Proof of the UCT (1) Constructing the SES

$$
\underbrace{B_{n}=i m d_{n+1}}_{n-\text { boundaries }} \subseteq \frac{Z_{n}=\text { her } d_{n}}{n-\text { cycles }}
$$

Make B_{n}, Z_{m} into chair complexes, taking O as differential.
There is a SES of chain complexes:

$$
\begin{aligned}
& 0 \rightarrow Z_{m+1} \xrightarrow{\text { ind }}{ }_{0}^{\vdots} C_{m+1}^{d} \xrightarrow{d} \mathbb{B}_{m} \rightarrow 0 \\
& 0 \rightarrow Z_{n} \xrightarrow{\text { ind }}{ }^{d!} C_{m} \xrightarrow{d} B_{m-1} \rightarrow 0 \\
& \vdots
\end{aligned}
$$

Bn free by Tun $7 \Rightarrow$ each row splits \Rightarrow tensoring with M preserves exactness (Exercise). The SES $\otimes M$ induces a LES:

$$
\begin{aligned}
& \cdots \rightarrow B_{m} \otimes M \stackrel{r}{\rightarrow} Z_{\mu} \otimes M \rightarrow \frac{\operatorname{ker} d_{\mu} \otimes i d_{M}}{i m d_{m+1} \otimes i d_{M}} \rightarrow B_{n-1} \otimes \Pi \rightarrow Z_{m-1} \otimes M \rightarrow \ldots \\
& \Rightarrow \text { ES } \quad 0 \rightarrow H_{n}(C) \otimes M \rightarrow H_{M}^{112}(C ; M) \rightarrow \text { her incleidm } \rightarrow 0 \\
& \cong \text { cover }+\mathrm{b}_{\mathrm{y}} \\
& \text { Lena } 11
\end{aligned}
$$

These is a SES

$$
0 \rightarrow B_{n-1} \xrightarrow{\text { incl }} Z_{n-1} \longrightarrow H_{n-1}(c) \rightarrow 0
$$

which is a free resolution of H_{n-1} (C). So

$$
\text { her incl®idpe } \cong \text { Tor }\left(H_{n-1}(c), M\right)
$$

(1) The SES splits C_{n} free $\Rightarrow \exists p_{n}: C_{n} \rightarrow Z_{n}$ sst.
incl o $p_{n}=i d_{z_{n}}$. Correction 5 April $p: C \rightarrow Z$ is in general not a chain map! (Aided, p chain map \Rightarrow differential of C is zero). Proceed instead as follows: Let $\pi_{n}: Z_{n} \rightarrow H_{n}(C)=Z_{n} / B_{n}$ be the projection. Then $\pi_{n}{ }^{\circ} p_{n}$ is a map $C_{n} \longrightarrow H_{M}(C)$, and this is a chain map when one considers $H_{n}(C)$ as complex with zero differential (since for $x \in C_{n}: d_{n}(x) \in B_{n-1} \subseteq Z_{n-1}$, So $p_{m-1}\left(d_{N}(x)\right)=d_{M}(x)$ and $\left.\pi_{n-1}\left(p_{n-1}\left(d_{N}(x)\right)\right)=\left[d_{m}(x)\right]=0\right)$. Thus $\left(\pi_{n} \circ \rho_{n}\right) \otimes i d_{M}: C_{n} \otimes M \rightarrow H_{n}(C) \otimes M$ is also a chain mop, inducing a map $H_{m}(C ; M) \xrightarrow{q} H_{m}(C) \otimes M$ on homology. To see that q is a splitting map, check that $q([x \otimes m])=[x] \otimes m$ for all $x \in Z_{n}$ and $m \in M$.
(2) Naturality (Sheath)
$f: C \rightarrow C^{\prime}$ chain map $\Rightarrow f(Z) \subseteq Z^{\prime}, f(B) \subseteq B^{\prime}$.
So f induces a map between the SES of chain complexes $0 \rightarrow Z_{m} \rightarrow C_{m} \rightarrow B_{m-1} \rightarrow 0$ and $0 \rightarrow Z_{m}^{\prime} \rightarrow C_{m}^{\prime} \rightarrow B_{m-1}^{\prime} \rightarrow 0$, oho after $\otimes M$, and so ats between the anociated LES, and so abs between the SES in the UCT.
(3) Unnaturality of splitting: Exercise 2.4

