Proof of the UCT (1) Constructing the SES 15 March (27)

$$B_m = im d_{m+n} \subseteq Z_m = ker d_m$$

 $n-boundaries = n-cycles$

Make B_m , Z_n into chain complexes, taking O as differential. There is a SES of claim complexes: $0 \longrightarrow Z_{n+n} \xrightarrow{ind} C_m \xrightarrow{d} B_n \longrightarrow 0$ $0 \longrightarrow Z_n \xrightarrow{ind} C_m \xrightarrow{d} B_{n-n} \longrightarrow 0$ \vdots B_n free by Thm 7 => each row splits => tensoring with M preserves exactness (Exercise). The SES@IT induces a LES:

$$\xrightarrow{\text{incl}\otimes id_{H}} \xrightarrow{\text{incl}\otimes id_{H}} \xrightarrow{\text{incl}\otimes$$

$$0 \longrightarrow \mathbb{B}_{m-1} \xrightarrow{\text{ind}} \mathbb{Z}_{m-1} \longrightarrow \mathbb{H}_{m-1}(C) \longrightarrow \mathbb{O}$$

(1) The SES splits
$$C_m$$
 free $\Rightarrow \exists p_n: C_m \rightarrow Z_n$ st.
(1) The SES splits C_m free $\Rightarrow \exists p_n: C_m \rightarrow Z_n$ st.
(1) The SES splits C_m free $\Rightarrow \exists p_n: C_m \rightarrow Z_n$ st.
(1) The SES splits C_m for the set of the projection of the set of Z_n is a more $Z_n \rightarrow H_n(C) = Z_n/B_n$ be the projection. Then $T_n \circ p_n$
is a more $C_n \rightarrow H_n(C)$, and this is a claim map color one considers
 $H_n(C)$ as complex with zero differential (since for sec $C_n: d_m(x) \in B_{n-n} \subseteq Z_{n-n}$,
so $p_{n-n}(d_m(x)) = d_m(x)$ and $T_{n-n}(p_{n-n}(d_m(x))) = [d_m(x)] = 0$.
Thus $(T_n \circ p_n) \otimes id_n : C_m \otimes T \rightarrow H_n(C) \otimes H$ is also a claim suppresence of M .
(2) Naturality (Statch)
 $f: C \rightarrow C'$ claim sump $\Rightarrow f(Z) \le Z'$, $f'(B) \le B'$.
So f induces a more between the SES of claim complexes
 $0 \rightarrow Z_m \Rightarrow C_m \Rightarrow B_{m-n} \Rightarrow 0$ and $0 \rightarrow Z' \Rightarrow C'_m \Rightarrow S'_{m-n} \Rightarrow C_m$
and so also between the SES in the UCT.
(3) Unmaturality of splitting: Exercise 2.4
Prop 42 Toro $(T, N) \cong H \otimes N$
Brief $\dots \Rightarrow T_n \stackrel{d_m}{\Rightarrow} T_0 \rightarrow 0$ delated free res of M .
 $\Rightarrow Toro (T, N) = Coher (d_A \otimes id_N) \cong Coher (d_A) \otimes N$
 $= H_0 (T^{+1}) \otimes N = T \otimes N$
Remark 13 For $f: H \rightarrow H'$, $g: N \rightarrow N'$, one may set

Remark 13 for
$$f: M \rightarrow M'$$
, $g: N \rightarrow N'$, one may set
 $Tor_n(f,g): Tor_n(M,N) \longrightarrow Tor_n(M',N')$ to be
given by $(\hat{f} \otimes g)_*$. Fixing one eigenment then makes
 Tor_n into an additive functor $R-Mod \rightarrow R-Mod$.

is the desired sequence.

29

(3) Apply (1) to a free res
$$0 \rightarrow T_{n} \xrightarrow{d_{n}} T_{n} \rightarrow B \rightarrow 0$$

 $\rightarrow IES$

 $0 \rightarrow Tor(A, T_{n}) \rightarrow Tor(A, T_{0}) \rightarrow Tor(A, B)$

 $\rightarrow A \otimes T_{n} \rightarrow A \otimes T_{0} \rightarrow A \otimes B \rightarrow 0$

 $A \otimes T_{n} \rightarrow A \otimes T_{0} \rightarrow A \otimes B \rightarrow 0$

 $A \otimes T_{n} \rightarrow A \otimes T_{0} \rightarrow A \otimes B \rightarrow 0$

 $A \otimes B \cong B \otimes A$.

(4) Pick free res $0 \rightarrow T_{n} \xrightarrow{d_{n}} T_{0} \xrightarrow{d_{n}} A \rightarrow 0$.

H's enough to show that $T_{n} \otimes B \rightarrow T_{0} \otimes B \Rightarrow injective.$

So let $x \in T_{n} \otimes B$ with $d_{n} \otimes id_{B}(x) = 0$ be given. To show: $x = 0$.

(laim. There is a f.g. subgroup $B' \subseteq B$ write $x \in B'$ and $d_{n} \otimes id_{B^{1}}(x) = 0$.

Pf Keet (laim $\Rightarrow x = 0$ B torsis free $\Rightarrow B'$ torsis free. B' torsis free and f.g.

 $\Rightarrow B'$ free by classification of f.g. d. groups. We dready know that builtoning with a free module $\delta \exp(x) = \sqrt{e_{0}}$.

 $f_{0} Claim. Use construction of $\otimes : T_{n} \otimes B \cong free module U_{T,B}$ will basis

 $T_{0} \times B \mod S = f_{1} \otimes h_{1} - h(x_{1}y) - (x'_{1}y)$ (*)

 $(x \wedge y + y') - \lambda(x_{1}y) - (x'_{1}y)$ (*)

Write $x' = \sum_{i=n}^{\infty} f_{1} \otimes h_{2}$. Then $d_{n} \otimes id_{B}(x) = 0 \Leftrightarrow \sum d_{n}(f_{1}) \otimes h_{2} = 0$

 $f_{0} \subseteq B$ be generalized by $h_{1} \dots h_{n}$ and all elements of B appearing in Kee sum on the RHS. Then $x \in T_{n} \otimes B'$, and$

 $d_1 \otimes id_{g'}(x) = 0$

the following proofs were shipped in the lecture

(6)
$$0 \rightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \rightarrow \mathbb{Z}(n \rightarrow 0)$$
 is a free res of $\mathbb{Z}(n)$.
 $\Rightarrow \operatorname{Tor}(\mathbb{Z}(n, A) \cong \operatorname{Rer}(A \xrightarrow{m} A) = \int \mathbb{X} \in A \mid n \times = 0 \}$

 $\Rightarrow \quad 0 \rightarrow T_{A} \oplus G_{A} \longrightarrow T_{0} \oplus G_{0} \longrightarrow A \oplus B \rightarrow 0 \quad \text{free res}$ $N_{6W} \quad T_{0-r} (A \oplus B_{r} C) \cong \text{ker} ((T_{A} \oplus G_{n}) \otimes C \longrightarrow (T_{0} \oplus G_{0}) \otimes C)$

$$= ker (F_{1} \otimes C \longrightarrow F_{0} \otimes C)$$

$$= ker (G_{1} \otimes C \longrightarrow G_{0} \otimes C)$$

$$\stackrel{\sim}{=} \overline{l_{or}}(A,C) \oplus \overline{l_{or}}(B,C) \qquad \checkmark$$

(8) Using (7), (3), (1) and the classification of fig. as groups, it is enough to check this for $A \cong \mathbb{Z}/a$, $B \cong \mathbb{Z}/b$. This will be an Exercise on Sheet 3.

31

 \Box