To prove the UCT, we need a fundamental tool of homological
algebra. Let R be a commutative ring.
Def A free resolution
$$\overline{F}$$
 of an R-troduck M is a LES
 $\dots \xrightarrow{d_{2}} \overline{F_{1}} \xrightarrow{d_{1}} \overline{T_{2}} \xrightarrow{d_{2}} M \rightarrow 0$
where the \overline{F}_{1} are free R-troduks.
Today
Noke that $\dots \rightarrow \overline{F_{1}} \xrightarrow{d_{1}} \overline{F_{0}} \rightarrow 0$ is a chain complex. It is called
deleted resolution, devoked \overline{T}^{M} , with $H_{0}(\overline{T}^{M}) \cong \Pi$, $H_{0}(\overline{T}^{M}) \cong 0$
for $m \neq 0$. Understanding $H_{m}(\overline{T}_{1}^{M} \times N)$ is a
special case of uncless tanding $H_{m}(\overline{T}_{1}^{M} \times N)$ for all complexes!
 M
Ex For $R = 2: \dots \rightarrow 0 \rightarrow R \xrightarrow{3} R \rightarrow R/3 \rightarrow 0$
 $\dots \rightarrow R \xrightarrow{3} R \xrightarrow{3} R \xrightarrow{3} 0$
 $\dots \rightarrow R \xrightarrow{3} R \xrightarrow{3} 0$
 $\dots \rightarrow 0 \rightarrow R \xrightarrow{3} R \xrightarrow{3} 0$
 $\dots \rightarrow 0 \rightarrow R \xrightarrow{3} 0 \rightarrow 0$
Reep 5 Every module hos a free resolution.
Lemma 6 For every module T there exists a free module \overline{T} with
a surjection $p: \overline{T} \rightarrow M$.

Proof
$$F := \bigoplus_{x \in M} R_x$$
 with $R_x \cong R$. F is free (with basis indexed by H) and $p: T \longrightarrow H$, $R_x \ni 1 \mapsto x$ is surjective. \Box

Proof of Prop 5 Pick
$$d_0: \overline{F_0} \to H$$
 will do surjective, $\overline{F_0}$ free.
Pick $d'_A: \overline{F_A} \longrightarrow ker d_0$ will d'_A surjective, $\overline{F_A}$ free and let
 $d_A: \overline{F_A} \longrightarrow \overline{F_0}$, $d_A = (ker d_0 \longrightarrow \overline{F_0}) \circ d'_A$.
Pick $d'_2: \overline{F_2} \longrightarrow ker d_A$ will d'_2 surjective, $\overline{F_2}$ free...etc. \Box
Thus 7 Every subgroup of a free abelian group is free abelian.
Proof using Zorn's Lemma (see eg Lang "Algebra" Appendix 2 Sd)
Prop 8 For $R = Z$: Every abelian group H has a free resolution of
length 1, ie $O \longrightarrow \overline{F_A} \xrightarrow{d_A} \overline{F_0} \longrightarrow T \longrightarrow O$
Proof Pick $d_0: \overline{F_0} \longrightarrow T$ will do surjective, $\overline{F_0}$ free. By Thm,
Ker do is free. So let $\overline{F_A} = ker d_0$, and d_A the inclusion. \Box

Proof (1) For Since
$$e_0$$
 surjective and $\overline{f_0}$ free,
 $\exists \widehat{f_0} \downarrow f_0 \downarrow f_0 d_0$
 $G_0 \xrightarrow{P_0} N$ there is $\widehat{f_0} : \overline{F_0} \longrightarrow G_0$ making the diagram
 $f_0 : \overline{F_0} \longrightarrow G_0$ commute $(proof)$: for each basis element
 $b \circ f \overline{f_0}$, pick $\widehat{f_0}(b)$ such that $e_0(\widehat{f_0}(b)) = \widehat{f}(d_0(f_0(f_0)))$.
 $\overline{F_1} \longrightarrow \widehat{f_0} \circ d_1$
 $G_n \xrightarrow{P_1} G_0$
 $= \sum \lim_{p \to \infty} \widehat{f_0} \circ d_1 \subseteq ker \ e_0 = \lim_{p \to \infty} e_1$.
 $= \sum \lim_{p \to \infty} \widehat{f_1} : \overline{F_n} \longrightarrow G_n$ making the diagr commute efc.

(2) Let two such chain maps be given, and let g be their difference.
Then:

$$T_{z} \xrightarrow{d_{z}} T_{n} \xrightarrow{d_{n}} T_{0} \xrightarrow{d_{0}} T_{1} \longrightarrow 0$$

 $g_{z} \downarrow \qquad R_{n} \qquad \int g_{0} \qquad \int g_{0} \qquad \int 0$
 $\dots \ G_{z} \xrightarrow{e_{z}} G_{n} \xrightarrow{e_{n}} G_{0} \xrightarrow{e_{0}} N \longrightarrow 0$
commutes. $0 = 0 \circ d_{0} = e_{0} \circ g_{0} \Longrightarrow im g_{0} \subseteq ker e_{0} = im e_{1}.$
 $\implies \exists h_{0} with e_{1} \circ h_{0} = g_{0}$

$$e_{n} \circ (g_{n} - h_{0} \circ d_{n}) = e_{n} \circ g_{n} - g_{0} \circ d_{n} = 0$$

=) $\exists h_{n} \text{ with } e_{2} \circ h_{n} = g_{n} - h_{0} \circ d_{n} \qquad etc.$

Def Let
$$M, N$$
 be R-Modules, and \overline{T} a free resolution of M ,
then $\overline{\operatorname{Tor}_{n}(M, N)} := H_{n}(\overline{T}^{n}; N)$ for $n \ge 0$.

Proof that Tor does not depend on choice of
$$\overline{F}$$
: \overline{F} , G free res. of M
 \Rightarrow $\overline{F}^{\Pi} \simeq G^{\Pi} \Rightarrow \overline{F}^{\Pi} \otimes N \simeq G^{\Pi} \otimes N$ (Cor (2), \overline{F} (3)) \Longrightarrow
 $H_{n}(\overline{F}^{n}; N) \cong H_{n}(\overline{G}^{\Pi}; N)$.

Remark 10 Over
$$R = 2$$
, $T_{OF_m}(\Pi, N) = 0$ $\forall m \ge 2$ since Π
has a free res. of length 1 (Prop 8). So we write
 $T_{OF}(\Pi, N) := T_{OF_n}(\Pi, N)$.

Lemma 11
$$f: H \rightarrow N R$$
-linear, $P R$ -module =)
(Coher $f) \otimes P \cong Coher (f \otimes idp)$. Proof Exercise.

B_n = in d_{n+1}
$$\subseteq$$
 $Z_n = ker d_n$,
n-boundaries $n-cyeles$

Make Bn, Zn into chain complexes, taking O as differential. There is a SES of chain complexes: