Theorem 12
$$H^{\circ}(\mathbb{CP}^{n}) \cong \mathbb{Z}[x]/(x^{n+n})$$
 will deg $x=2$.
Proof By induction over n . For $n=0$, $\mathbb{CP}^{\circ} \cong \{x\}$, $H^{\circ}(\{x\}) \cong \mathbb{Z}$
For $n=1$, $\mathbb{CP}^{n} \cong S^{2}$ and $H^{\circ}(S^{2}) \cong \mathbb{Z}[x]/(x^{2})$. Assume $n \ge 2$
and $H^{\circ}(\mathbb{CP}^{n-1}) \cong \mathbb{Z}[x]/(x^{n})$. The embedding $\mathbb{CP}^{n-1} \Longrightarrow \mathbb{CP}^{n}$
induces isos on $H^{\mathbb{R}}$ for $\mathbb{R} < 2n$ (evident from \mathbb{CW} -structure).
Let x be a generator of $H^{2}(\mathbb{CP}^{n})$. By naturality of \square and the
induction hypothesis, $x^{\mathbb{K}}$ generates $H^{2\mathbb{K}}(\mathbb{CP}^{n})$ for $\mathbb{K} < 2n$.
H just remains to show that x^{n} generates $H^{2n}(\mathbb{CP}^{n})$.
Since \square is new-singular (Pmp 10) and $x^{\mathbb{K}}$ is primitive (since
it is a generator), by $\mathbb{R}m\mathbb{K}(11(2) \Longrightarrow) \exists y \in H^{2n-2}(\mathbb{CP}^{n})$ st
 $x \supseteq generates H^{2n}(\mathbb{CP}^{n}) \cong \mathbb{Z}$. Since $H^{2n-2}(\mathbb{CP}^{n}) = \mathbb{Z}x^{n-1} \Longrightarrow$
 $\exists m \in \mathbb{Z}$ with $y = mx^{n-4}$. Since $x \supseteq y = mx^{n}$ generates $H^{2n}(\mathbb{CP}^{n})$.

Remark 13 Note that
$$[\Psi] \in TH^{k}(X)$$

 $\Rightarrow \text{ for all } [\Psi] \in H^{k}(X) \text{ we have } [\Psi] - [\Psi] \in TH^{k+k}(X)$.
So \smile induces $TH^{k}(X) \times TH^{k}(X) \longrightarrow TH^{k+k}(X)$.
 $\text{recell}: TA = A/TA \text{ is the "free part" of an ab-group A.$
The first part of an ab-group A.

For M closed, connected, oriented,

$$: FH^{k}(X) \times FH^{n-k}(X) \longrightarrow FH^{n}(X) \cong \mathbb{Z}.$$

is non-singular (similar proof as for Prop 10).

Proposition 14 (EV for other rings)
let C be a clain complex, R a commutative united ring, and
M an R-module.
(1) There is an isomorphism of cochain complexes over R
i: Hom
$$_{\mathbb{Z}}(C_{2}, \mathbb{M}) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(C_{2}\mathbb{R}, \mathbb{H})$$

 $q \mapsto o(c \otimes r \mapsto q(c)r)$
with inverse i²:
 $(C \mapsto q(c \otimes r)) \iff 1$ 4.
(2) $ev_{\mathbb{R}}: \operatorname{H}^{n}(C; \mathbb{H}) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(\operatorname{H}_{n}(C; \mathbb{R}), \mathbb{M})$
 $[q] \mapsto ([\alpha] \mapsto i(q)(\alpha))$
is a well-oblinal R-linear map.
(3) $\operatorname{H}^{m}(C; \mathbb{H}) \stackrel{ev}{\longrightarrow} \operatorname{Hom}_{\mathbb{R}}(\operatorname{H}_{n}(C), \mathbb{H})$
 $ev_{\mathbb{R}} \mapsto \operatorname{Hom}_{\mathbb{R}}(\operatorname{H}_{n}(C; \mathbb{R}), \mathbb{H})$
 $f \mapsto ([\alpha] \mapsto f([\alpha \otimes 1_{\mathbb{R}}]))$
commutes.
(4) If R is a field, then $ev_{\mathbb{R}}$ is an isomorphism.
Proof
(a) To check: * i (q) is an R-bomm. Cm $\otimes \mathbb{R} \longrightarrow \mathbb{H}$
 $\times i_{n}$ is an R-bomm. at each homological degree
 * i is a colain map
 * i_{n}^{-1} is a 2-bomm. $C_{-} \longrightarrow \mathbb{H}$
 * i_{n} is a 2-bomm. $C_{-} \oplus \mathbb{H}$
 * i_{n} *

