Froposition A
(1) dinear extension gives an R-bilindoo map

$$C_m(X;R) \times C^k(X;R) \longrightarrow C_{m-le}(X;R)$$

(2) $\nabla \frown E = \sigma$ for $E \in C^o(X;R)$, $E(\tau) = 1 \forall \tau$.
(3) $(\nabla \frown \Psi) \frown \Psi = \sigma \frown (\Psi \frown \Psi)$.
Pf Exercise
Proposition 2 (-1)^k d $(\sigma \frown \Psi) = (d\sigma) \frown \Psi - \sigma \frown d\Psi$
Pf $d(\sigma \frown \Psi) = \sum_{i=k}^{m} \Psi(\sigma|_{[e_0,\dots,e_k]}) (-1)^{i+k} \sigma|_{[e_{k+k_1}\dots,e_m]}$
 $(d\sigma) \frown \Psi = \sum_{i=k}^{k} (-1)^{i} \Psi(\sigma|_{[e_0,\dots,e_k]}) \sigma|_{[e_{k+k_1}\dots,e_m]}$
 $+ \sum_{l=k+n}^{n} (-1)^{l} \Psi(\sigma|_{[e_0,\dots,e_k]}) \sigma|_{[e_{k+k_1}\dots,e_m]}$
 $\sigma \frown (d\Psi) = \sum_{m=0}^{k+i} (-1)^{m} \Psi(\sigma|_{[e_0,\dots,e_m]\dots,e_{k+i}]} \sigma|_{[e_{k+k_1}\dots,e_m]}$

Proposition 3 (1) cycle
$$\frown$$
 cocycle = cycle
(2) boundary \frown cocycle = boundary.
(3) cycle \frown coboundary = boundary.
(4) For $[c] \in H_m(X;R)$, $[4] \in H^R(X;R)$,
 $[c] \frown [4] := [c \frown 4] \in H_{m-k}(X;R)$,
 $is a well-defined R-bilinear map.$
(5) X peth-connected, $S: H_0(X;R) \longrightarrow R$ the iso $[c] \mapsto 1$,
 $[c] \in H_m(X;R)$, $[4] \in H^m(X;R)$, then
 $S([c] \frown [4]) = 4(c) = ev([4])([c])$
Proof: Exercise.
Theorem 4 (Poincare duality)
Let M be a closed R-oriented n-dim menifold. Then for all $R \in Z$
 $PD: H^K(M;R) \longrightarrow H_{m-k}(M;R)$
 $PD([4]) = [M] \frown [4]$

is an isomorphism.

Before we dive into the coursquences of PD, here are two more properties of the cap product. Prop 5 (Naturality of cap) $f: X \rightarrow Y$ cont., $a \in C_n(X)$, $Q \in C^k(Y)$ $f_c(a - f^c \cdot q) = (f_c \cdot a) - q$ Proof Exercise.

70

Corollary 8
$$M^n$$
 closed, lk -contentable for a field lk
 $H_k(M; lk) \cong H^k(M; lk) \cong H_{n-k}(M; lk) \equiv H^{n-k}(M; lk)$
Proof Since $H_{\bullet}(M)$ f.g. by Thun 7:
dim $H_k(M; lk) \stackrel{\text{uct}}{=} \# \mathbb{Z}$ -summands of $H_k(M) + p = charlk \qquad \# \mathbb{Z}_{p^r}$ -summands of $H_k(M)$ and $H_{k-1}(M)$
 $\stackrel{\text{uct}}{=} dim H^k(M; lk)$

This proves the first iso. The second is PD.

Corollary 9
$$M^n$$
 closed, n odd $\Longrightarrow \mathcal{X}(M) = 0$.
Proof $\mathcal{X}(M) = \sum_{k=0}^{m} (-1)^k \dim H_k(M; IF_2)$ $n = 2m + 1$
 $= \sum_{k=0}^{m} (-1)^k \dim H_k(M; IF_2) + (-1)^{2m+1-k} \dim H_{2m+1-k}(M; IF_2) = 0$ []

Proposition to
$$\mathsf{H}^{\mathsf{M}}$$
 connected, closed, onimbed St $\mathsf{H}_{\bullet}(\mathsf{H})$ is free.
Then $:$ $\mathsf{H}^{\mathsf{R}}(\mathsf{H}) \times \mathsf{H}^{\mathsf{n}-\mathsf{k}}(\mathsf{H}) \longrightarrow \mathsf{H}^{\mathsf{m}}(\mathsf{H}) \cong \mathsf{H}_{\bullet}(\mathsf{H}) \cong \mathbb{Z}$
pD $\mathsf{S}: [e] \mapsto \mathsf{I}$
is non-singular, ie
 $\mathsf{H}^{\mathsf{k}}(\mathsf{H}) \longrightarrow \mathsf{Hom}\left(\mathsf{H}^{\mathsf{n}-\mathsf{k}}(\mathsf{H}), \mathsf{Z}\right)$
 $[\mathsf{C}\mathsf{C}] \longmapsto ([\mathsf{C}\mathsf{C}] \longrightarrow \mathsf{S}(\mathsf{PD}([\mathsf{C}\mathsf{C}] \frown [\mathsf{C}\mathsf{C}])))$
is on iso.
Proof $\mathsf{H}_{\bullet}(\mathsf{H})$ free by assumption \Longrightarrow $\mathsf{Ext}(\mathsf{H}_{\mathsf{K}-\mathsf{s}}(\mathsf{H}), \mathsf{Z})$ is trivial
 $=$) ev is iso. So we have isos
 $\mathsf{H}^{\mathsf{k}}(\mathsf{M}) \xrightarrow{\mathrm{ev}} \mathsf{Hom}(\mathsf{H}_{\mathsf{R}}(\mathsf{H}), \mathsf{Z})$
 $\stackrel{\mathsf{PD}^{\mathsf{T}}}{\longrightarrow} \mathsf{Hom}(\mathsf{H}^{\mathsf{n}-\mathsf{k}}(\mathsf{H}), \mathsf{Z})$
Just need to chech that their composition equal the desired
homomorphism $[\mathsf{C}\mathsf{C}] \longmapsto ([\mathsf{C}\mathsf{C}] \smile [\mathsf{C}\mathsf{C}]))$.

Let
$$[P] \in H^{k}(M)$$
, $[H] \in H^{m-k}(M)$. Then
 $PD^{*}(ev([P]))([H]) = ev([P])(PD([H]))$
 $= ev([P])([M] \frown [Y])$
 $= \delta(([M] \frown [H]) \frown [P])$
 $= \delta(([M] \frown ([H]) \frown [P]))$
 $= \delta(PD([H] \cup [P]))$

Remark 11 (1)
$$M^{n}$$
 closed, orientable, H. (M) free
=) $H^{k}(M) \cong H_{k}(M) \cong H^{n-k}(M) \cong H_{n-k}(M)$.

(2) A bilinear form b:
$$\mathbb{Z}^m \times \mathbb{Z}^m \longrightarrow \mathbb{Z}$$
 is non-singular
 $\iff \mathbb{Z}^m \longrightarrow \text{Hom}(\mathbb{Z}^m, \mathbb{Z})$, $x \mapsto (\mathcal{Z}^m, \mathcal{Z})$
is an iso

$$\iff$$
 \forall primitive $x \in \mathbb{Z}^m$ (i.e. x not divisible by integen 22,
ov equivalently: x can be extended to a basis)
 $\exists y \in \mathbb{Z}^m$ $s \in b(x, y) = 1$.