde{M}.
Note $P_{R}: M_{R} \rightarrow M$ is am $|R|$-sheeted covering.
Prop 6 Let $M_{r}=\left\{\alpha_{x} \mid \alpha_{x} \text { is the image of } \mu_{x} \otimes\right)_{r}$ under the iso

$$
H_{m}(M, M \backslash x) \otimes R \longrightarrow H_{m}(M, M \backslash x ; R)
$$

for μ_{x} a generator of $\left.H_{m}(M, M \backslash x)\right\}$
Then: $M_{r} \subseteq M_{R}$ is open ; $M_{r}=M_{-r}$;

$$
M_{r} \cap M_{S}=\phi \text { for } r \neq \pm s
$$

$M_{\tau} \cong M$ if $\tau=-r$, and $M_{r} \cong \tilde{M}$ if $r \neq-r$.
Pf: Exercise
Prop $7 \mu_{x}$ is an R-orientation \Leftrightarrow
$x \longmapsto \mu_{x}$ is a section of P_{R} with each μ_{x} a generator of $H_{M}(M, M \backslash x, R)$
Pf Exercise, similar to Prop 5.
Prop 8 If $0=2$ in $R \Rightarrow$ all M^{n} are R-orientable
If $O \neq 2$ in $R \Rightarrow M^{\mu}$ is R-orientable iff it is \mathbb{Z}-orientable

Proof $0=2 \Rightarrow M_{1} \cong M \Rightarrow p_{R}$ has a section to $M_{1} \Rightarrow M$ is R-orientable
Assume $O \neq 2$. Generator of $H_{n}(M, R \backslash x, R)$ are of the form $\mu_{x} \otimes u$
for μ_{x} a gen. of $H_{n}(M, M(x)$ and $u \in R$ a unit. Then $u \neq-u$
$\Rightarrow M_{u} \simeq \tilde{M} \Rightarrow P_{R}$ has a section to M_{u} iff $\tilde{M} \rightarrow M$ has a section. B

Proof of Prop $2(i)$ and $(i i)$ Pointurise sum and pointerise R-mulfiplication turn $\Gamma\left(M, M_{R}\right)$ into an R-module.

$$
\begin{aligned}
H_{M}(M ; R) & \longrightarrow \Gamma\left(M, M_{R}\right), \\
\alpha & \mapsto\left(x \mapsto \text { image of } \alpha \text { in } H_{n}(\Pi, M \backslash x ; R)\right)
\end{aligned}
$$

is a homomorphisur. By Lemma 3, applied to $A=M$, it is an isomorphism! Indeed, Lemma 3 (i) yields injectivity. And Lemma 3 (ii) yields sarjectivity (here, we need a slightly move general version of Lemma 3(ii): namely, for every locally consistent choice $\alpha_{x} \in H_{n}(M, M \backslash x ; R), \exists!\mu_{A} \in H_{M}(M, M \backslash A ; R)$ that maps to α_{x} for all x. The proof is the same - we never use that α_{x} generates).
$M R$-orientable $\Rightarrow\left\{\begin{array}{ll}\tilde{M}=M_{L} M & \text { if } 0 \neq 2 \\ M_{r}=M \text { forall } r \in R & \text { if } 0=2\end{array}\right\} \Rightarrow M_{R} \cong \bigsqcup_{r \in R} M$ $\Rightarrow \Gamma\left(M, M_{R}\right) \cong R$ (using connectedness of $\left.M\right) \Rightarrow H_{M}(M \div R) \cong R$. So $H_{M}\left(M ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$ for all M (since all M are \mathbb{F}_{2} - orientable), and $H_{M}(M) \cong \mathbb{R}$ for all orientable M.
M nom- orientable $\Rightarrow \tilde{M}$ i connected \Rightarrow

$$
M_{\pi} \cong \underbrace{M_{0}}_{\cong M} \omega \underbrace{M_{1}}_{\cong \tilde{M}} \omega \underbrace{M_{2}}_{\cong} \cdots
$$

So the only section of $P_{\mathbb{R}}$ goes to $M_{0} \Rightarrow \Gamma\left(M, M_{\mathbb{R}}\right) \cong 0$ $\Rightarrow H_{n}(\pi) \cong 0$.