Proof 15
$$\operatorname{H}^{n}$$
 dosed, connected, $|k|$ - oriented for a field $|k|$
Then $\operatorname{H}^{\circ}(\operatorname{H}_{2}|k)$ is a Poincert algebra of formal dim. n.
Proof (i) $\operatorname{H}^{\circ}(\operatorname{H}_{2}|k) = 0$ for $j > n$
since $\operatorname{H}^{\circ}(\operatorname{H}_{2}|k) \cong \operatorname{H}_{n-i}(\operatorname{H}_{2}|k) \cong 0$ since $n-j < 0$.
(ii) $\operatorname{H}^{n}(\operatorname{H}_{2}|k) \cong \operatorname{H}_{n-i}(\operatorname{H}_{2}|k) \cong 0$ since $n-j < 0$.
(iii) $\operatorname{H}^{n}(\operatorname{H}_{2}|k) \cong \operatorname{H}_{k}$ since $\operatorname{H}^{n}(\operatorname{H}_{2}|k) \xrightarrow{\text{PD}} \operatorname{H}_{0}(\operatorname{H}_{2}|k) \xrightarrow{\text{S}} \operatorname{H}_{n}$.
(iii) The $|k|$ - bilinear pairing
 $-:$ $\operatorname{H}^{\circ}(\operatorname{H}_{2}|k) \cong \operatorname{H}^{n-i}(\operatorname{H}_{2}|k) \longrightarrow \operatorname{H}^{n}(\operatorname{H}_{2}|k) \cong \operatorname{H}_{n}$
is now-singular \Longrightarrow the adjoint homom.
 $\operatorname{H}^{\circ}(\operatorname{H}_{2}|k) \longrightarrow \operatorname{Hom}_{k}(\operatorname{H}^{n-i}(\operatorname{H}_{2}|k), |k|)$
 $[9] \longrightarrow ([9] \longmapsto ([9] \longmapsto S(\operatorname{PD}([9] - [9])))$
is an i.o. Show (similarly as in Prop 10) that the adjoint
equals the composition of
 $\operatorname{H}^{\circ}(\operatorname{H}_{2}|k) \xrightarrow{\text{PD}^{*}} \operatorname{Hom}_{k}(\operatorname{H}^{n-i}(\operatorname{H}_{2}|k), |k|)$
 $\xrightarrow{\text{PD}^{*}} \operatorname{Hom}_{k}(\operatorname{H}^{n-i}(\operatorname{H}_{2}|k), |k|)$
 $\xrightarrow{\text{PD}^{*}} \operatorname{Hom}_{k}(\operatorname{H}^{n-i}(\operatorname{H}_{2}|k), |k|)$
 $\xrightarrow{\text{PD}^{*}} \operatorname{Hom}_{k}(\operatorname{H}^{n-i}(\operatorname{H}_{2}|k), |k|)$
 $\xrightarrow{\text{PD}^{*}} \operatorname{Hom}_{k}(\operatorname{H}^{n-i}(\operatorname{H}_{2}|k), |k|)$
 $\xrightarrow{\text{Porof}}$ forme as Thun 12, using Prop 15. \Box

Long Example 17
$$M^{4}$$
 closed, simply connected.
What do we know about $H_{\bullet}(M), H^{4}(M)$!
Simply connected \Rightarrow connected $\Rightarrow H_{\bullet} \cong H^{\bullet} \cong \mathbb{Z}$
 $- = - \Rightarrow Oriestable $\Rightarrow H_{\bullet} \cong H^{\bullet} \cong \mathbb{Z}$ and PD holds
 $- = - \Rightarrow H_{A} = 0$ by Horearics $Thm \Rightarrow H^{3} = 0$ by PD
UCT $\Rightarrow H^{2} \cong TH_{A} \oplus TH_{\bullet} \cong 0.$ PD $\Rightarrow H_{3} \cong 0.$
UCT $\Rightarrow H^{2} \cong TH_{2} \oplus TH_{4} \cong TH_{2}, so H^{2}$ is foreign free and thus
free (because H. f. g. by Thm 7). PD $\Rightarrow H_{2} \cong H^{2}.$
So $H_{\bullet}(M), H^{\bullet}(M)$ are defermined exactly for aft $H_{2}(M) \in \{0, A, 2, ...\}$
(Unit about the colourlogy mig? $- :H^{2}(H) \times H^{2}(T) \longrightarrow H^{*}(R)$
is non-singular (Prop A0) and symmetric (since
 $[c_{1}] \subseteq c_{1}^{1/2} [c_{2}] \subseteq [c_{1}]$). Pick an orientation of H :
that yields an isomorphism $H^{*}(R) \Rightarrow Z$ (via $H^{4} \xrightarrow{PD} H_{0} \xrightarrow{\delta} Z$)
Pick a basis for $H^{2}(H)$, is an iso $H^{2}(H) \cong Z^{m}$. Then $-becomes$
a mon-singular symmetric biliness form $Z^{m} \times Z^{m} \longrightarrow Z$.
Such a form may be written as a matrix $A \in Z^{m\times m}$ witth
 $v = w = -v^{t}Aw$ for $V, w \in Z^{m}$.
Eg for $M = CP^{2}$, we find $A = (A)$ or $A = (-A)$, depending
on the constration on CP^{2} .
 $- Non-singular \Rightarrow det A = \pm A$.
 $- Signumetric = A^{t} = A$. Picking a different basis for $H^{2}(H)$
transforms A into $T^{t}AT$ for $T \in Z^{m\times m}$ with det $T = \pm A$.
Picking the approximation for M transforms A in the $T = \pm A$.$