Remark $8 \times$ Hausdorff, $U \subset X$ open, $K \subset U$ compact. Excise $x \backslash u \Rightarrow H^{e}(x, x \backslash K ; A) \xrightarrow{\text { incl* }} H^{e}(u, u \backslash k ; A)$ Cusing that x Hausdorff $\Rightarrow K$ is closed $\Rightarrow X \backslash K$ open, So $\left.\quad x \backslash u=\overline{x \backslash u} \leqslant(x \backslash k)^{0}=x \backslash k\right)$
is an iso. Its inverse composed with g_{k} is a map

$$
H^{e}(u, u \backslash k ; A) \rightarrow H_{c}^{l}(X ; A)
$$

By univ, property, these maps induce

$$
H_{c}^{l}(U ; A) \rightarrow H_{c}^{l}(X ; A)
$$

So H_{c}^{l} is Covariantly (!) functorial with respect to inclusions of open subsets of a Hausdorff space.

Lemma $9 M^{n} R$-oriented, $U, V \subseteq M^{n}$ open, $M=U \cup V$.
Then the following diagram has exact rows and commutes up to sign (R coefficients suppressed from notation):

$$
\begin{aligned}
& P D_{u n v} \downarrow
\end{aligned}
$$

Proof Let $K \leq U, L \subseteq V$ be compact. Consider the following diagram.

Top Row: Relative MV exact seq.
Bottom Row: MV exact seq

Middle Row: Maps chosen so that first two rows commute (possible since vertical maps are iss by excision) \Rightarrow is exact.

$$
\begin{align*}
& \cong \text { incl }^{*} \quad \cong \downarrow\left(\begin{array}{cc}
\text { incl }^{*} & 0 \\
0 & \text { incl }
\end{array}\right) \quad \cong \varliminf_{\text {id }} \quad \cong \downarrow \text { incl }^{*} \\
& \cdots \rightarrow H^{l}(U \cap V,(u \cap v) \backslash(k \cap L)) \rightarrow H^{l}(u, u \backslash k) \oplus H^{l}(V, V \backslash L) \longrightarrow H^{l}(M, M \backslash(k \cup L)) \rightarrow H^{l+1}\left(U \cap V,(u \cap V) \backslash\left(k_{\cap} L\right)\right) \rightarrow \\
& \downarrow \mu_{k n L} \frown \text { (A) } \quad \downarrow\left(\begin{array}{ll}
\mu_{k} \frown & 0 \\
0 & \mu_{L} \frown
\end{array}\right) \tag{B}\\
& \downarrow \mu_{k u L} \frown \text { (C) } \\
& \longrightarrow \partial H_{n-l-1}(u \cap v) \rightarrow \ldots \\
& \cdots \rightarrow H_{n-l}(u \cap v) \xrightarrow[\binom{\text { incl }\left.\right|_{*}}{-\left.\dot{\text { ma }}\right|_{*}}]{ } H_{n-l}(u) \oplus H_{n-l}(v) \tag{A}
\end{align*}
$$

Steps (1) Commutativity squares
(2)
(3) Taking direct limit
\qquad
\qquad
(3) Assume (A),(B), (C) commute, $L e t ~ I=\{(K, L) \mid K \subseteq U$ compact, $L \subseteq V$ compact $\}$. Taking $\underset{(K, L) \in I}{\lim _{m}}$ of the middle now gives the top row of the statement of the lemma, using that every compact subset of M can be written as $K \cup L$ for $U \subseteq U, L \subseteq V$ (exercise). Moreover, $\xrightarrow{\lim }$ presences exactness (exercix). And $\xrightarrow{\lim }$ of the lower vertical maps are the PD maps in the lemma. So the limn follow, once commutativity of (A), (B), (C) has been established in Steps (1), (2).
(1) Commutativity of (A), (B) follows from naturality of the relative cap product, and incl ${ }_{*}\left(\mu_{k}\right)=\mu_{k \cap L}$.
(2) To show: Commutativity of

$$
\begin{array}{r}
H^{\ell}(M, M \backslash(K \cup L)) \stackrel{\delta}{\rightarrow} H^{l+1}(M, M \backslash(K \cap L)) \\
\cong \downarrow \text { incl }
\end{array}
$$

