•

Each
$$\mu_{X} \in H$$
 has a communical animutation $\mu_{X} \in H_{n}(H, H_{Y,K})$ [62
conserponding to plx under the isos
 $H_{n}(H, H_{Y,K}) \xrightarrow{\text{excluser}} H_{n}(U_{(YK)}, U_{(YK)}) \xrightarrow{\text{(}} H_{n}(H, H_{Y,K}))$
 $\longrightarrow H_{n}(B, B \setminus X) \xrightarrow{\text{excluser}} H_{n}(H, H \setminus X)$
There are locally courribut, so Ft has a communical orientation.
Prop 4 If H is connected, then: H non-communical CO H orientation
How orientation $\mu_{X} \Rightarrow H = \{\mu_{X} \mid X \in H\} \sqcup \{X \in H\}\}$
 $\int H_{k}(K \in H) | X_{k} = X \xrightarrow{\text{(}} H = \{\mu_{X} \mid X \in H\} \sqcup \{X \in H\}\}$
 $\int ft$ has two components N_{n}, N_{2} , then they inherit an orientation
from H. Cleach that $p|_{N_{X}} : N_{n} \rightarrow H$ are containing. Then, they must
be one - Sharked coverings, i.e. handownorphisms.
 \Box
Example: $S^{2} \equiv S^{2} \sqcup S^{2}$, $RP^{k} \equiv S^{2}$, $U(ein Bithe \equiv S^{4} \times S^{4})$
Note that $S^{3} \rightarrow RP^{3}$ is an orientable double contening, but not the
orientation covering, which is $RP^{3} \sqcup RP^{3} \square RP^{3}$ (since RP^{3} is orientable).
Ded A section of ρ is a court map $s: H \rightarrow H_{K}$ with $ps = rial_{H}$.
Note that a section of a covering mup has a component of H as image
Prop 5 μ_{X} is an orientation $(\Rightarrow X \mapsto M_{X})$ is a section of ρ
 Pf Exercise \Box
Def R commutative unital ring $f(H^{1})$ without boundary.
Local R-orientations : μ_{X} is a generator of $H_{m}(H, H(X \times R))$
 R -orientations : $Locally constraints of A is previously one
 $Local R_{2}$ -orientation at every point.$

$$M_{\tau} \cong M$$
 if $\tau = -\tau$, and $\Pi_{\tau} \cong \widetilde{M}$ if $\tau \neq -\tau$.
 P_{f} : Exercise

Ū

Prop 8 If
$$0=2$$
 in $R \Rightarrow$ all M^{n} are R -orientable
If $0 \neq 2$ in $R \Rightarrow M^{n}$ is R -orientable iff
it is R -orientable

Proof
$$0=2 \Rightarrow M_1 \cong M \Rightarrow p_R has a section to $M_1 \Rightarrow M$ is R-orienterold
Assume $0 \neq 2$. Generators of $H_n(\Pi, R \setminus x : R)$ are of the form $\mu_x \otimes u$
for $\mu_x a gen.$ of $H_n(\Pi, \Pi \setminus x)$ and $u \in R$ a unit. Then $u \neq -u$
 $\Rightarrow M_u \cong \tilde{M} \Rightarrow p_R$ has a section to M_u iff $\tilde{M} \rightarrow M$ has a section. $\Pi$$$

Proof of Prop 2 (i) and (iii) Pointwise sum and pointwise
R-multiplication turn
$$\Gamma(\Pi, \Pi_R)$$
 into an R-module.
 $H_n(\Pi; R) \longrightarrow \Gamma(\Pi, \Pi_R)$,
 $\ll \mapsto (\chi \mapsto image of \chi in H_n(\Pi, \Pi \setminus \chi; R))$

is a homomorphism. By Lemma 3, applied to
$$A = H$$
, it
is an isomorphism! Indeed, Lemma 3 (i) yields injectivity. And
Lemma 3 (ii) yields surjectivity (here, we need a slightly move
general version of Lemma 3(ii): namely, for every locally consistent
choice $\alpha_X \in H_n(H, H \setminus X; R)$, $\exists! \mu_A \in H_n(H, H \setminus A; R)$ that maps to
 α_X for all x . The proof is the same — we never use that α_X generates).

$$M \ R-\text{ orientable } = \begin{cases} \widetilde{M} = M \sqcup M & \text{if } 0 \neq 2 \\ M_{r} = M \text{ for all } reR & \text{if } 0 = 2 \end{cases} = M_{R} \cong \bigsqcup_{\tau \in R} M \\ =) \ \overline{\prod_{r \in R} M_{R}} = R & (\text{ using connectedness of } M) =) \ H_{m}(M; R) \cong R. \\ So \ H_{m}(M; F_{2}) \cong F_{2} \text{ for all } M & (\text{ since all } \Pi \text{ are } F_{2} - \text{ orientable}), \\ and \ H_{m}(M) \cong \mathbb{R} \text{ for all orientable } M. \end{cases}$$

M Mon-orientable => M is connected =>

$$M_{\mathcal{R}} \cong M_{\mathfrak{o}} \sqcup M_{\mathfrak{o}} \sqcup M_{\mathfrak{o}} \sqcup M_{\mathfrak{o}} \cdots$$

So the only section of $P_{\mathcal{R}}$ goes to $M_{\mathcal{O}} \rightarrow \mathcal{D}(M, M_{\mathcal{R}}) \cong O$ =) $H_{\mathcal{M}}(\mathbf{n}) \cong O$.

64