Theorem $12 H^{\bullet}\left(\mathbb{C} P^{n}\right) \approx \mathbb{R}[x] /\left(x^{m+1}\right)$ with $\operatorname{deg} x=2$.
Proof By induction over n. For $n=0, \mathbb{C} P^{0} \cong\{*\}, H^{0}(\{*\}) \cong \mathbb{R}$
For $n=1, \mathbb{C} P^{1} \cong S^{2}$ and $H^{*}\left(S^{2}\right) \cong 2[x] /\left(x^{2}\right)$. Assume $n \geqslant 2$ and $H^{*}\left(\mathbb{C} P^{n-1}\right) \cong \mathbb{R}[x] /\left(x^{n}\right)$. The embedding $\mathbb{C} P^{n-1} \hookrightarrow \mathbb{C} P^{n}$ induces isos on H^{k} for $k<2 n$ (evident from $C W$-structure).
Let x be a generator of $H^{2}\left(\mathbb{C} P^{n}\right)$. By naturality of C and the induction hypothesis, x^{k} generates $H^{2 k}\left(\mathbb{C} P^{n}\right)$ for $k<2 n$.
It just remains to show that x^{n} generates $H^{2 n}\left(\mathbb{C} P^{n}\right)$.
Since - is nou-singulor ($P_{r o p} 10$) and x^{k} is primitive (since it is a generator), by $\operatorname{Ramk} 11(2) \Rightarrow \exists y \in H^{2 n-2}\left(\mathbb{C} P^{n}\right)$ st $x-y$ generates $H^{2 n}\left(\mathbb{C} \mathbb{P}^{n}\right) \cong \mathbb{Z}$. Since $H^{2 n-2}\left(\mathbb{C} P^{m}\right)=\mathbb{Z} x^{n-1} \Rightarrow$ $\exists m \in \mathbb{R}$ with $y=m x^{n-1}$. Since $x \smile y=m x^{n}$ generates $H^{2 n}\left(\mathbb{C} P^{n}\right)$ $\Rightarrow m= \pm 1 \Rightarrow y= \pm x^{m-1} \Rightarrow x^{m}$ generates $H^{2 m}\left(\mathbb{C} \mathbb{P}^{m}\right)$.

Remake 13 Note that $[\varphi] \in T H^{k}(x)$
\Rightarrow for all $[\psi] \in H^{l}(x)$ we have $[4]-[\psi] \in T H^{k+l}(x)$. So \smile indues $\underbrace{F H^{k}}(x) \times \mp H^{\ell}(x) \longrightarrow \mp H^{k+\ell}(x)$.

$$
\text { recall: } F A=A / T A \text { is the "free part" of an ab. group } A \text {. }
$$

For M closed, comreated, oriented,

$$
\smile: F H^{k}(x) \times \mp H^{n-k}(x) \longrightarrow \mp H^{n}(x) \cong \mathbb{R} \text {. }
$$

is non-singular (similar proof as for Prop 10).

Proposition 14 (Ev for other rings)
Let C_{0} be a chain complex, R a commutative unital ring, and M an R-module.
(1) There is an isomorphism of cochain complexes over R

$$
i: \operatorname{Hom}_{R}\left(C_{0}, M\right) \longrightarrow \operatorname{Hom}_{R}\left(C_{0} \otimes_{R} R, M\right)
$$

$$
\varphi \longmapsto(c \otimes r \longmapsto \varphi(c) r)
$$

with inverse i^{-1} :

$$
(c \mapsto \psi(c \otimes 1)) \longleftarrow \psi .
$$

(2) $e v_{R}: H^{n}(C ; M) \rightarrow \operatorname{Hom}_{R}\left(H_{m}(C ; R), M\right)$

$$
[\varphi] \longmapsto([\alpha] \longmapsto i(\varphi)(\alpha))
$$

is a well-defined R-linear map.
(3) $\mathrm{H}^{n}(\mathrm{C}, \mathrm{M}) \xrightarrow{\mathrm{er}} \operatorname{Hom}_{\pi}\left(\mathrm{H}_{\mu}(\mathrm{C}), M\right)$

$$
e v_{R} \searrow \operatorname{Hom}_{R}\left(H_{M}(C ; R), M\right)
$$

Commutes.
(4) If R is a field, then $e v_{R}$ is an isomorphism.

Proof (1) To check: $* i_{m}(\varphi)$ is an R-homom. $\quad C_{m} \otimes R \rightarrow M$

* i_{n} is an R-homom. at each homological degree
* i is a cochain map
$* i_{n}^{-1}$ is an R-homom. $C_{\sim} \rightarrow M$
k io $i^{-1}, i^{-1} \circ i$ are identity maps.
(2) To check:

$$
\begin{aligned}
& \text { check: } \\
& i(\varphi)(\alpha)=0 \text { if }\left\{\begin{array}{l}
\alpha \text { boundary, } \varphi \text { is cocycle } \\
\alpha \text { is cycle, } \varphi \text { is coboundary }
\end{array}\right.
\end{aligned}
$$

(3) By def of $e v$ and $e v_{R}$.
(4) Same proof as UCT, using $E x t_{R}^{1}$ is always O since all R-macules are free.

