Long Example IF (cond 'd)
$$M^{4}$$
 closed, simply connected.
Shown last time: Ho = H_{4} = 2, H_{4} = 4, = 0, H_{2} = 2^m for some mean.
(Uhat about the cohomology ming? $: H^{2}(H) \times H^{2}(H) \longrightarrow H^{*}(H)$
is now singular (trop 10) and symmetric (since
 $[c_{1}] - [c_{1}] = (-1)^{1/2} [c_{2}] - [c_{1}]$. Pick an orientation of M :
Hust yields an isomorphism $H^{*}(H) \longrightarrow 2$ (via $H^{4} \xrightarrow{PD} H_{4} \stackrel{d}{\rightarrow} 2$)
Pick a basis for $H^{2}(H)$, is an iso $H^{2}(H) \cong 2^{m}$. Then \dots becomes
a non-singular symmetric bilinear form $2^{m} \times 2^{m} \longrightarrow 2$.
Such a form may be writen as a matrix $A \subseteq 2^{m\times m}$ with
 $v - w = v^{\pm}A w$ for $V, w \in 2^{m}$.
Eg for $M = CP^{2}$, we find $A = (A)$ or $A = (-A)$, depending
on the orientation on CP^{2} .
 \dots Non-singular \Longrightarrow dat $A = \pm A$.
 \square Symmetric $\longrightarrow A^{\pm} = A$. Picking a different basis for $H^{2}(H)$
transforms A into $T^{\pm}AT$ for $T \in Z^{m\times m}$ with det $T = \pm A$.
If $M \cong N$ via a map $f: M \longrightarrow N$
call $f \begin{cases} entitethermore for M transform A into $-A$.
If $M \cong N$ via a map $f: M \longrightarrow N$
call $f \begin{cases} entitethermore form for M for $T = (\pm A)$.
Since $(A) \neq T^{\pm}(-A) T$ for $T = (\pm A)$.
Thus (which add CP^{2} are met $O.P$, how equiv.
Since $(A) \neq T^{\pm}(-A) T$ for $T = (\pm A)$.
Thus (which add) The converse holds:
 $M \cong_{P} N$ iff $A_{H} = T^{\pm}A_{N}T$.$$

(3) Cohomology with compact support & Proof of PD
Proof idea for PD: induction over number of charts, while theyer-Vietors to
glue charts hypether. Problem: Union of charts, while theyer-Vietors to
glue charts hypether. Problem: Union of charts, while theyer-Vietors to
glue charts hypether. Problem: Union of charts, while theyer-Vietors to
glue charts hypether. Problem: Union of charts, while they are compact.
Solution: Define a new colourslops theory
$$H_c^k$$
 set $H_c^k \cong H^k$ if
It compared, and extend PD:
Theorem 1 (PD without comparisons assumption) R commutative ning with 1,
 M^m be oriented. Then we have an issue (to be defined later)
PD: $H_c^k(\Pi;R) \longrightarrow H_{m-K}(M;R)$.
Metronhom for H_c^k X a leastly finite Δ -complex, is every k-simplex is
face of only finitely many $(k+A)$ -simplexes.
Let the simplicial coolaim complex with compact support be
 $C_{cA}^k(X) := \begin{cases} Q \in C_{\Delta}^k(X) \mid Q(\sigma) = 0 \text{ except for finitely many.}$
Note $C_{c\Delta}^e \subseteq C_{\Delta}^e$ is a subcomplex.
 $F_3 X = \cdots \bigoplus_{V_n = V_n} \frac{e_n}{V_n} \frac{e$

Since $d(V^*)(e_j) = V^*(d_x(e_j)) = V^*(V_{j+1} - V_j) = S_{i,j+1} - S_{i,j}$ So ker $d^* = 0$ and coker $d^* \cong \mathbb{Z}$ generated by $[e^i]$ for any i. =) $H^*_{\Delta}(X) \cong \mathcal{O}$, $H^*_{\Delta}(X) \cong \mathbb{Z}$ and PD holds.

•