Def Let X be a top. space, R a commutative unital ring, $\sigma \in C_{n}(x ; R), \quad \varphi \in C^{k}(x ; R)$ with $k \leq n$.
Then the cap product is

$$
\sigma \curvearrowleft \varphi=\left.\varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{k}\right]}\right) \sigma\right|_{\left[e_{k}, \ldots, e_{n}\right]} \in C_{n-k}(x ; R)
$$

Proposition 1
(1) Linear extension gives an R-bilinear map

$$
C_{n}(x ; R) \times C^{k}(x ; R) \longrightarrow C_{m-k}(x ; R)
$$

(2) $\sigma \frown \varepsilon=\sigma$ for $\varepsilon \in C^{\circ}(X ; R), \varepsilon(\tau)=1 \forall \tau$.
(3) $(\sigma \frown \varphi) \frown \psi=\sigma \frown(\varphi \sim \psi)$.

Pf Exercise
Proposition $2(-1)^{k} d(\sigma \frown \varphi)=(d \sigma) \frown \varphi-\sigma \frown d \varphi$
Pf $d(\sigma \cap \varphi)=\left.\sum_{i=k}^{n} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{k}\right]}\right)(-1)^{i+k} \sigma\right|_{\left[e_{k}, \ldots, \widehat{e_{i}}, \ldots e_{m}\right]}$

$$
\begin{aligned}
(d \sigma) \curvearrowright \varphi & =\left.\sum_{j=0}^{n}(-1)^{j} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{j}, \ldots, e_{k+1}\right]}\right) \sigma\right|_{\left[e_{k+1}, \ldots, e_{m}\right]} \\
& \left.+\left.\sum_{l=h+1}^{n}(-1)^{l} \varphi\left(\sigma l_{\left[e_{0}, \ldots, e_{k}\right]}\right) \sigma\right|_{\left[e_{k}, \ldots, e_{l}, \ldots, e_{m}\right]}\right] \\
\sigma \sim(d \varphi)= & \left.\sum_{m=0}^{k+1}(-1)^{m} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, \widehat{e_{m}}, \ldots, e_{k+1}\right]}\right) \sigma\right|_{\left[e_{k+1}, \ldots, e_{n}\right]}
\end{aligned}
$$

Proposition 3 (1) cycle \frown cocycle $=$ cycle
(2) boundary \sim cocycle $=$ boundary
(3) Cycle \frown coboundury $=$ boundary
(4) For $[c] \in H_{n}(x ; R),[\varphi] \in H^{k}(x ; R)$,

$$
[c] \curvearrowleft[\varphi]:=[c \sim \varphi] \in H_{n-k}(x ; R)
$$

is a well-defined R-bilinear map.
(5) X path-connected, $\delta: H_{0}(x ; R) \rightarrow R$ the iso $[\sigma] \longmapsto 1$, $[c] \in H_{n}(X: R),[\varphi] \in H^{n}(X ; R)$, then $\delta([c] \frown[\varphi])=\varphi(c)=\operatorname{ev}([\varphi])([c])$

Proof: Exercise.
Theorem 4 (Poincare duality)
Let M be a closed R-oriented n-dim manifold. Then for all $k \in R$,

$$
\begin{aligned}
& P D: H^{k}(M ; R) \longrightarrow H_{n-k}(M ; R) \\
& P D([\varphi])=[M] \frown[\varphi]
\end{aligned}
$$

is an isomorphism.

Before we dive into the consequences of $P D$, here are two more properties of the cap product.
Prop 5 (Naturality of cap) $f: X \rightarrow Y$ cont., $a \in C_{m}(X), \varphi \in C^{k}(Y)$

$$
f_{c}\left(a \frown f^{c} \varphi\right)=\left(f_{c} a\right) \frown \varphi
$$

Proof Exercise.