$\mu_{k u L} \simeq$ (C) $H^{l+1}\left(u \cap v,(u n V) \backslash\left(k_{n} L\right)\right)$

$$
\downarrow \mu_{k n L} \frown
$$

$$
H_{n-l}(M) \xrightarrow[\partial]{ } H_{n-l-1}(U \cap v)
$$

dropping incl \leftarrow from notation
By barycentric subdivision, $\mu_{K \cup L}=\left[\alpha_{u_{N L}}+\alpha_{u_{n} v}+\alpha_{v k}\right]$

$$
C_{n}(u \backslash L) \quad c_{n}\left(u_{n} v\right) \quad C_{n}(v \backslash k)
$$

$$
\begin{aligned}
\Rightarrow \mu_{k \cap L} & =\operatorname{incl}_{*}\left(\mu_{k U L}\right)=\left[\alpha_{u \backslash L}+\alpha_{u n v}+\alpha_{v \backslash k}\right] \\
& =\left[\alpha_{u_{n v}}\right] \in H_{m}(M, M \backslash(k \cap L))
\end{aligned}
$$

since $\quad u \backslash L \subseteq M \backslash(K \cap L)$, so $\alpha_{u \backslash L}=0 \in C_{n}(M, M \backslash(K \cap L))$, and similarly for $\alpha_{v \backslash k}$

Similarly, $\mu_{k}=\operatorname{incl}_{*}\left(\mu_{K U L}\right)=\left[\alpha_{u L L}+\alpha_{u n v}\right]$.

Let $[\varphi] \in H^{l}(M, M \backslash(K \cup L))$. We need to check that in (C),
$\mu_{k n L} \curvearrowright \operatorname{incl}^{*}(\delta([\varphi]))=\partial\left(\mu_{k u L} \sim[\varphi]\right)$.
Cochurise image of $[4]$
How to calculate $\delta([\varphi])$?
Write $\varphi=\psi_{k}-\psi_{L}$ st $\psi_{k} \in C^{l}(M, M \backslash K), \psi_{L} \in C^{l}(M, M \backslash L)$.
Then $\delta[\varphi]=\left[d^{l} \Psi_{k}\right]=\left[d^{l} \Psi_{L}\right]$ (relative cohom. MV connecting ham.)
So $\mu_{k n L} \frown \operatorname{incl}^{*}(\delta([\varphi]))=\left[\alpha_{u_{n v}} \curvearrowleft d^{d} \psi_{k}\right]$

$$
=\left[d_{n}\left(\alpha_{u_{n v}}\right) \frown \psi_{k}\right]
$$

since $\underbrace{\alpha_{m-l}\left(\alpha_{u n v} \sim \psi_{k}\right)}_{=0 \in H_{m-l-1}(u n v)}=(-1)^{l}\left(d_{m} \alpha_{u n v} \sim \psi_{k}-\alpha_{u n v} \curvearrowright d^{l} \psi_{k}\right)$
Comenterclochurise image of $[\zeta]$

$$
\partial\left(\mu_{k V L} \sim[\varphi]\right)=\partial(\underbrace{\text { unterclochurise image of }[\varphi]}_{\text {chain in }_{\alpha_{u L L}} \sim_{\varphi}}+\overbrace{\left.\alpha_{u_{N V}} \sim \varphi+\alpha_{v \backslash k} \cap \varphi\right]}^{\text {chainiv }})
$$

$$
\begin{aligned}
& =\left[d_{n-l}\left(\alpha_{u \backslash L}-\varphi\right)\right] \\
& =(-1)^{l}\left[d_{n}\left(\alpha_{u \backslash L}\right) \frown \varphi\right] \\
& =(-1)^{l}\left[d_{n}\left(\alpha_{u \backslash L}\right) \frown \psi_{k}\right] \\
& =(-1)^{l+1}\left[d_{n}\left(\alpha_{u n v}\right) \frown \Psi_{k}\right]
\end{aligned}
$$

by def of MV connecting homom. D (cracking the egg)
since: $\left[\alpha_{u I L}+\alpha_{u_{n v}}\right]=\mu_{k} \Rightarrow d_{n}\left(\alpha_{u \backslash L}+\alpha_{u_{n v}}\right) \in C_{n-1}(M \backslash K)$

$$
\Rightarrow d_{n}\left(\alpha_{u ی L}+\alpha_{u_{n v}}\right) \frown \Psi_{k}=0 .
$$

