Brop 2 (i)
$$f: C \rightarrow D$$
 a coclain map =>
 $f^{*}: H^{*}(C) \rightarrow H^{*}(D)$, $f^{*}(E \times J) = [f(x)]$ is a
coll-obj: R-homon.
(2) $H^{*}(-)$ is an additive functor
 $G_{CL}(R) \longrightarrow R-Hool$
 $Calegoro of coclain Complexe over R, coclain maps$
(3) $f^{\pm}G \Rightarrow f^{*}G g^{*}$.
No proof
Prop 3 If $F: R-Hod \rightarrow R-Hood$ is a contravariant additive
genetor, then $F: Cle(R) \rightarrow CaCl_{R}(R)$ is also contravariant additive:
 $\dots C_{n} \rightarrow C_{n-n} \longrightarrow \dots F(C_{n}) \stackrel{T(C_{n})}{\longrightarrow} T(C_{n-1})^{-1}$
 $Coclain complex F(C)$
 $with T(C)^{*} = T(C_{n}),$
 $d^{*}_{T(C)} = F(Cd_{C}^{*})$
No proof
Def X top. Space, $A \subseteq X$, H an abelian group.
Then the coclain complex obtained from $C_{n}(X, A)$ by
applying Hom $(-, H)$ is called the Singular coclain
complex of (X, A) with coefficients in H , denoled $C^{*}(X, A; H)$
and its colouridage $H^{*}(X, A \geq H)$. We may drop " $H^{*}fr H = Z$.
Tor $f: (X, A) = (Y, B)$ continuous, write f^{C} for the
coclain map $C^{*}(Y, B; H) \rightarrow C^{*}(X, A; H)$.

Ex 4 C° (X > H) = Hom (C. (X), H). Conservations to
functions X
$$\rightarrow$$
 M. Let $\Psi \in C^{\circ}(X > H)$. Then $d^{\circ}(\Psi)$ sends
 $\sigma: \Delta^{1} = [o, A] \rightarrow H$ to $\Psi(d_{A}(\tau)) = \Psi(\sigma(A)) - \Psi(\sigma(O))$
So $d^{\circ}(\Psi) = 0 \Leftrightarrow \Psi(\sigma(O)) = \Psi(\sigma(A)) \forall \sigma \Leftrightarrow \Psi$ constant on
path-connected components. Hence
 $H^{\circ}(X > H) = Rear d^{\circ} \cong TL H$
 $H^{\circ}(X) \supseteq \# H_{C}(X) \square$
Remke 5 A lands-on approach to cochains:
An m-cochain $\Psi \in C^{\circ}(X > H)$ is a homeon. $C_{m}(X) \rightarrow H$.
So m-chains correspond to functions
 $\begin{cases} Singular n-Simplifier \sigma: \Delta^{n} \rightarrow X \end{cases} \rightarrow X$ to $\Psi(d_{m}(\tau))$.
So Ψ is an m-cocycle \Leftrightarrow Ψ is zero on m-boundaries $\in B_{m}$.
 Ψ is an m-cocycle \Leftrightarrow Ψ is zero on m-cycles $\in Z_{m}$
Correction 22 April The implication " \in " obsers not generally hold: there may be
cochains $\{f: \Psi = \Phi \in H^{m}(X;H), and e\sigma([f+1]) = 0.$
Thus: An m-cocycle Ψ induces a homeom.
 $Z_{m}/B_{m} = H_{m}(X) \rightarrow M$.

have a homom. called the evaluation homomorphism

 $ev: H^{n}(X;M) \longrightarrow Hom(H_{n}(X),M)$

which may be seen to be matural in both X and M.

Universal Coefficient Them for Cohomology

Let C be a chain complex of free abelian groups and A an abelian group
(1) There is a split SES

$$O \longrightarrow Ext(H_{m-1}(C), A) \longrightarrow H^{m}(C; M) \longrightarrow Hom(H_{m}(C), A) \longrightarrow O$$

 T
to be defined!

- (2) These SES are natural in C and A.
- (3) The splittings cannot be chosen maternally