Previously

Theorem 1 M^m R-oriented
$$\Rightarrow$$
 $H_c^{\ell}(H;R) \xrightarrow{PD_{M}} H_{n-\ell}(M;R)$ is an iso.
Lemma 9 M^m R-oriented, $U, V \subseteq H^{m}$ open, $H = U \cup V$.
 $\Rightarrow H_c^{\ell}(U \cap V) \longrightarrow H_c^{\ell}(U) \bigoplus H_c^{\ell}(V) \longrightarrow H_c^{\ell}(M) \longrightarrow H_c^{\ell+1}(U \cap V) \Rightarrow$
 $PD_{unv} \int \int (PD_u \ o \ PD_v) \int PD_H \int PD_{unv} \int PD_{unv}$
 $\Rightarrow H_{m-\ell}(U \cap V) \rightarrow H_{n-\ell}(U) \bigoplus H_{m-\ell}(V) \longrightarrow H_{m-\ell}(H) \longrightarrow H_{m-\ell-n}(U \cap V) \rightarrow$
 $h_{uv} \in exact rows & commutes up to sign.$
Now Fixing the sign in Lemma 9

he all squares that auticommute (ie i_s = - ~1), simply switch the sign of one of the horizontal maps. This preserves exactness and yields commutativity.

Proof of Theorem 1
(A) If
$$M = U_UV$$
 for U_1V open and PD_{U_1} , PD_{U_1V} are isos,
then so is PD_{M} . Proof: Five-lemma & Lemma 9
(B) If $M = \bigcup_{i=1}^{U} U_i$ with $U_A \subseteq U_2 \subseteq \cdots$ open, and all PD_{U_i} are isos,
then so is PD_{M} . Proof: Rmh 8 yields a commutative diagram
 $\dots \rightarrow H_c^\ell(U_i) \xrightarrow{\text{micle}} H_c^\ell(U_{i+A}) \longrightarrow \dots$
 $H_c^\ell(\Pi_i)$

The induced map
$$\lim_{i \to i} H_c^l(U_i) \longrightarrow H_c^l(M)$$
 is an iso, since
 $K \subseteq M$ compact $\Longrightarrow \exists i: K \subseteq U_i$.
Moreover, $\lim_{i \to i} H_{m-e}(U_i) \cong H_{m-e}(M)$ (Proop 5 / Ex. on Sheet 6).
By assumption, all PD $_{U_i}$: $H_c^l(U_i) \longrightarrow H_{m-e}(U_i)$ are isos.
So the induced map $\lim_{i \to i} H_c^l(U_i) \longrightarrow \lim_{i \to i} H_{m-e}(U_i)$ is also as iso.
If equals PD_M.

24 May 89

(4)
$$\underbrace{H = \mathbb{R}^{m}}_{P_{n}} \quad \text{We cleady knows} \quad H_{c}^{\ell}(\mathbb{R}^{m}) = \mathbb{R}^{\delta_{n}} \cong H_{m-\ell}(\mathbb{R}^{m}) \quad (\mathbb{F}_{X} \neq)^{\frac{1}{2}}$$

but skill need to cleach that \mathbb{PD}_{H} is an iso.
Let $f: (\mathbb{R}^{n}, \mathbb{R}^{n} \setminus \mathbb{B}_{n}(0)) \rightarrow (\Delta^{m}, \partial\Delta^{n})$ be a horn. equive. Then the
fillowing commutes (Left triangle by def of \mathbb{PD}_{H} , right square by
and unality of rel. cy product):
 $H_{c}^{m}(\mathbb{R}^{n}) \xrightarrow{\text{the log } \mathbb{H}^{m}}(\mathbb{R}^{n}, \mathbb{R}^{n} \setminus \mathbb{B}_{n}(0)) \xleftarrow{f^{*}}_{\mathbb{T}} = H^{n}(\Delta^{m}, \partial\Delta^{m})$
 $\begin{array}{c} & & \\ & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ &$

(10) Alexander Duality

Theorem (Alexander Duality) Let $n \ge 0$ and $K \subseteq S^{n}$ be a locally contractible, compact subspace, $K \ne \emptyset$, $K \ne S^{n}$. Then for all i $\widetilde{H}_{i}(S^{n} \setminus K; \mathbb{Z}) \cong \widetilde{H}^{n-i-n}(K : \mathbb{Z})$ Remarke 2 This means: if a compact top. space K is locally "tame" (ie locally contractible, eg a manifold), and you embed K into a sphere S^{n} , then the homology of the complement $S^{n} \setminus K$ does not depend on the choice of embedding.