Example 6 if $l \geqslant 1$, then $H^{\bullet}\left(S^{l}, R\right) \cong R[x] /\left(x^{2}\right)$ with $\operatorname{deg} x=l \quad\left(x^{2}=0\right.$ since since there is no nou-trivial cohomology clan of $\operatorname{deg} 2 l$).
Def For a Δ-complex X, define \checkmark in the same way as before on the simplicial cochain complex $C_{\Delta}^{\bullet}(X ; R)=$ $\operatorname{Hom}\left(C_{0}^{\Delta}(X), R\right)$, and on its cohomology $H_{\Delta}^{\bullet}(X ; R)$.

Prop 7 The chain homotopy equivalence $C_{0}^{\Delta}(x) \longrightarrow C_{0}(x)$, sending simplex to simplex, induces a chain homotopy equivalence $C^{\bullet}(x) \rightarrow C_{\Delta}^{\bullet}(x)$ that preserves the cup product.

Proof Immediate from def
Example $8 \quad x=S^{1} \times S^{1}$. Know $H^{0}(x) \cong R, H^{1}(x) \cong \pi^{2}$, $H^{2}(x) \cong \mathbb{R}$. So may be interesting on $H^{1}(x)$.
Put a \triangle-comple x-structure on X :

$$
\begin{aligned}
& a \in C_{0}^{\Delta}(x), \quad b_{1}, b_{2}, b_{3} \in C_{1}^{\Delta}(x) \\
& c_{1}, c_{2} \in C_{2}^{\Delta}(x) \Rightarrow \\
& d b_{i}=0, \\
& d c_{1}=d c_{2}=b_{1}-b_{3}+b_{2}
\end{aligned}
$$

One computes that:

$$
\begin{aligned}
& H_{0}^{\Delta}(X ; \mathbb{R}) \text { has basis }[a] \\
& H_{1}^{\Delta}(X ; \mathbb{R})-\cdot \cdot\left[b_{1}\right],\left[b_{2}\right] \\
& H_{2}^{\Delta}(X ; \mathbb{R})-\cdots-\left[c_{1}-c_{2}\right]
\end{aligned}
$$

Since $H_{0}^{\Delta}(X ; \mathbb{R})$ is torion-free, the UCT implies $H_{\Delta}^{\bullet}(X ; \mathbb{R}) \cong \operatorname{Hom}\left(H_{\bullet}^{\Delta}(X ; \mathbb{R})\right)$. So the dual basis of the basis $[a],\left[b_{1}\right],\left[b_{2}\right],\left[c_{1}-c_{2}\right]$ is a basis for $H_{\Delta}^{0}(X ; \lambda)$:

$$
[4],\left[\psi^{1}\right],\left[\psi^{2}\right],[\eta]
$$

with $\varphi(a)=1, \psi^{i}\left(b_{j}\right)=\delta_{i j}, \eta\left(c_{1}-c_{2}\right)=1$. Let's calculate $\left[\psi^{1}\right] \cup\left[\psi^{2}\right]$! Since $\left[\psi^{2}\right] \cup\left[\psi^{2}\right] \in H^{2}(X ; \mathbb{R})$

$$
\Rightarrow \quad\left[\psi^{1}\right]-\left[\psi^{2}\right]=\lambda[\eta] \text { for some } \lambda \in \mathbb{Z} \text {. }
$$

Evaluate both sides on $\left[c_{1}-c_{2}\right]$:

$$
\begin{array}{rlrl}
\lambda & =e v\left(\left[\psi^{1}\right] \cup\left[\psi^{2}\right]\right)\left(\left[c_{1}-c_{2}\right]\right) & \\
& =e v\left(\left[\psi^{1} \cup \psi^{2}\right]\right)\left(\left[c_{1}-c_{2}\right]\right) & & \text { by def of } \smile \text { on cohomology } \\
& =\left(\psi^{1} \cup \psi^{2}\right)\left(c_{1}-c_{2}\right) & \text { by def of ev } \\
& =\left(\psi^{1} \cup \psi^{2}\right)\left(c_{1}\right)-\left(\psi^{1}-\psi^{2}\right)\left(c_{2}\right) & \text { by linearity } \\
& =\psi^{1}\left(\left.c_{1}\right|_{\left[e_{0}, e_{1}\right]}\right) \psi^{2}\left(\left.c_{1}\right|_{\left[e_{1}, e_{2}\right]}\right)-\psi^{1}\left(\left.c_{2}\right|_{\left[e_{0}, e_{1}\right]}\right) \psi^{2}\left(\left.c_{2}\right|_{\left[e_{1}, e_{2}\right]}\right) \\
& =\psi^{1}\left(b_{2}\right) \psi^{2}\left(b_{1}\right)-\psi^{1}\left(b_{1}\right) \psi^{2}\left(b_{2}\right) \\
& =-1 & \text { on cochains of } \\
\Rightarrow & {\left[\psi^{1}\right] \cup\left[\psi^{2}\right]=-[\eta] .}
\end{array}
$$

Similarly, one computes $\left[\psi^{2}\right] \cup\left[\psi^{1}\right]=[\eta]$ and $\left[\psi^{i}\right] \cup\left[\psi^{i}\right]=0$.