Prop $15 M^{n}$ closed, connected, Ik-oriented for a field Mk
Then $H^{\bullet}(M ; \mathbb{K})$ is a Poincare algebra of formal dim. n.
Proof (i) $H^{j}(M ; \mathbb{K})=0$ for $j>m$
since $H^{j}(M ; \mathbb{k}) \cong H_{n-j}(M, \mathbb{k}) \cong 0$ since $n-j<0$
$(i \operatorname{li}) H^{n}(M ; \mathbb{K}) \cong \mathbb{K}$ since $H^{m}(M ; \mathbb{k}) \xrightarrow[\cong]{ } H_{0}(M ; \mathbb{k}) \xrightarrow[\cong]{\S} \mathbb{K}$.
(iii) The \mathbb{K}-bilinear pairing

$$
\smile: H^{j}(M ; \mathbb{K}) \times H^{n-j}(M, \mathbb{K}) \rightarrow H^{n}(M ; \mathbb{K}) \cong \mathbb{K}
$$

is nom-singular \Leftrightarrow the adjoint homos.

$$
\begin{aligned}
H^{j}(M ; \mathbb{K}) & \longrightarrow \operatorname{Hom}_{\mathbb{k}}\left(H^{n-j}(M ; \mathbb{k}), \mathbb{K}\right) \\
{[\varphi] } & \longmapsto([\psi] \longmapsto \delta(P D([\varphi] \smile[\psi])))
\end{aligned}
$$

is an iso. Show (similarly as in Prop 10) that the adjoint equals the composition of

$$
\begin{aligned}
H^{j}(M ; \mathbb{K}) & \xrightarrow{e v_{K}} \operatorname{Hom}_{\mathbb{K}}\left(H_{j}(M ; \mathbb{K}), \mathbb{K}\right) \\
& \xrightarrow{P D^{*}} \operatorname{Hom}_{\mathbb{K}}\left(H^{n-j}(M ;(K), \mathbb{K})\right.
\end{aligned}
$$

Corollary $16 H^{*}\left(\mathbb{R} P^{n} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[x] /\left(x^{n}\right)$ with deg $x=1$.
Proof Same as The 12, using Prop 15.

Long Example $17 M^{4}$ closed, simply connected.
What do we know about $H_{0}(M), H^{\circ}(M)$?
Simply connected \Rightarrow connected $\Rightarrow H_{0} \cong H^{0} \cong 2$
\Rightarrow orientable $\Rightarrow H_{4} \cong H^{4} \cong \mathbb{R}$ and $P D$ holds
$\Rightarrow H_{1}=0$ by Hurewict Thun $\Rightarrow H^{3}=0$ by $P D$
$U C T \Rightarrow H^{\wedge} \cong F H_{1} \oplus T H_{0} \cong 0 . \quad P D \Rightarrow H_{3} \cong 0$.
$U \subset T \Rightarrow H^{2} \cong \mp H_{2} \oplus T H_{1} \cong F H_{2}$, so H^{2} is torsion free and thus
fee (because H. fig. by $T \ln 7$). $P D \Rightarrow H_{2} \cong H^{2}$.
So $H_{0}(M), H^{*}(M)$ are determined except for ok $H_{2}(M) \in\{0,1,2, \ldots\}$
What about the colomology ming? $: H^{2}(M) \times H^{2}(M) \longrightarrow H^{4}(M)$
is mon-singular (Prop 10) and symmetric (since
$\left.\left[c_{1}\right] \smile\left[c_{2}\right]=(-1)^{2 \cdot 2}\left[c_{2}\right]-\left[c_{1}\right]\right)$. Pick an orientation of M : that yields an isomorphism $H^{4}(M) \rightarrow \mathbb{Z}$ (via $H^{4} \xrightarrow{P D} H_{0} \xrightarrow{\delta} \mathbb{Z}$) Pick a basis for $H^{2}(M)$, ie an iso $H^{2}(M) \cong \mathbb{Z}^{m}$. Then - becomes a non-singular symmetric bilinear form $\mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{Z}$.

Such a form may be written as a matrix $A \in \mathbb{R}^{m \times m}$ with

$$
v \smile w=v^{t} A w \text { for } v, \omega \in \mathbb{R}^{m}
$$

Eg for $M=\mathbb{C} P^{2}$, we find $A=(1)$ or $A=(-1)$. depending on the orientation on $\mathbb{C P}$?

Nou-singular $\Rightarrow \operatorname{det} A= \pm 1$.
Symmetric $\Rightarrow A^{t}=A$. Picking a different basis for $H^{2}(M)$ transforms A into $T^{t} A T$ for $T \in T^{m \times m}$ with $\operatorname{det} T= \pm 1$. Picking the opposite orientation for M transforms A into $-A$.

