Proof of UCT (1)
There is a SES of chain complexes:

$$
\begin{aligned}
& 0 \rightarrow Z_{n+1} \xrightarrow{\text { ind }} C_{m+1} \xrightarrow{d_{n+1}} B_{n} \longrightarrow 0 \\
& 0 \rightarrow 0 \downarrow \\
& 0 \longrightarrow Z_{n} \xrightarrow{\text { ind }}{d_{n+1}} C_{n} \xrightarrow{d_{n}} B_{n-1} \longrightarrow 0
\end{aligned}
$$

Bn free by The $4.7 \Rightarrow$ each row splits \Rightarrow SES of cochain complexes

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}\left(B_{n-1}, M\right) \xrightarrow{d^{n-1}} \operatorname{Hom}\left(C_{n}, M\right) \xrightarrow{\text { ind }} \operatorname{Hom}\left(Z_{m}, M\right) \rightarrow 0 \\
& 0 \rightarrow \operatorname{Hom}\left(B_{n}, M\right) \xrightarrow{d^{m}} \operatorname{dtam}\left(C_{m+1}^{m}, M\right) \xrightarrow{\text { ind }} \operatorname{Hom}\left(Z_{m+1}, M\right) \rightarrow 0
\end{aligned}
$$

This induces a LES

$$
\begin{aligned}
& \cdots \cdots \rightarrow \operatorname{Hom}^{\left(Z_{n-1}, M\right)} \\
& { }^{\partial^{n-1}} \operatorname{Hom}\left(B_{n-1}, M\right) \rightarrow H^{n}(C ; M) \rightarrow \operatorname{Hom}\left(Z_{n}, M\right) \\
& \xrightarrow{\partial^{n}} \operatorname{Hom}\left(B_{n}, M\right) \rightarrow \ldots
\end{aligned}
$$

Check that $\partial^{i}=\operatorname{Hom}\left(B_{n} \hookrightarrow Z_{m}, M\right)$
\Rightarrow SIS

$$
\begin{aligned}
& 0 \rightarrow \underbrace{\text { cher } \partial^{n-1}} \rightarrow H^{n}(C ; M) \rightarrow \underbrace{\text { Kat } \partial^{n}} \rightarrow 0 \\
& \cong \operatorname{Hom}\left(\text { cover } B_{n} \rightarrow Z_{n}, M\right) \\
& \text { (by Lemuna 6) } \\
& \cong \operatorname{Hom}\left(H_{n}(C), M\right)
\end{aligned}
$$

because: free res $0 \rightarrow B_{n-1} \rightarrow Z_{n-1} \rightarrow H_{n-1}(C) \rightarrow 0$
\leadsto co Chain complex $0 \leftarrow \operatorname{Hom}\left(B_{n-1}, M\right) \longleftarrow \overbrace{}^{\partial^{n-1}} \operatorname{Ham}\left(Z_{m-1}, M\right)$ with $H^{1} \cong$ cover O^{n-1}, and $H^{\wedge} \cong$ Ext by def of Ext.

Prop 11 Singular cohomology satisfies axioms that are analogue to the Eitenbery-Steenrod axioms for homology (see (D):
Data
$H^{n}(-i M)$ are contravariant functor s $\{$ Pairs of Spaces $\} \rightarrow R$-Mod
There are natural connecting homom. $\partial: H^{n}(A ; M) \rightarrow H^{n+1}(X, A ; M)$
Axioms
Homotopy (1) $f \simeq g \Rightarrow f^{*}=g^{*}$
Excision (2) $\bar{u} \subseteq A^{0} \Rightarrow$ incl $^{*}: H^{n}(X, A ; M) \rightarrow H^{n}(X \backslash U, A \backslash u ; M)$ is o
Dimension (3) $H^{n}(\{*\} ; M) \cong M$ for $n=0$, trivial for $\mu \neq 0$.

Additivity (4) $H^{n}\left(\frac{11}{\alpha} X_{\alpha} ; M\right) \xrightarrow{i} \prod_{\alpha} H^{n}\left(X_{\alpha} ; M\right)$ is an iso, with i given by $i_{\alpha}=\left(\text { indusion } X_{\alpha} \rightarrow \frac{11}{\alpha} X_{\alpha}\right)^{*}$.
Exactness (5) There are LESs

$$
\ldots \rightarrow H^{n}(X, A ; M) \xrightarrow{\text { incl }^{*}} H^{m}(X ; M) \xrightarrow{\text { incl }^{*}} H^{m}(A ; M) \xrightarrow{\partial} H^{n+1}(X, A ; M) \rightarrow \ldots
$$

Similarly as for Homology with coefficients, all axioms follow more or lens divectly from homotopy equivalences of singular chain complexes being send to com. equiv. of singular Cochin complexes by the additive (tom (-, M) functor.

Proof of (4) Alg Top I: $\quad \sum_{\alpha}\left(\text { incl } 1_{\alpha}\right)_{c}: \bigoplus_{\alpha} C_{0}\left(x_{\alpha}\right) \longrightarrow C_{0}\left(\frac{11}{\alpha} x_{\alpha}\right)$
is a homotopy equivalence \Rightarrow so is

$$
\begin{aligned}
& \operatorname{Hom}\left(C_{0}\left(\frac{11}{\alpha} X_{\alpha}\right), M\right) \xrightarrow{\operatorname{Hom}\left(\sum_{\alpha}\left(\text { incl }_{\alpha}\right)_{c}, M\right)} \operatorname{Hom}\left(\underset{\alpha}{\oplus} C_{0}\left(X_{\alpha}\right), M\right)
\end{aligned}
$$

$\left(i n c l_{\alpha}\right)_{c}$
Further good properties of cohomology:
$T h m 12$ (Mayer-Vietoris) $A, B \subseteq X, A^{0} \cup B^{0}=X \Rightarrow L E S$

$$
\ldots \rightarrow H^{n}(X ; M) \rightarrow H^{n}(A ; M) \oplus H^{n}(B ; M) \rightarrow H^{m}(A \cap B ; M) \rightarrow H^{n+1}(X) \rightarrow \ldots
$$

Remark 13 Understanding the connectin homomorphisms in the
Maye-Vietoris-sequence:
Homology $H_{n}(x) \longrightarrow H_{n-1}(A \cap B)$:
Represent a homology clan $[x] \in H_{M}(x)$ as $[y+z]$, where $y \in C_{n}(A)$ and $z \in C_{n}(B)$. (Here, we abuse notation and write y abs for the image of y under $C_{M}(A) \hookrightarrow C_{M}(X)$, Similarly for z.$) Now send [x] \longmapsto[d y]$. (since $0=d x=d(y+z) \Rightarrow d y=-d z$, so $d y \in C_{n-1}(A \cap B)$, again abusing notation).

A similar understanding for cohomology is more complicated. The following wasn't discussed in the lecture.

Colomology $H^{n}(A \cap B) \longrightarrow H^{n+1}(X)$:

Extend a cohomology class $[\varphi] \in H^{n}(A \cap B)$, which is a map $C_{n}(A \cap B) \rightarrow R$, to a map $\Psi: C_{m}(A) \rightarrow R$, ie a cochin $\psi \in C^{n}(A)$. \qquad
For each $x \in C_{n+1}(x)$, choose $y \in C_{n+1}(A), z \in C_{n+1}(B)$ such that $x-(y+z)$ is a boundary. Then send $[\varphi]$ to the cohonologg class in $H^{n+1}(x)$ that sends each x to $\psi(d y)$.

Thu 14 (Good Pairs) $A \subseteq X$ nom-empty closed, A a deformation retract of an open neighbourhood of A is $X \Rightarrow$
the projection $(X, A) \rightarrow(X / A,\{*\})$ induces an iso

$$
\underbrace{H^{n}(X / A,\{*\})}_{\cong \tilde{H}^{n}(X / A)} \longrightarrow H^{n}(X, A)
$$

