Last time: Proof of
Lemma $3 M^{n}$ without boundary, $A \subseteq M$ compact, R commutative unital ring.
(i) $H_{i}(M, M \backslash A ; R)=0$ for $i>n$.
$\alpha \in H_{M}(M, M \backslash A ; R)$ i zero \Leftrightarrow
image of α in $H_{M}(M, M \backslash\{x\}, R)$ is zero for all $x \in A$.
(ii) μ_{x} locally consistent choice of orientation for $x \in A$
\Rightarrow exist unique $\mu_{A} \in H_{M}(M, M \backslash A ; R)$ mapping to μ_{x} for all $x \in A$
Today:
Prop $2 M^{n}$ closed (\Leftrightarrow compact, no boundary) connected.
(i) $H_{n}\left(M ; \mathbb{F}_{2}\right) \rightarrow H_{n}\left(M, M \backslash\{x\} ; \mathbb{F}_{2}\right)$ iso for all $x \in M$.
(ii) M orientable $\Rightarrow H_{M}(M ; \mathbb{R}) \rightarrow H_{M}(M, M \backslash\{x\} ; \mathbb{R})$ is $\forall x \in M$.
M non-orientable $\Rightarrow H_{M}(M ; \mathbb{R})=0$.
(iii) $H_{i}(M ; \mathbb{R})=0$ for $i>n$.

Note that (iii) follows from Lemma 3 (i) with $A=M$. For (i) \& (ii), weill also use Lemma 3, but need some move tools.

For M^{M} without boundary, let
$\tilde{M}:=\left\{\mu_{x} \mid x \in M\right.$ and $\mu_{x} \in H_{M}(M, M \backslash\{x\})$ a local orientation $\}$
Note $p: \tilde{M} \rightarrow M, \mu_{x} \mapsto x$ is a $2: 1$ surjection. For $B \subseteq$ chart $\subseteq M$ an open ball and a generator $\mu_{B} \in H_{M}(M, M \backslash B)$, let

$$
\begin{aligned}
& U_{\left(\mu_{B}\right)}:=\left\{\mu_{x} \in \tilde{M} \mid\right. x \in B, \mu_{x} \text { image of } \mu_{B} \text { under } \\
&\left.H_{\mu}(M, M \backslash B) \rightarrow H_{\mu}(M, M \backslash\{x\})\right\}
\end{aligned}
$$

Exercise The $U_{\left(\mu_{B}\right)}$ form the base of a topology on \tilde{M}, st P is a $2: 1$ covering.
Def $p: \tilde{M} \rightarrow M$ i called the

Each $\mu_{x} \in \tilde{M}$ has a canonical orientation $\tilde{\mu}_{x} \in H_{n}\left(\tilde{M}, \tilde{M} \backslash \mu_{x}\right)$
corresponding to μ_{x} under the ios

$$
\begin{aligned}
H_{n}\left(\tilde{M}, \tilde{M} \backslash \mu_{x}\right) & \underset{\text { exciton }}{\rightleftarrows} H_{m}\left(U_{\left(\mu_{B}\right)}, U_{\left(\mu_{B}\right)} \backslash \mu_{x}\right) \\
& \longrightarrow H_{n}(B, B \backslash x) \underset{\text { excision }}{\longrightarrow} H_{n}(M, M \backslash x)
\end{aligned}
$$

These are locally consistent, so \tilde{M} has a canonical orientation.
Prop 4 if M is connected, then: \tilde{M} mom-cormected $\Leftrightarrow M$ orientable
Proof M has orientation $\mu_{x} \Rightarrow \mathbb{M}=\underbrace{\left\{\mu_{x} \mid x \in M\right\}}_{\text {open }} \cup \underbrace{\left\{-\mu_{x} \mid x \in M\right\}}_{\text {open }}$
If \tilde{M} has two components N_{1}, N_{2}, then they inherit an orientation from \tilde{M}. Check that $p l_{N_{i}}: N_{i} \rightarrow M$ are coverings. Then, they must be one-Sheeted coverings, i.e. hormeomarghisms.
Example $\widetilde{S}^{2} \cong S^{2} u S^{2}, \quad \widetilde{\mathbb{R} p^{2}} \cong S^{2}, \quad$ Klein Bottle $\cong S^{1} \times S^{1}$
Note that $S^{3} \rightarrow \mathbb{R} P^{3}$ is an orientable double covering, but not the orientation covering, which is $\mathbb{R} P^{3} \longrightarrow \mathbb{R} P^{3} \rightarrow \mathbb{R} P^{3}$ (since \mathbb{R}^{3} is onentable).
Def A section of p is a cont. map $s: M \rightarrow M_{R}$ with $p s=i d M$.
Note that a section of a covering map has a component of M as image
Prop $5 \mu_{x}$ is an orientation $\Leftrightarrow x \longmapsto \mu_{x}$ is a section of ρ
Pf Exercise
Def R commutative unital ring, M^{n} without boundary.
Local R-orientation: μ_{x} is a generator of $H_{M}(M, M \backslash x ; R)$ R-orientation: locally consistent choice of local R-orientations.
MR-orientable: \Leftrightarrow There exist an R-orientation
Example Every M is \mathbb{F}_{2}-orientate, since there is precisely one local \mathbb{F}_{2}-orientation at every point.

