Previously
Theorem $1 M^{M} R$-oriented $\Rightarrow H_{c}^{l}(M ; R) \xrightarrow{P D_{M}} H_{n-l}(M ; R)$ is an iso. Lemma $9 M^{n} R$-oriented, $U, V \subseteq M^{n}$ open, $M=U \cup V$.

$$
\begin{aligned}
& \rightarrow H_{c}^{l}(u \cap V) \rightarrow H_{c}^{l}(u) \oplus H_{c}^{l}(v) \longrightarrow H_{c}^{l}(M) \longrightarrow H_{c}^{l+1}(u \cap v) \rightarrow \\
& P D_{u n v} \\
& \downarrow\left(\begin{array}{cc}
P D_{u} & 0 \\
0 & P D_{v}
\end{array}\right) \\
& \rightarrow H_{n-\ell}(u \cap v) \rightarrow H_{n-\ell}(u) \oplus H_{n-l}(v) \rightarrow H_{n-l}(M) \longrightarrow H_{n-\ell-1}(u n v) \rightarrow
\end{aligned}
$$

has exact rows \& commutes up to sign.
Now Fixing the sign in Lemma
In all squares that anticommute (ie $\stackrel{\downarrow}{ }=-\vec{l}$ ), simp (y switch the sign of one of the horizontal maps. This preserves exactness and yields commutativity.

Proof of Theorem 1
(A) If $M=U \cup V$ for $U, V$ open and $P D_{u}, P D_{v}, P D u \cap v$ are ios, then so is PDM. Proof: Five-lenna \& Lemma 9
(B) If $M=\bigcup_{i=1}^{\infty} u_{i}$ with $U_{1} \subseteq U_{2} \subseteq \cdots$ open, and all $P D u_{i}$ are ios, then so is $P D_{M}$. Proof: Rok 8 yids a commentative diagram

$$
\ldots \rightarrow H_{c}^{\ell}\left(u_{i}\right) \xrightarrow{\text { incl }} H_{c}^{l}\left(u_{i+1}\right) \rightarrow \ldots
$$

incl* ${\underset{H}{c} \ell_{c}^{\ell}(M)^{e}{ }^{\text {incl }} *}^{\text {. }}$
The induced map $\underset{i}{\lim _{i}} H_{c}^{l}\left(U_{i}\right) \rightarrow H_{c}^{l}(M)$ is an iso, since $K \subseteq M$ compact $\Rightarrow \exists i: K \subseteq U_{i}$.
Moreover, $\underset{i}{\lim _{i m-l}} H_{m}\left(U_{i}\right) \cong H_{m-l}(M)$ (Prop 5 / Ex. on Sheet 6). By assumption, all $P D_{u_{i}}: H_{c}^{l}\left(U_{i}\right) \longrightarrow H_{m-l}\left(U_{i}\right)$ are iss. So the induced map $\underset{i}{\lim _{i}} H_{c}^{l}\left(U_{i}\right) \longrightarrow \xrightarrow[i]{\lim _{n-e}} H_{n}\left(U_{i}\right)$ is also an iso. It equals $P D_{M}$.
(1) $M=\mathbb{R}^{n}$ We already know $H_{c}^{\ell}\left(\mathbb{R}^{n}\right)=\mathbb{R}^{\delta_{\ell, m}} \cong H_{m-l}\left(\mathbb{R}^{n}\right)\left(E_{\times} 7\right)$, but still need to check that $P D_{M}$ is an iso.
Let $f:\left(\mathbb{R}^{m}, \mathbb{R}^{n}\left(B_{1}(0)\right) \rightarrow\left(\Delta^{n}, \partial \Delta^{m}\right)\right.$ be a homs. equiv. