(6) The cup product

Reminder about simplexes If $v_{0}, \ldots, v_{n} \in \mathbb{R}^{l}$ s.t. $V_{1}-v_{0}, \ldots, v_{n}-v_{0}$ are lin indef., then the convex hull of $\left\{v_{0}, \ldots, v_{n}\right\}$, ie

$$
\left\{\sum_{i=0}^{n} \lambda_{i} v_{i} \mid \sum_{i=0}^{n} \lambda_{i}=1,\left(\lambda_{0}, \ldots, \lambda_{m}\right) \in[0,1]^{n+1}\right\} \subseteq \mathbb{R}^{e}
$$

together with the tuple $\left(v_{0}, \ldots, v_{n}\right)$, is called an n-simplex, denote $\left[v_{0}, \ldots, v_{n}\right]$. Every pair of n-simplexes $\left[v_{0}, \ldots, v_{n}\right],\left[v_{0}^{\prime}, \ldots, v_{m}^{\prime}\right]$ is naturally homeomorphic via $\sum \lambda_{i} v_{i} \longmapsto \sum \lambda_{i} v_{i}$.
The standard n-simplex is $\Lambda^{n}:=\left[e_{0}, \ldots, e_{n}\right] \subseteq \mathbb{R}^{n+1}$.
A singular n-simplex of a top. space X is a cont. map $\sigma: \Delta^{m} \rightarrow X$.
They form the basis of $C_{n}(x)$. The boundary operator $d: C_{n}(x) \rightarrow C_{n-1}(x)$ is given by $d(\sigma)=\sum_{i=0}^{n} \sigma \mid[\underbrace{e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}}]$. means e_{i} is left out
(where we implicitly identify the nom-standard simplex $\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{m}\right]$ with Δ^{n-1} via the natural homes).

Throughout, let R be a commutative unital ring.
Def x top space, $\varphi \in C^{n}(x ; R), \psi \in C^{k}(X ; R)$.
Let the cup-product $\varphi \underset{\uparrow}{\underbrace{}_{\Lambda}} \psi \in C^{n+k}(X ; R)$
\hat{L} (smile, not \cup, in LaTeX
be given sending singular simplexes $\sigma: \Delta^{n+k}=\left[e_{0}, \ldots, e_{n+h}\right] \rightarrow X$ to

$$
(\varphi \smile \psi)(\sigma)=\varphi(\underbrace{\left.\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n}\right]}\right)}_{\Gamma} \uparrow \underbrace{\substack{\text { grout face" } \\
\text { of } \sigma}}_{\substack{\text { multiplication } \\
\text { in } R}} \begin{array}{c}
\left.\sigma e_{n}, \ldots, e_{n+k}\right]
\end{array}
$$

Prop 1 (1) $: C^{n}(X ; R) \times C^{k}(X ; R) \longrightarrow C^{n+k}(X ; R)$
, is R-bilinear. (uses distributivity \& associativity of R)
$(2) \smile$ is associative: $(\varphi \cup \psi) \smile_{\eta}=\varphi \smile(\psi \smile \eta)$ (uses associativity of R)
(3) Let $\varepsilon \in C^{0}(X ; R), \varepsilon(\sigma)=1 \in R$ for all σ. Then $\varphi \smile \varepsilon=\varepsilon \smile \varphi=\varphi$. (uses unit of R)

Proof Exercise.
Remark 2 makes $C^{0}(X ; R)=\bigoplus_{n=0}^{\infty} C^{n}(X ; R)$ into a
(generally nom-commutative) unital R-algebra (by Prop 1).
Moreover, $C^{\bullet}(X ; R)$ is graded:
a grading on an R-algebra S is a decomposition
$S=\bigoplus_{n \in \pi} S_{n}$ as an R-module, such that $S_{n} S_{k} \subseteq S_{n+k}$.
We write deg $x=n$ for $x \in S_{n}, x \neq 0$. deg is not defined if $x \notin S_{n} \forall n$.
Example $3 C^{0}(\phi ; R)=$ the zero ring
$C^{\bullet}(\{*\} ; R)$: For all $n \geqslant 0, C_{n}(\{*\})$ is generated by the constant $\sigma_{n}: \Delta^{n} \rightarrow\{*\}$, and $C^{n}(\{*\} ; R)$ by $\varphi_{n}: \sigma_{n} \longmapsto 1$.
Check $\varphi_{n} \cup \varphi_{k}=\varphi_{n+k}$. So we have an iomorghisen of graded R-algebras: $C^{\bullet}(\{*\} ; R) \longrightarrow R[x], \varphi_{n} \longmapsto x^{\mu}$.
Here, deg on $R[x]$ is different for the usual deg of polynomials: $\operatorname{deg}\left(r x^{n}\right)=n$, deg not defined for non-monomials.
Prop 4 (Graded Leibniz rule). For $\varphi \in C^{n}(X ; R), \psi \in C^{k}(X ; R)$:

$$
d(\varphi \cup \psi)=(d \varphi) \cup \psi+(-1)^{n} \varphi \cup d \psi
$$

Koszul sign rule:
"when d jumps over something of degree be, $(-1)^{k}$ appears"

Proof
Calculate:

$$
\begin{aligned}
((d \varphi) & \cup \psi)\left(\sigma:\left[e_{0}, \ldots, e_{n+k+1}\right] \rightarrow x\right) \\
& \left.=(d \varphi)\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n+1}\right]}\right)\right) \cdot \psi\left(\left.\sigma\right|_{\left.\left[e_{n+1}, \ldots, e_{n+k+1}\right]\right)}\right) \\
& =\varphi\left(\left.d \sigma\right|_{\ldots} \ldots(\ldots)\right. \\
& =\varphi\left(\left.\sum_{i=0}^{n+1}(-1)^{i} \sigma\right|_{\left[e_{0}, \ldots, \widehat{e_{i}}, \ldots e_{n+1}\right]}\right) \cdot \psi(\ldots) \\
& =\sum_{i=0}^{n+1}(-1)^{i} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{i}, \ldots e_{n+1}\right.}\right) \psi\left(\left.\sigma\right|_{\left[e_{n+1}, \ldots, e_{n+k+1}\right]}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
& (\varphi \cup d \psi)(\sigma)= \\
& \left.=\sum_{j=0}^{k+1}(-1)^{j} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n}\right]}\right)^{\psi\left(\left.\sigma\right|_{\left[e_{n}\right.}, \ldots, e_{n+j}, \ldots, e_{n+k+1}\right]}\right)
\end{aligned}
$$

Now plug this into:

$$
((d \varphi) \cup \psi)(\sigma)+(-1)^{n}(\varphi \vee d \psi)(\sigma)
$$

Notice the last summand $(i=n+1)$ conch the first $(j=0)$!

$$
\begin{aligned}
& =\sum_{i=0}^{n}(-1)^{i} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]}\right) \psi\left(\left.\sigma\right|_{\left[e_{n+1}, \ldots, e_{n+n+1}\right]}\right) \\
& +\sum_{m=n+1}^{n+n+1}(-1)^{m} \varphi\left(\left.\sigma\right|_{\left.\left[e_{0}, \ldots, e_{n}\right]\right)} \psi\left(\left.\sigma\right|_{\left[e_{n}, \ldots, e_{m}, \ldots, e_{n+h+1}\right]}\right)\right.
\end{aligned}
$$

index shift $m=j+n$

$$
=(d(\varphi \vee \psi))(\sigma)
$$

Prop 5 (1) cocycle \smile cocycle $=$ cocycle
(2) coboundary - cocycle $=$ coboundary
and
Cocyele \cup coboundary $=$ - \cdot -
(3) For $[\varphi] \in H^{m}(x ; R), \quad[\psi] \in H^{k}(x ; R)$, $[\varphi] \cup[\psi]:=[\varphi \cup \psi] \in H^{n+k}(X \neq R)$ is well-def
(4) \smile makes $H^{\bullet}(X ; R):=\bigoplus_{i=0}^{\infty} H^{i}(X ; R)$ into a graded R-algebra.

Proof (1) if $d \varphi=d \psi=0 \Rightarrow d(\varphi-\psi)=(d \varphi) \smile \psi \pm \varphi \smile d \psi=0$.
(2) if $\varphi=d \eta$ and $d \psi=0 \Rightarrow \varphi \smile \psi=(d \eta) \smile \psi=d(\eta \smile \psi)$.
(3) $\varphi \cup \psi$ is a cocycle by (1).
if $\varphi^{\prime}=\varphi+d \eta, \quad \psi^{\prime}=\psi+d \xi$, then
$\left[\varphi^{\prime} \cup \psi^{\prime}\right]=[\varphi \smile \psi]+\underbrace{[\varphi \smile d \zeta]}_{=0}+\underbrace{\left[d \eta-\psi^{\prime}\right]}_{=0}{ }_{\text {by }}(2)$
(4) Follows from Prop 1

