Crollery I (i) Let M be a closed R- oriented n-manifold. Then
Rere exists a unique class
$$\mu \in H_m(M; R)$$
 st for all $x \in M$,
He isom $H_m(M, M \setminus \{x\}; R)$ sends μ to the given
local orientation.
(ii) If M is connected, then μ generates $H_m(M; R) \cong R$.
Proof (i) directly from Lemme 3, (ii) similar to Prop 2. IS
Def The class from Corollary J is called the fundamental class
of M, written $[M]_R \in H_m(M; R)$.
(1) Every simplex of M is a subsimplex of an n-simplex.
(2) Every $(n-1)$ -simplex is of an of precisely two m-simplexes.
(3) H hos only finitely many n-simplexes $T_n, ..., T_R$.
[6 IT is oriented, then $[M] = \left[\sum_{i=n}^R E_i T_i\right]$ writh $E_i = \pm 1$.
such that in $\sum_{i=n}^K E_i dT_i$, each $(n-1)$ -simplex appears once with $+$,
once with -... If M is not orientable, no such choice of
 E_i exists. Over H_Z , $[M]_{H_Z} = \left[\sum_{i=n}^K T_i\right]$.

For example:

65

Conjecture 13 (Hopf 1931)

$$f: M \rightarrow M^{n}$$
 for M compact, connected, onented Then:
 $f \simeq id_{H} \iff deg f = 1$

Proposition 14 Mⁿ mon-compact and connected
⇒ H_i(H : R) = 0 for all i≥n.
Proof Let [2] ∈ H_i(H). To show: [2] = 0. Pick USHⁿ open St
Im (2) ⊆ U and U compact. Let V = M \ U.
Consider the LES of (H, U ∪ V, V):
H_{i+s}(H, U ∪ V) → H_i(U ∪ V, V) → H_i(H, V)
excitate
$$f \cong finds$$

H_i(U) → H_i(U ∪ V, V) → H_i(M, V)
i ≥ n+1 => top left & night term zero by Lemma 3 => top middle zero =>
H_i(U) = 0 => [2] = 0 ∈ H_i(U) => [2] = 0 ∈ H_i(H). 1
i = n [2] defines a section $H \rightarrow M_R$ by
 $g \mapsto (ge, image of [2] mider H_m(H) \rightarrow H_m(M \setminus 2))$
Pick 2e ∈ V. Then 2e → (ge, 0). M connected =>
∃ unique section $H \rightarrow H_R$ with x₀ → (x₀, 0) => the section
defined by [2] soude x → (x₀0) for all x.
Lemma 3 ⇒ [2] = 0 ∈ H_i(H, V). Top left term zero =>
[2] = 0 ∈ H_i(U ∪ V, V) => [2] = 0 ∈ H_i(U) => [2] = 0 ∈ H_i(H) D