3 May
Corollary g (i) Let M be a closed R-oriented n-manifold. Then there exists a unique clans $\mu \in H_{m}(M ; R)$ st for all $x \in M$, the isom $H_{n}(M, M \backslash\{x\} ; R)$ Sends μ to the given local orientation.
(ii) If M is connected, then μ generates $H_{n}(M ; R) \cong R$.

Proof (i) directly frown Lemma 3, (ii) similar to Prop 2.
Def The class from Corollary g is called the fundamental class of M, written $[M]_{R} \in H_{n}(M ; R)$. drop R from notation for $R=72$.
Remark 10 If M^{n} is closed and has a Δ-complex structure, then:
(1) Every simplex of M is a subsimplex of an n-simplex.
(2) Every $(n-1)$-simplex is a face of precisely two n-simplexes.
(3) M has only finitely many n-simplexes $\sigma_{1}, \ldots, \sigma_{k}$.

If M is oriented, then $[M]=\left[\sum_{i=1}^{k} \varepsilon_{i} \sigma_{i}\right]$ with $\varepsilon_{i}= \pm 1$. such that in $\sum_{i=1}^{k} \varepsilon_{i} d \sigma_{i}$, each $(n-1)$-simplex appears once with + , once with -. If M is not orientable, no such choice of ε_{i} exists. Over $\mathbb{F}_{2}, \quad[M]_{\mathbb{F}_{2}}=\left[\sum_{i=1}^{n} \sigma_{i}\right]$.

For example:

Torus T

$$
[T]= \pm\left[\sigma_{1}-\sigma_{2}\right]
$$

Klein bottle K

$$
[k]_{\mathbb{F}_{2}}=\left[\sigma_{1}+\sigma_{2}\right]
$$

Def M^{n}, N^{n} compact, oriented, connected, $f: M \longrightarrow N$ continuous.
Then the degree of f is the unique integer deg f st

$$
f_{*}([M])=\operatorname{deg} f \cdot[N] \in H_{M}(N) .
$$

For not necenarily orientable M, N, there is a unique $\operatorname{deg}_{F_{2}} f \in \mathbb{F}_{2}$ ot

$$
f_{*}\left([M]_{\mathbb{F}_{2}}\right)=\operatorname{deg}_{\mathbb{F}_{2}} f \cdot[N]_{\mathbb{F}_{2}} \in H_{m}\left(N ; \mathbb{F}_{2}\right)
$$

This extends our previous def of deg for $f: S^{n} \longrightarrow S^{n}$.
Remark 11 deg $f \circ g=\operatorname{deg} f \cdot \operatorname{deg} g$ easily follows.
Theorem 12 (Hops 1927)
$f, g: M^{n} \rightarrow S^{n}$ for M compact, connected, oriented. Them:

$$
f \simeq g \Leftrightarrow \operatorname{deg} f=\operatorname{deg} g
$$

Conjecture 13 (Hoof 1931)
$f: M^{n} \rightarrow M^{n}$ for M compact, connected, oriented Then

$$
f \simeq i d_{M} \Leftrightarrow \operatorname{deg} f=1
$$

Proposition $14 M^{n}$ mon-compact and connected
$\Rightarrow H_{i}(M ; R)=0$ for all $i \geqslant n$.
Proof Let $[z] \in H_{i}\left(M_{\hat{1}}\right)$. To show: $[z]=0$. Pick $U \subseteq M^{n}$ open st \uparrow Drop the R from notation in this proof. $\operatorname{im}(z) \subseteq U$ and \bar{u} compact. Let $V=M \backslash \bar{u}$.
Consider the LES of $(M, U \cup V, V)$:

$$
\begin{array}{r}
H_{i+1}(M, u \cup V) \xrightarrow{\partial} H_{i}(u \cup V, V) \xrightarrow{\text { incl. }} H_{i}(M, V) \\
\text { excision } \uparrow \cong \\
H_{i}(u) \xrightarrow[\text { ind* }]{\cong} H_{i}(M)
\end{array}
$$

$i \geqslant n+1 \Rightarrow$ top left \& night term zero by Lemma $3 \Rightarrow$ top middle zero \Rightarrow

$$
H_{i}(u)=0 \Rightarrow[z]=0 \in H_{i}(u) \Rightarrow[z]=0 \in H_{i}(M) .
$$

$i=n \quad[z]$ defines a section $M \rightarrow M_{R}$ by
$x \longmapsto\left(x\right.$ image of $[z]$ under $\left.H_{m}(M) \rightarrow H_{m}(M \backslash x)\right)$
Pick $x_{0} \in V$. Then $x_{0} \longmapsto\left(x_{0}, 0\right)$. M connected \Rightarrow \exists unique section $M \rightarrow M_{R}$ with $x_{0} \mapsto\left(x_{0}, 0\right) \Rightarrow$ the section defined by $[z]$ sends $x \mapsto(x, 0)$ for all x.
Lemma $3 \Rightarrow[z]=0 \in H_{i}(M, V)$. Top left term zero \Rightarrow

$$
[z]=0 \in H_{i}(u \cup v, v) \Rightarrow[z]=0 \in H_{i}(u) \Rightarrow[z]=0 \in H_{i}(\pi) \square
$$

(8) Poincare Duality

Sneak preview
Theorem 4 (Poincare duality)
Let M be a closed R-oriented n-dim manifold. Then for all $k \in R$,

$$
H^{k}(M ; R) \cong H_{n-k}(M ; R)
$$

Theorem $7 M^{n}$ compact (potentially with ∂) \Rightarrow $H_{0}(M ; R)$ is a finitely generated R-module.
Proof idea Use that $M \simeq$ some finite Δ - complex (Hatcher A.8, A.9 P.527)

Corollary $8 M^{n}$ closed, \mathbb{K}-orientable for a field \mathbb{k}

$$
H_{k}(M ; \mathbb{K}) \cong H_{u C T}^{k}(M ; \mathbb{K}) \cong H_{n-k}(M ; \mathbb{K})
$$

Corollary $9 M^{n}$ closed, n odd $\Rightarrow x(M)=0$.

