Prop 8 f:
$$t \to N$$
, f': $t' \to N'$ R-module homours. 23 Feb 5
(A) 3 home for f's MO(t' $\to NO(N')$ with $XO(X') \to f(X)O(S'(X)$.
(2) $(f \otimes f') \circ (g \otimes g') = (f \circ g) \otimes (f' \circ g')$.
(3) $(f + g) \otimes f' = f \otimes f' + g \otimes f'$ and similarly in second factor.
P(A) Induced by the bilinear map $M \times M' \to NO(N')$,
 $(X, X') \mapsto f(X) \otimes f'(X)$.
(2), (3) Check that $XO(X')$ but the same image under well maps.
(2), (3) Check that $XO(X')$ but the same image under well maps.
(2), (3) Check that $XO(X')$ but $S \to S$,
f $O(g)$: $TOS \to NOS$ is an S-homon.
Proof : $Exercise$ (coreful: why is the function $XO(T \to XOS)$ well-def?).
Category theory intermetical solutions of $X \to XOS$ with a distinguished intervence of $X \to XOS$ with $X \to XOS$ is an S-homon.
Proof : $Exercise$ (coreful: why is the function $XO(T \to XOS)$ with a distinguished intervence of $X \to XOS$ is an $X \to VOS$ is an $X \to VOS$ if $X \to XOS$ is and $X \to VOS$ is an $X \to VOS$ if $X \to XOS$ is and $X \to XOS$ if $X \to XOS$ is a $X \to VOS$ if $X \to XOS$ is an $X \to VOS$ if $X \to XOS$ is a $X \to VOS$ if $X \to XO$ if $X \to XOS$ if $X \to XOS$ is a $X \to VOS$ if $X \to XOS$ is a $X \to VOS$ if $X \to XO$ if $X \to XOS$ is a $X \to VOS$ if $X \to XO$ if $X \to XO$ if $X \to XO$ if $X \to XOS$ if $X \to XOS$ is a $X \to VOS$ if $X \to XO$ if $X \to XOS$ if $X \to XOS$ if $X \to XOS$ if $X \to XO$ if $X \to XOS$ if $X \to XO$ if $X \to XO$ if $X \to XOS$ if $X \to XO$ if $X \to XOS$ if $X \to XOS$ if X

7

with coefficients in M, denoted by C(X, A) OM. We call $H_i(C(X, A) \otimes M)$ the intle homology group with coefficients in M, denoted by (H(X, A; M). Rmk 2 C(X, A) $\otimes \mathbb{Z}$ is maturally isomorphic to C(X, A). Goal Chain complexes & homology groups with any coefficients M have all the good properties proven for \mathbb{Z} coefficients in Alg Top I. Rule 4 Recall $C_i(X)$ is a free \mathbb{Z} -module with basis the singular simplexes $\sigma: \Delta^{i} \to X \Longrightarrow C_i(X) \otimes \Pi \cong \bigoplus_{\substack{\sigma: \Delta^{i} \to X}} M$. So one may think of a chain in $C_i(X] \otimes \Pi$ as a finite linear combination with coefficients $m_j \in \mathbb{M}$ of singular simplexes $T_{i}: \sum_{j=1}^{t} T_{j} \otimes m_{j}$.