Prop $12 \operatorname{Tor}_{0}(M, N) \cong M \otimes N$.
Proof $\cdots \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow 0$ deleted free res of M.

$$
\begin{aligned}
& \Rightarrow \operatorname{Tor}_{0}(M, N)=\operatorname{coker}\left(d_{1} \otimes i d_{N}\right) \cong \operatorname{coker}\left(d_{1}\right) \otimes N \\
& =H_{0}\left(F^{M}\right) \otimes N=M \otimes N
\end{aligned}
$$

Remark 13 For $f: M \longrightarrow M^{\prime}, g: N \longrightarrow N^{\prime}$, one may set
$\operatorname{Tor}_{m}(f, g): \operatorname{Tor}_{n}(M, N) \rightarrow \operatorname{Tor}_{n}\left(M^{\prime}, N^{\prime}\right)$ toke given by $(\hat{f} \otimes g)_{*}$. Fixing one argument then makes Torn into an additive functor $R-$ Mod $\rightarrow R$-Mod.

Prop 14 Let A, B, C be ablelian groups.
$(1) B$ free $\Rightarrow \operatorname{Tor}(A, B) \cong 0$
(2) If $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact, then

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}(D, A) \\
& \rightarrow \operatorname{Tor}(D, B) \rightarrow \operatorname{Tor}(D, C) \\
& \rightarrow D \otimes B \rightarrow D \otimes C \rightarrow 0
\end{aligned}
$$

is exact.
(3) $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(B, A)$.
(4) B torsion-free $\Rightarrow T(A, B) \cong 0$
(5) $T(A, B) \cong \operatorname{Tor}(T(A), T(B))$.
(6) $\operatorname{Tor}(72 / n, A) \cong\{x \in A \mid n x=0\}$
(7) $\operatorname{Tor}(A \oplus B, C) \cong \operatorname{Tor}(A, C) \oplus \operatorname{Tor}(B, C)$
(8) Tor $(A, B) \cong T(A) \otimes T(B)$ if A and B are $f . g$.

Proof (1) $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0$ free res of $A \Rightarrow$ $0 \rightarrow F_{A} \otimes B \rightarrow F_{0} \otimes B \rightarrow A \otimes B \rightarrow 0$ is exact $\Rightarrow \operatorname{Tor}(A, B 1 \cong 0$.
(2) Pick free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow 0 \rightarrow 0$

$$
\begin{aligned}
& 0 \rightarrow F_{1} \otimes A \xrightarrow{d_{E_{1}} \otimes f} F_{1} \otimes B \xrightarrow{i d_{E^{\prime}} \otimes g} F_{1} \otimes C \rightarrow 0 \\
& \Rightarrow \quad d_{1} \otimes i d A \downarrow \quad d_{1} \otimes i d_{B} \downarrow \quad \text { d.Bid } \downarrow \\
& 0 \rightarrow F_{0} \otimes A \underset{i d_{\mathrm{F}} \otimes f}{\longrightarrow} F_{0} \otimes B \underset{i \delta_{0} \otimes g}{\longrightarrow} F_{0} \otimes C \longrightarrow 0
\end{aligned}
$$

commutes and has exact rows. It is a SES of chain complexes! (Each complex made of two groups). The associated LES in homology is the desired sequence.
(3) Apply (1) to a free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow B \rightarrow 0$

- because F_{0} free
$\leadsto L E S$
O because F_{1} free

$$
\begin{aligned}
& 0 \rightarrow \widetilde{\sim}_{\operatorname{Tor}}\left(A, F_{1}\right) \rightarrow{\widetilde{\operatorname{Tor}}\left(A, F_{0}\right)}_{\operatorname{Tor}(A, B) \rightarrow}^{\operatorname{Tor}} \\
& \rightarrow A \otimes F_{1} \underset{i d_{A} \otimes d_{1}}{\longrightarrow} A \otimes F_{0} \longrightarrow A \otimes B \rightarrow 0
\end{aligned}
$$

$\Rightarrow \operatorname{Tor}(A, B) \cong \operatorname{ker}\left(i d_{A} \otimes d_{1}\right)=\operatorname{Tor}(B, A)$ by def of Tor , using $A \otimes B \cong B \otimes A$.
(4) Pick free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} A \rightarrow 0$.

