bol Chain complexes & homology groups with any coefficients M
have all the good properties proven for Z coefficients in Alg Top T.
Rule 4 Recall
$$C_{i}(X)$$
 is a free Z-module with basis the singular
Simplexes $\sigma: \Delta^{i} \to X \Rightarrow C_{i}(X) \otimes \Pi \cong \bigoplus M$. So one may
think of a chain in $C_{i}(X) \otimes \Pi$ as a finite linear combination
with coefficients $m_{ij} \in \Pi$ of singular simplexes $T_{i}: \sum_{j=1}^{K} T_{ij} \otimes m_{j}$.
Def (Eleuberg - Steenrood Axioms , from Alg Top I)
A transfer Recall $n \in \mathbb{Z}$:
 K Functors ln from Cat of pairs of speces $\rightarrow \mathbb{Z}$ -Tool.
 K Natural Homomorphisms $\mathcal{D}: hmn(X, A) \to hm(A) := lm(A, \emptyset)$
 $\int men(X; A) \xrightarrow{\mathcal{D}} lm(B)$
 $\frac{Axioms:}{\Pi} f \cong g \Rightarrow f_{K} = g_{K}$ (Hermology)
(3) $lm(core point space) = 0$ for $m + 0$ (Dimension)
(4) For inclusions $k: X_{K} \longrightarrow \prod_{K} X_{K}$
 $\bigoplus lm(X_{K}) \xrightarrow{\sum_{K} M_{K}} lm(X, A) \xrightarrow{\mathcal{D}} l_{m-1}(A)$
(5) There are long exact sequences (Exaction)
(5) There are long exact sequences (Exactions)
 $\dots \rightarrow l_{m}(A) \xrightarrow{\mathcal{D}} lm(X, A) \xrightarrow{\mathcal{D}} l_{m-1}(A)$.

A more precise Gent Them 5
$$H_n(\cdot;H)$$
 is a homology theory.
Prope $F: 2-Hod \rightarrow E$ an additive functor.
(4) An additive functor $Ch(2-Hod) \rightarrow Ch(E)$, which we also denote by F , is given by sending a claim complex C .
 $F(C) = \dots \rightarrow FC_{n} \xrightarrow{Td_{n}} FC_{n} \xrightarrow{Td_{n}} FC_{n} \rightarrow G$
and a claim more $f: C \rightarrow C'$ to $F(f)$ with:
 $F(f)_{i} = F(f_{i})$.
(2) If $f,g: C \rightarrow C'$ are homotopic, then so are
 $F(f)$ and $F(g)$.
(3) $f: C \rightarrow C$ a homotopy equivalence \Rightarrow so is Ff .
Proof (4) $Fd_{n} \circ Fd_{2} = F(d_{n} \circ d_{2}) = Fo = O$
 $C_{i} \xrightarrow{d_{i}} C_{i-n} \xrightarrow{F} f_{i} = FC_{i} \xrightarrow{Td_{i}} FC_{i-n}$
 $f_{i} \downarrow \xrightarrow{G} \int_{C_{i-n}} f_{i} = Ff_{i} = C \xrightarrow{C'_{i+n}} f_{i} = C \xrightarrow{Td_{i}} FC_{i-n}$
 $C_{i} \xrightarrow{d_{i}} C_{i-n} \xrightarrow{F} f_{i} = FC_{i} \xrightarrow{Td_{i}} FC_{i-n}$
 $C_{i} \xrightarrow{d_{i}} C_{i-n} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} FC_{i} \xrightarrow{Td_{i}} FC_{i-n}$
 $C_{i} \xrightarrow{d_{i}} C_{i-n} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} FC_{i} \xrightarrow{Td_{i}} FC_{i-n}$
 $C_{i} \xrightarrow{d_{i}} C_{i-n} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} FC_{i-n} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} FC_{i-n} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} FC_{i-n} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} FC_{i-n} \xrightarrow{F} FC_{i-n} \xrightarrow{F} f_{i} = C \xrightarrow{C'_{i+n}} FC_{i-n} \xrightarrow{F} FC_{i-n} \xrightarrow{F} FC_{i} \xrightarrow{F} FC_{i-n} \xrightarrow$

Corollary 7 (apply Prop 6 to
$$\mathcal{F} = -\otimes H$$
)
(1) $((X, A) \otimes H$ is a chain complex (that was Prop 1)
(2) Cont. $f:(X, A) \rightarrow (Y_1 B)$ induce chain maps
 $f_a \otimes id_H : C(X, A) \otimes H \rightarrow C(Y_1 B) \otimes H$.
(3) $f \cong g \Rightarrow f_a \otimes H \cong g_a \otimes M$.
(4) $f_a \otimes H$ induces $f_{\mathbf{F}} : H_{an}(X, A; H) \rightarrow H_{n}(Y, B; H)$
Notation We'll write f_a for $f_a \otimes id_H$.
Overview of functions
 (X, A) Could f
 $C(X, A) \longmapsto C(X, A) \otimes H$ chainings $f_c \longmapsto f_c$
 f_a
 $h_n(X, A) \qquad H_n(X, X; H)$ homeone $f_{\mathbf{F}} = f_{\mathbf{F}}$
 $H_n(X, A) \qquad H_n(X, X; H)$ is a chain complex
oncer S, $H_i(X, A; S)$ is an S-module, and f_c and f_r
are S-linear.

D

We have constructed half of the data to show $H_m(-; n)$ is a homology theory, and we have proved axiom (1) (Hamobopy)

Proof of Axion (2) (Excision)
$$i_c: C(X \setminus U, A \setminus U) \rightarrow C(X, A)$$

is a homotopy equivalence (Alg Top I).
 $- \otimes t(:Ch(Z-Hod) \rightarrow Ch(Z-Hod))$ preserves homotopy equiv.
(by Prop 5(3)).
 $\Rightarrow i_c \otimes H$ is a hom. equiv.
 $\Rightarrow i_{\chi}: (H_n(X \setminus U, A \setminus U; H)) \rightarrow (H_n(X, A : H))$ is an iso.

Proof of Axion (3) (Dimension) For X the one-point space,

$$C(X) \stackrel{\sim}{=} \qquad \stackrel{\sim}{\longrightarrow} \qquad$$

$$\Rightarrow H_{n}(X; M) \cong \begin{cases} M & n=0 \\ 0 & else \end{cases}$$

Proof of Axion (4) (Additivity) $\bigoplus C(X_{\alpha}) \xrightarrow{\sum (i_{\alpha})_{c}} C(X)$ is a homolopy equiv. (Aly Top I) => so is $(\bigoplus C(X_{\alpha})) \otimes \Pi \xrightarrow{(\sum (i_{\alpha})_{c}) \otimes id_{n}} C(X) \otimes \Pi$, which is isomorphic to $\bigoplus (C(X_{\alpha}) \otimes \Pi) \xrightarrow{\sum (i_{\alpha})_{c} \otimes id_{n}} C(X) \otimes \Pi$ I