12 April

Example 6 If
$$l \ge 1$$
, then $H^{\bullet}(S^{\ell} > R) \cong R[x]/(x^{2})$ with
deg $x = l$ ($x^{2} = 0$ since since there is no non-trivial
cohomology class of deg $2l$).
Def For a Δ -complex X, define $-$ in the same way as before
on the simplicial collain complex $C_{\Delta}^{\bullet}(X > R) =$
Hom ($C_{\Delta}^{(A)}(X), R$), and on its cohomology $H_{\Delta}^{\bullet}(X > R)$.
Prop 7: The clain homotopy equivalence. Then 2.11 m Hatcher
 $C_{\Delta}^{(A)}(X) \longrightarrow C_{\Delta}(X)$, suching simplex to simplex,
includes a chain homotopy equivalence. $C^{\bullet}(X) \longrightarrow C_{\Delta}^{\bullet}(X)$
that preserves the cup product.
Proof Immediate from def
Example 8: $X = S^{1} \times S^{2}$. Unow $H^{\circ}(X) \cong Z$, $H^{1}(X) \cong Z^{2}$,
 $H^{2}(X) \cong Z$. So $-$ may be intersting on $H^{-}(X)$.
Put a Δ -complex -structure on X :
a $C_{\Delta}^{(R)}$
 $C_{\Delta}^{(R)}$

49

Since
$$H^{\Delta}_{\bullet}(X; \mathbb{Z})$$
 is to reson-free, the UCT implies
 $H^{\bullet}(X; \mathbb{Z}) \cong Hom (H^{\Delta}_{\bullet}(X; \mathbb{Z}))$. So the dual basis of the
basis [a], [b,], [b,], [c,-c_2] is a basis for $H^{\bullet}_{\bullet}(X; \mathbb{Z})$:
 $[4], [4^{n}], [4^{n}], [4^{n}], [7]$
deg a a 2
with $\P(a) = A, \Psi^{i}(b_{j}) = S_{ij}, \pi(c_{n}-c_{2}) = A.$
Set's calculate $[\Psi^{A}] \cup [\Psi^{2}]$! Since $[\Psi^{A}] \cup [\Psi^{2}] \in H^{2}(X; \mathbb{Z})$
 $\Longrightarrow [\Psi^{A}] \cup [\Psi^{2}] = A [\pi]$ for some $A \in \mathbb{Z}$.
Evaluate bolk sides on $[c_{n}-c_{2}]$:
 $A = ev([\Psi^{A}] \cup [\Psi^{2}])([c_{n}-c_{2}])$
 $= ev([\Psi^{A} \cup \Psi^{2}])([c_{n}-c_{2}])$ by def of \smile an cohomology
 $= (\Psi^{A} \cup \Psi^{2})(c_{n}) - (\Psi^{A} \cup [\Psi^{2}])(c_{2})$ by linearity
 $= \Psi^{A}(c_{n}|_{[e_{n},e_{1}]}) \Psi^{2}(c_{n}|_{[e_{n},e_{2}]}) - \Psi^{A}(c_{2}|_{[e_{n},e_{1}]}) \Psi^{2}(c_{2}|_{[e_{n},e_{1}]})$
 $= v^{A}(b_{2}) \Psi^{2}(b_{n}) - \Psi^{A}(b_{n}) \Psi^{2}(b_{2})$
 $= -A$

 $= \sum \left[\psi^{1} \right] - \left[\psi^{2} \right] = - \left[\eta \right].$ Similarly, one computes $\left[\psi^{2} \right] - \left[\psi^{1} \right] = \left[\eta \right]$ and $\left[\psi^{i} \right] - \left[\psi^{i} \right] = 0.$

So $H^{\bullet}(S^{1} \times S^{1}; \mathbb{Z}) \cong \mathbb{Z}(x, y) / (xy = -yx, x^{2} = y^{2} = 0)$ free algebra generated by x, y.

Prop 3 (Naturality of
$$\Box$$
)
 $f: X \to Y$ const. and of top. Spaces, $[\Psi] \in H^m(Y; R)[\Psi] \in H^k(Y; R)$
 $\Rightarrow f^*([\Pi] \cap [\Psi]) = (f^*[\Pi]) - (f^*[\Pi])$
Proof (Shipped in the lecture)
For all (n+k)-simplets of: $(f^c(\Psi \cup \Psi))(\sigma) = \Psi \cup \Psi(f \circ \sigma)$
 $= \Psi(f \circ \sigma|_{E_0, \dots, E_n}] \Psi(f \circ \sigma|_{E_n, \dots, E_{n+k}}]$
 $= f^c \Psi(\sigma|_{\dots}) \cdot f^c \Psi(\sigma|_{\dots}) = ((f^c \Psi) \cup (f^c \Psi))(\sigma).$
Now $f^k([\Pi] \cup [\Pi]) = f^*([\Pi \cup \Pi]) = [f^c(\Psi \cup \Pi)]$
 $= [(f^c \Psi) \cup (f^c \Psi)] = [f^c \Psi] \cup [f^c \Psi] =$
 $f^*([\Pi]) \cup f^*([\Pi])$
In other words: f^* is a homeomorphism of graded R-algebra isas
(i) $H^*(X_{\dots}Y; R) \xrightarrow{(incl^*)} H^*(X \times R) \times H^*(Y; R)$
 $(incl^*)$
(2) $H^*(X_{\dots}Y; R) \xrightarrow{(incl^*)} f^{incl^*}$ containing in dbg 0 orby there (Ψ, Ψ)
 $(incl^*)$ will $Q(r_0) = \Psi(Y_0)$
wedge product X_{\dots}T/K_1 \cup [r_0] for Some X_0 \in X, Y_0 \in T that
are deformation retracts of mainly can be isom. (eq use HV).
H's are ulgebra booms by Prop 3.
(2) $H^*(X \cup Y; R) \to H^*(X \cup N, R) \to H^*(N_{N}R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) $U = lacon (incl^*)$ as an R-module isom. (eq use HV).
H's are ulgebra booms by Prop 3.
(2) $H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup N, R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) $H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup N, R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup N, R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup N, R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup N, R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup N, R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup N, R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup R)$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup R) \to H^*(N_{N}R)^{2/p_0}$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup N, R) \oplus H^*(Y \cup R)$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup R)$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup R)$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup R)$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup R)$
 $(A) H^*(X \cup Y; R) \to H^*(X \cup R)$$$

(

Example 11
$$H^{\bullet}(S^{1} \vee S^{1} \vee S^{2}) \cong$$

 $\mathcal{R} < \times_{1}, \times_{2}, \times_{3} > / (\times_{i} \times_{j} = 0 \text{ for all } i, j)$
deg $x = \deg x_{2} = 1$, deg $x_{3} = 2$
This is not isomorphic to the ring $H^{\bullet}(S^{T} \times S^{T})$, which
contains elements of degree 1 with non-zero product.
 $\Longrightarrow S^{1} \vee S^{2} \not= S^{T} \times S^{T}$
Theorem 13 $X \text{ top. space}$, $A \subseteq X$, $\mathcal{P} \in H^{n}(X, A; R)$,
 $\mathcal{P} \in H^{k}(X, A; R)$. Then
 $\mathcal{Q} = \mathcal{Y} = (-\lambda)^{mk} \mathcal{Y} = \mathcal{Q}$

52

Proof: next lecture.

This property of the graded R-alg. H (X, A; R) is called graded commutative.