Last time

Prop 4 Let
$$f: Y \longrightarrow X$$
 be a twofold covering. Then there is a LES
... $\longrightarrow H_m(X; \mathbb{Z}/2) \longrightarrow H_m(Y; \mathbb{Z}/2) \xrightarrow{f_N} H_m(X; \mathbb{Z}/2) \longrightarrow H_{m-n}(X; \mathbb{Z}/2) \longrightarrow ...$
(a special case of the bryan LES)
Today For the obviousder of (3): $H_m(X, A)$ means $H_m(X, A; \mathbb{Z}/2)$
Prop 3 $H_m(\mathbb{RP}^m) \cong \mathbb{Z}/2$ if $O \le m \le k$ and O obtainise.
Proof We already linew this for $m = 0, 1$. So arrune $m \ge 2$.
Tor the covering $f: S^m \longrightarrow \mathbb{RP}^m$, the Gyrin LES breaks into pieces:
 $O \longrightarrow H_n(\mathbb{RP}^m) \xrightarrow{\cong} H_0(\mathbb{RP}^n) \xrightarrow{\longrightarrow} H_0(S^m) \xrightarrow{f_N} H_n(\mathbb{RP}^n) \longrightarrow O$
All linemology groups are $\mathbb{Z}/2 \rightarrow \text{vector spaces}(b_0, \mathbb{Rm}h \ge 8)$.
 f_N surjective and $H_n(S^m) \implies H_n(\mathbb{RP}^m) \cong \mathbb{Z}/2 \implies f_N = 1 \Rightarrow T_N = 0$
 $\implies H_n(\mathbb{RP}^m) \cong \mathbb{Z}/2$.
 $D \longrightarrow H_k(\mathbb{RP}^m) \xrightarrow{\cong} H_0(\mathbb{RP}^m) \cong \mathbb{Z}/2 \implies f_N = 1 \Rightarrow T_N = 0$
 $\implies H_n(\mathbb{RP}^m) \cong \mathbb{Z}/2$.
 $D \longrightarrow H_k(\mathbb{RP}^m) \xrightarrow{\cong} H_{k-n}(\mathbb{RP}^m) \implies 0$

$$0 \longrightarrow H_{m+s}(\mathbb{RP}^{n}) \xrightarrow{\partial} H_{m}(\mathbb{RP}^{m}) \xrightarrow{T_{*}} H_{m}(S^{n}) \xrightarrow{f_{*}} H_{n}(\mathbb{RP}^{m}) \xrightarrow{\partial} H_{m-s}(\mathbb{RP}^{m}) \rightarrow 0$$

$$\boxed{2/2}$$

$$\boxed{2/2}$$

Since RP^{n} has a CW-structure without k-cells for $k \ge n+1$ \implies $H_{k}(RP^{m}) = 0$ for $k \ge n+1$. \implies $H_{n}(RP^{m})$ surjects outo R/2, and injects into R/2 \implies $H_{n}(RP^{m})^{\sim} = 72/2$. 16

6 March

Prop 5 The Gymin sequence from Prop 4 is natural, i.e. if

$$Y \stackrel{f}{\longrightarrow} X$$

 $x \stackrel{f}{\longrightarrow} X'$
 $y' \stackrel{f}{\longrightarrow} Y'$
 $y' \stackrel{f}{\longrightarrow} Y'$

Proof If no such x exists, let
$$g: S^m \longrightarrow S^{m-1}$$
,
 $g(x) = \frac{f(x) - f(-x)}{\|f(x\| - f(-x)\|}$. Then $g(-x) = -g(x)$.
This contradicts the following theorem.
Theorem 6 There is a cont. map $g: S^m \longrightarrow S^m$ with
and $g(-x) = -g(x) \iff n \le m$.
Proof If $n \le m$, the embedding i: (x_1, \dots, x_{m+k})

$$1 \longrightarrow (x_{1}, \dots, x_{n+n}, 0, \dots, 0) \text{ satisfies } i(-x) = -i(x).$$

For the other direction, assume n>m > 1 and

| 17

Let such a g be given. If
$$p_m(x) = p_m(y)$$
, then $p_m \circ g(x) = p_m \circ g(y)$.
Because the covering p_m is a quotient map, thre is $h: \mathbb{RP}^m \to \mathbb{RP}^m$ s.t.
 $S^m \xrightarrow{3} S^m$
 $p_m \downarrow \xrightarrow{p_m \circ g} \downarrow p_m$
 $\mathbb{RP}^m \xrightarrow{} \mathbb{RP}^m$

Commutes.

Now, apply Prop 5 (naturality of the Gymin Sequence) to the pieces of the Gymen LES (see proof of Prop 3):

$$0 \rightarrow H_{k}(\mathbb{RP}^{m}) \rightarrow H_{k-1}(\mathbb{RP}^{m}) \longrightarrow G$$

$$\int \mathcal{L}_{*,k} \qquad \int \mathcal{L}_{*,k-1} \qquad \int \mathcal{L}_{*$$

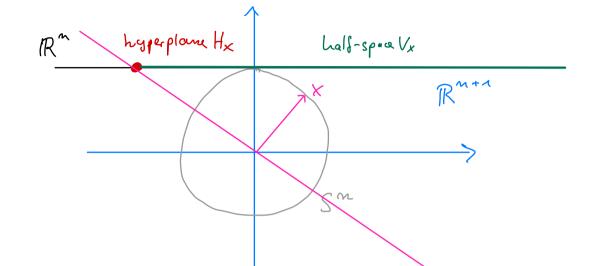
commute, for 15 R 5 m - 1. Also, hx,o iso because RP, Rpm pall-connected => lix, 1 iso => lix, 2 iso => ... => lix, m-1 iso.

 \Box

The Ham Sandwich Theorem
$$A_1, ..., A_n \subseteq \mathbb{R}^n$$
 Lebesgue-measurable & bounded
 \Rightarrow I hyperplane in \mathbb{R}^n with geach A_i in half by volume.
Proof Identify \mathbb{R}^n with $\mathbb{R}^n \times \{1\} \subseteq \mathbb{R}^{n+1}$.

1/3

П



For $x \in S^{n}$, let $|f_{x} = \mathbb{R}^{n} \times \{A\} \cap \{g \in \mathbb{R}^{n+n} \mid \langle x, g \rangle = 0\}$ $V_{x} = \mathbb{R}^{n} \times \{A\} \cap \{g \in \mathbb{R}^{n+n} \mid \langle x, g \rangle \ge 0\}$ Let $f: S^{n} \longrightarrow \mathbb{R}^{n}$, $f: (x) = \operatorname{vol} (V_{x} \cap A_{x})$. f is continuous sime the A_{i} are bounded. Borsuk- Wlam $\Rightarrow \exists x \in S^{n}: f(x) = f(-x)$ $\Rightarrow \operatorname{vol} (V_{x} \cap A_{x}) = \operatorname{vol} (V_{-x} \cap A_{x}) = \operatorname{vol} (A_{x} \setminus V_{x})$ $\Rightarrow H_{x}$ cuts all A_{i} in half.