Remark 6 Similarly as for the up, one may define a relative cap

$$
\frown H_{n}(X, A \cup B ; R) \times H^{k}(X, A ; R) \rightarrow H_{n-k}(X, B ; R)
$$

using that $C_{0}(A+B) \longrightarrow C_{0}(A \cup B)$ induces isos

$$
H_{0}(x, A+B) \rightarrow H_{0}(x, A \cup B)
$$

We'll prove PD, but first, let us harvest some implications.
Let us take the following for granted.
Theorem $7 M^{n}$ compact (potentially with ∂) \Rightarrow $H_{0}(M ; R)$ is a finitely generated R-module.
Proof idea Use that $M \simeq$ some finite Δ-complex (Hatcher A.8, A. 9 p. 527)

Corollary $8 M^{n}$ closed, \mathbb{K}-orientable for a field \mathbb{K}

$$
H_{k}(M ; \mathbb{K}) \cong H^{k}(M ; \mathbb{K}) \cong H_{n-k}(M ; \mathbb{K}) \cong H^{n-k}(M ; \mathbb{K})
$$

Proof Since $H_{0}(M)$ fog. by $\gamma \operatorname{hm} 7$:

$$
\begin{array}{cc}
\operatorname{dim} H_{k}(M ; \mathbb{K}) \stackrel{\substack{\text { ulT }\\
}}{=} \# \mathbb{R} \text {-summand of } H_{k}(M)+ \\
p=\mathbb{R}_{p^{r}} \text {-summand of } H_{k}(M) \text { and } H_{k-1}(M) \\
\stackrel{\substack{u c T \\
\text { colum }}}{=} \operatorname{dim} H^{k}(M ; \mathbb{K})
\end{array}
$$

This proves the first iso. The second is PD.
Corollary $9 M^{n}$ closed, n odd $\Rightarrow x(M)=0$.
Proof $\chi(M)=\sum_{k=0}^{n}(-1)^{k} \operatorname{dim} H_{k}\left(M ; \mathbb{F}_{2}\right) \quad n=2 m+1$

$$
=\sum_{k=0}^{m}(-1)^{k} \operatorname{dim} H_{k}\left(M ; F_{2}\right)+(-1)^{2 m+1-k} \operatorname{dim} H_{2 m+1-k}\left(M ; F_{2}\right)=0
$$

Proposition 10 M^{μ} connected, closed, oriented st $H_{0}(M)$ is fee. Then $\smile: H^{k}(M) \times H^{n-k}(M) \longrightarrow H^{n}(M) \underset{P D}{\cong} H_{0}(M) \cong \mathbb{\delta : [\sigma] \mapsto 1} \mathbb{Z}$ is mon-singular, ie

$$
\begin{aligned}
& H^{k}(M) \rightarrow \operatorname{Hom}\left(H^{M-k}(M), \pi\right) \\
& {[\varphi] \longmapsto([\psi] \longmapsto \delta(P D([\psi] \smile[\varphi]))) }
\end{aligned}
$$

is an iso.
Proof H. (M) free by assumption $\Rightarrow \operatorname{Ext}\left(H_{K-1}(M), \mathbb{Z}\right)$ is trivial $\Rightarrow e v$ is iso. So we have iso

$$
\begin{aligned}
H^{k}(M) & \xrightarrow{e v} \operatorname{Hom}\left(H_{k}(M), \pi\right) \\
& \xrightarrow{P D^{*}} \operatorname{Hom}\left(H^{n-k}(M), \pi\right)
\end{aligned}
$$

Just need to check that their composition equal the desired homomorphism $[\varphi] \longmapsto([\psi] \longrightarrow \delta(P D([\varphi] \smile[\psi])))$. Let $[\varphi] \in H^{k}(M),[\psi] \in H^{n-k}(M)$. Then

$$
\begin{aligned}
P D D^{*}(\operatorname{ev}([\varphi]))([\psi]) & =\operatorname{ev}([\varphi])(\operatorname{PD}([\psi])) \\
& =\operatorname{ev}([\varphi])([M] \frown[\psi]) \\
& =\delta(([M] \frown[\psi]) \frown[\varphi]) \\
& =\delta([M] \frown([\psi] \smile[\varphi])) \\
& =\delta(P D([\psi] \smile[\varphi]))
\end{aligned}
$$

Remake 11 (1) M^{M} closed, orientable, H. (M) free

$$
\Rightarrow H^{k}(M) \cong H_{k}(M) \cong H^{n-k}(M) \cong H_{n-k}(M)
$$

(2) A bilinear form $b: \mathbb{Z}^{m} \times \mathbb{Z}^{m} \rightarrow \mathbb{Z}$ is nom-singular $\Leftrightarrow \mathbb{R}^{m} \longrightarrow \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}\right), x \mapsto(y \mapsto b(x, y))$ is an iso
$\Leftrightarrow \forall$ primitive $x \in \mathbb{R}^{m}$ (i.e. x not divisible by integers ≥ 2, or equivalently: x can be extended to a basis) $\exists y \in \lambda^{m}$ st $b(x, y)=1$.