It's enough to show that $F_{A} \otimes B \rightarrow F_{0} \otimes B$ is infective.
So let $\alpha \in F_{1} \otimes B$ with $d_{1} \otimes i d_{B}(\alpha)=0$ be given. To show: $\alpha=0$.
Claim There is a f.g. subgroup $B^{\prime} \subseteq B$ with $\alpha \in B^{\prime}$ and $d_{1} \otimes i d_{B^{\prime}}(\alpha)=0$.
Pf that $\mathrm{Claim} \Rightarrow \alpha=0 \quad B$ torsionfree $\Rightarrow B^{\prime}$ torsion free. B^{\prime} torrionfree and $f \cdot 8$.
$\Rightarrow B^{\prime}$ free by clanification of $8 \cdot g$. ab. groups. We already know that bensormig with a free module is exact $\Rightarrow d_{1} \otimes i d_{B^{\prime}}$ infective $\Rightarrow \alpha=0$.

Pf of Claim Use construction of $\otimes \otimes: F_{0} \otimes B \cong$ free module $U_{F_{0}, B}$ with basis $F_{0} \times B$ modulo submodule $I_{F_{0, B}} \subseteq l l$ generated by

$$
\begin{align*}
& \left(\lambda x+x^{\prime}, y\right)-\lambda(x, y)-\left(x^{\prime}, y\right) \\
& \left(x, \lambda y+y^{\prime}\right)-\lambda(x, y)-\left(x, y^{\prime}\right) \tag{t}
\end{align*}
$$

Write $\alpha=\sum_{i=1}^{n} f_{i} \otimes b_{i}$. Then $d_{1} \otimes i d_{B}(\alpha)=0 \Leftrightarrow \sum d_{1}\left(f_{i}\right) \otimes b_{i}=0$ $\Leftrightarrow \sum_{i=1}^{n}\left(d_{1}\left(f_{i}\right), b_{i}\right)=\sum_{j=1}^{k}$ elements of the form $(*) \in I_{F_{0}, B}$
Let $B^{\prime} \subseteq B$ be generated by b_{1}, \ldots, b_{n} and all elements of B appearnig in the sum on the RHS. Then $\alpha \in F_{1} \otimes B^{\prime}$, and $d_{1} \otimes \operatorname{id}_{B^{\prime}}(\alpha)=0$
the following proof were shipped in the lecture
(5) Apply (2) to the SES $O \rightarrow T(B) \rightarrow B \rightarrow B / T(B) \rightarrow 0$:

$$
0 \rightarrow \operatorname{Tor}(A, T(B)) \rightarrow \operatorname{Tor}(A, B) \rightarrow \underbrace{0 \text { by }(4) \text { Since }} \begin{aligned}
\operatorname{Tor}(A, B(T(B))
\end{aligned} \rightarrow \ldots
$$

$\Rightarrow \operatorname{Tor}(A, T(B)) \cong \operatorname{Tor}(A, B)$. Now use (3) and repeat the argument.
(6) $0 \rightarrow \mathbb{R} \xrightarrow{\mu} \mathbb{R} \mathbb{R} / n \rightarrow 0$ is a free res of $\mathbb{R}(m$.

$$
\Rightarrow \operatorname{Tor}(\mathbb{R} / n, A) \cong \operatorname{ker}(A \xrightarrow{n} A)=\{x \in A \mid n x=0\}
$$

$\left.\begin{array}{rl}\text { (7) } 0 & \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0 \\ 0 & \rightarrow G_{1} \rightarrow G_{0} \rightarrow B \rightarrow 0\end{array}\right\} \quad$ free res.
$\Rightarrow 0 \rightarrow F_{\lambda} \oplus G_{\lambda} \rightarrow F_{0} \oplus G_{0} \rightarrow A \oplus B \rightarrow 0$ freer res
Now $\operatorname{Tor}(A \oplus B, C) \cong \operatorname{ker}\left(\left(F_{1} \oplus G_{1}\right) \otimes C \longrightarrow\left(F_{0} \oplus G_{0}\right) \otimes C\right)$

$$
\cong \operatorname{ker}\left(F_{1} \otimes C \rightarrow F_{0} \otimes C\right)
$$

$\oplus \operatorname{ker}\left(G_{-} \otimes C \rightarrow G_{0} \otimes C\right)$

$$
\cong \operatorname{Tor}(A, C) \oplus \operatorname{Tor}(B, C)
$$

(8) Using (7), (3), (1) and the classification of $\delta \cdot g$. ab groups, it is enough to check this for $A \cong \mathbb{R} / a, B \cong \mathbb{R} 6$. This will be an Exercise on Sheet 3.