So $H^{\bullet}\left(S^{1} \times S^{1} ; \mathbb{R}\right) \cong \underbrace{\mathbb{Z}\langle x, y\rangle} /\left(x y=-y x, x^{2}=y^{2}=0\right)$

Prop 9 (Naturality of \sim)
$f: X \rightarrow Y$ cont. map of top. spaces, $[\varphi] \in H^{n}(Y ; R),[\Psi] \in H^{k}(Y ; R)$

$$
\Rightarrow f^{*}([\varphi]-[\psi])=\left(f^{*}[\varphi]\right)-\left(f^{*}[\psi]\right)
$$

Proof (skipped in the lecture)
For all $(n+k)$-simplexes $\sigma:\left(f^{c}(\varphi \smile \psi)\right)(\sigma)=\varphi \smile \psi(f \circ \sigma)$

$$
\begin{aligned}
& =\varphi\left(\left.f \circ \sigma\right|_{\left[e_{0}, \ldots, e_{m}\right]}\right) \psi\left(\left.f \circ \sigma\right|_{\left[e_{m}, \ldots, e_{n+k}\right]}\right) \\
& =f^{c} \varphi(\sigma \mid \ldots) \cdot f^{c} \psi(\sigma / \ldots)=\left(\left(f^{c} \varphi\right) \cup\left(f^{c} \psi\right)\right)(\sigma) .
\end{aligned}
$$

Now $f^{*}([\varphi] \smile[\psi])=f^{*}([\varphi \smile \psi])=\left[f^{c}(\varphi \smile \psi)\right]$

$$
=\left[\left(f^{c} \varphi\right) \smile\left(f^{c} \psi\right)\right]=\left[f^{c} \varphi\right] \smile\left[f^{c} \psi\right]=
$$

$$
f^{*}([\varphi]) \smile f^{*}([\psi])
$$

In other words: f^{*} is a homomoupliam of graded R-algebras!
Prop $10 X, Y$ top space \Rightarrow We have graded R-algebra is os
$(1) H^{\bullet}(X \cup Y ; R) \xrightarrow[\binom{\text { incl* }}{\text { incl* }}]{ } H^{\bullet}(X ; R) \times H^{\bullet}(Y ; R)$
(2) $H^{*}(X \sim Y ; R) \longrightarrow$ Subalgetra of $H^{\bullet}(X ; R) \times H^{\bullet}(Y ; R)$ $\left(\begin{array}{l}\text { incl } 1^{*} \\ \text { incl* }\end{array} \quad \begin{array}{l}\text { containing in } \operatorname{deg} 0 \text { only } \\ \text { with }\end{array}\left(x_{0}\right)=\psi\left(y_{0}\right) \quad\right.$ those (φ, ψ)
wedge product $X L Y /\left\{x_{0}\right\} \sim\left\{y_{0}\right\}$ for some $x_{0} \in X, y_{0} \in Y$ that are deformation retracts of neighbourhoods N_{X}, N_{T}.
Proof (1) We know ($\begin{aligned} & \text { rick* } \\ & \dot{u} c^{*}\end{aligned}$) is an R-module isom. (eg use MV). It's ans algebra homos by Prop?
(2) Mayer-Vietoris gives iss for $n \geqslant 1$, and a $S E S$

$$
0 \rightarrow H^{0}(X \vee Y ; R) \rightarrow H^{0}(\underbrace{x \cup N_{y}}_{\approx x} ; R) \oplus H^{0}(\underbrace{\Psi \cup N_{x}}_{\approx Y} ; R) \rightarrow H^{0}(\underbrace{\left.N_{x} \cap N_{Y} ; R\right) \rightarrow 0}_{\simeq\{*\}}
$$

the learned is
the desired subalgebra

Example $11 H^{\bullet}\left(S^{1} \vee S^{1} \vee S^{2}\right) \cong$

$$
\begin{aligned}
& \mathbb{R}\left\langle x_{1}, x_{2}, x_{3}\right\rangle /\left(x_{i} x_{j}=0 \text { for all } i, j\right) \\
& \operatorname{deg} x_{1}=\operatorname{deg} x_{2}=1, \operatorname{deg} x_{3}=2
\end{aligned}
$$

This is not isomouplic to the ring $H^{0}\left(S^{1} \times S^{1}\right)$, which contains elements of degree 1 with non-zero product.

$$
\Rightarrow S^{1} \sim S^{1} \sim S^{2} \nsim S^{1} \times S^{1}
$$

Theorem $13 X$ sop. space, $A \subseteq X, \varphi \in H^{n}(X, A ; R)$, $\psi \in H^{k}(X, A: R)$. Then

$$
\varphi \smile \psi=(-1)^{n k} \psi \smile \varphi
$$

Proof: next lecture.

This property of the grated R-alg. $H^{\bullet}(X, A, R)$ is called graded commutative.