Def For $X \neq \phi$, the meth reduced cohomology group $\tilde{H}^{M}(X ; M)$ is the n-th cohomology group of the augmented cochair complex

$$
0 \rightarrow M \xrightarrow{\varepsilon} C^{0}(x ; \pi) \longrightarrow C^{1}(x ; M) \longrightarrow \ldots
$$

with $\varepsilon(m)(\sigma)=m$ for all $\sigma: \Delta^{0} \rightarrow X$.
Prop $15 H^{n}(x ; M) \cong \tilde{H}^{m}(x ; M)$ for $n \geq 1$,

$$
H^{0}(x ; M) \cong \tilde{H^{0}}(x ; M) \oplus M
$$

Ex $16 \quad \tilde{H}^{m}\left(S^{k}\right) \cong \mathbb{R}^{\delta(n, k)}$
$k=0: \sqrt{ }$. Assume now $k \geqslant 1$.
1st Proof $C_{c w}^{0}\left(S^{k}\right) \cong \operatorname{Hom}\left(C_{0}^{c w}\left(S^{k}\right), \pi\right) \cong C_{0}^{c w}\left(S^{k}\right)$
and Proof $H_{0}\left(S^{k}\right)$ free $\stackrel{\text { uct }}{\Longrightarrow} H^{n}\left(S^{k}\right) \cong H_{m}\left(S^{k}\right)$
Ord Proof $A=S^{k} \backslash\left\{e_{1}\right\}, B=S^{k} \backslash\left\{-e_{n}\right\} \Rightarrow A, B$ contractible \Rightarrow Mayer-Vietoris gives is. $H^{i}(\underbrace{A \cap B}_{\simeq S^{k-1}}) \longrightarrow H^{i+1}\left(S^{k}\right)$

Proceed by induction.
th Proof $H^{i}\left(S^{k}\right)$
iso d LES of Pair $\left(D^{k+1}, S^{k}\right)$

$$
H^{i+1}\left(D^{k+1}, S^{k}\right)
$$

iso due to good pair

$$
H^{i+1}\left(S^{k+1}\right)
$$

Prop 17 Let $x \geqslant 1$. If $f: S^{\mu} \rightarrow S^{\mu}$ has degree $k \in \mathbb{Z}$, then

$$
f^{*}: H^{n}\left(S^{m}\right) \longrightarrow H^{m}\left(S^{n}\right) \text { is multiplication by } k
$$

Reminder " f has degree k " is by def equivalent to:
$f_{*}: H_{M}\left(S^{M}\right) \longrightarrow H_{M}\left(S^{M}\right)$ is multiplication by k
Mst Proof

$$
\begin{aligned}
& \cdots \stackrel{0}{\longrightarrow} C_{n}^{c w}\left(S^{n}\right) \stackrel{0}{\longrightarrow} \cdots \\
& f_{c}=\operatorname{mult}_{0} \text { by } k \quad \xrightarrow[\text { apply }]{\text { functor }} \operatorname{Hom}_{\text {om }}(\cdot, \lambda) \\
& \ldots\left(-C_{C W}^{n}\left(S^{n}\right) \leftarrow^{0} \ldots\right. \\
& \int \begin{array}{l}
f^{c}=\operatorname{Hom}_{\text {om }}\left(f_{c, \pi} R\right) \\
=\text { multi by }
\end{array} \\
& \ldots \stackrel{0}{\longrightarrow} C_{m}^{c w}\left(S^{n}\right) \xrightarrow{0} \ldots \\
& \ldots \leftarrow C_{c w}^{m}\left(S^{m}\right) \leftarrow^{0} \cdots
\end{aligned}
$$

Ind Proof Use naturality of UCT. (Shipped in lecture)
$\operatorname{Ext}\left(H_{n-1}\left(S^{m}\right), \mathbb{Z}\right) \cong 0$ since $H_{m-1}\left(S^{m}\right)$ is free (namely, it is $O($ if $n \geqslant 2)$ or $\mathbb{Z}($ if $n=1)$. So we have an iso

$$
\text { er: } H^{n}\left(S^{m}\right) \rightarrow \operatorname{Hom}\left(H_{n}\left(S^{m}\right), \mathbb{Z}\right)
$$

It is natural, so the following commutes:

$$
\begin{aligned}
& H^{m}\left(S^{\mu}\right) \xrightarrow[\text { iso }]{\text { av }} \operatorname{Hom}\left(\mathrm{H}_{m}\left(S^{m}\right), \mathbb{R}\right)
\end{aligned}
$$