Def Let $M_{R}:=\left\{\alpha_{x} \mid x \in M, \alpha_{x} \in H_{m}(M, M \backslash\{x\} ; R)\right\}$, with similar topology as \tilde{M}.
Note $P_{R}: M_{R} \rightarrow M$ is am $|R|$-sheeted covering.
Prop 6 Let $M_{r}=\left\{\alpha_{x} \mid \alpha_{x} \text { is the image of } \mu_{x} \otimes\right)_{r}$ under the iso

$$
H_{m}(M, M \backslash x) \otimes R \longrightarrow H_{m}(M, M \backslash x ; R)
$$

for μ_{x} a generator of $\left.H_{m}(M, M \backslash x)\right\}$
Then: $M_{r} \subseteq M_{R}$ is open ; $M_{r}=M_{-r}$;

$$
M_{r} \cap M_{S}=\phi \text { for } r \neq \pm s
$$

$M_{\tau} \cong M$ if $\tau=-r$, and $M_{r} \cong \tilde{M}$ if $r \neq-r$.
Pf: Exercise
Prop $7 \mu_{x}$ is an R-orientation \Leftrightarrow
$x \longmapsto \mu_{x}$ is a section of P_{R} with each μ_{x} a generator of $H_{M}(M, M \backslash x, R)$
Pf Exercise, similar to Prop 5.
Prop 8 If $0=2$ in $R \Rightarrow$ all M^{n} are R-orientable
If $O \neq 2$ in $R \Rightarrow M^{\mu}$ is R-orientable iff it is \mathbb{Z}-orientable

Proof $0=2 \Rightarrow M_{1} \cong M \Rightarrow p_{R}$ has a section to $M_{1} \Rightarrow M$ is R-orientable
Assume $O \neq 2$. Generator of $H_{n}(M, R \backslash x, R)$ are of the form $\mu_{x} \otimes u$
for μ_{x} a gen. of $H_{n}(M, M(x)$ and $u \in R$ a unit. Then $u \neq-u$
$\Rightarrow M_{u} \simeq \tilde{M} \Rightarrow P_{R}$ has a section to M_{u} iff $\tilde{M} \rightarrow M$ has a section. B

Proof of Prop $2(i)$ and $(i i)$ Pointurise sum and pointerise R-mulfiplication turn $\Gamma\left(M, M_{R}\right)$ into an R-module.

$$
\begin{aligned}
H_{M}(M ; R) & \longrightarrow \Gamma\left(M, M_{R}\right), \\
\alpha & \mapsto\left(x \mapsto \text { image of } \alpha \text { in } H_{n}(\Pi, M \backslash x ; R)\right)
\end{aligned}
$$

is a homomorphisur. By Lemma 3, applied to $A=M$, it is an isomorphism! Indeed, Lemma 3 (i) yields injectivity. And Lemma 3 (ii) yields sarjectivity (here, we need a slightly move general version of Lemma 3(ii): namely, for every locally consistent choice $\alpha_{x} \in H_{n}(M, M \backslash x ; R), \exists!\mu_{A} \in H_{M}(M, M \backslash A ; R)$ that maps to α_{x} for all x. The proof is the same - we never use that α_{x} generates).
$M R$-orientable $\Rightarrow\left\{\begin{array}{ll}\tilde{M}=M_{L} M & \text { if } 0 \neq 2 \\ M_{r}=M \text { forall } r \in R & \text { if } 0=2\end{array}\right\} \Rightarrow M_{R} \cong \bigsqcup_{r \in R} M$ $\Rightarrow \Gamma\left(M, M_{R}\right) \cong R$ (using connectedness of $\left.M\right) \Rightarrow H_{M}(M \div R) \cong R$. So $H_{M}\left(M ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$ for all M (since all M are \mathbb{F}_{2} - orientable), and $H_{M}(M) \cong \mathbb{R}$ for all orientable M.
M nom- orientable $\Rightarrow \tilde{M}$ i connected \Rightarrow

$$
M_{\pi} \cong \underbrace{M_{0}}_{\cong M} \omega \underbrace{M_{1}}_{\cong \tilde{M}} \omega \underbrace{M_{2}}_{\cong} \cdots
$$

So the only section of $P_{\mathbb{R}}$ goes to $M_{0} \Rightarrow \Gamma\left(M, M_{\mathbb{R}}\right) \cong 0$ $\Rightarrow H_{n}(\pi) \cong 0$.

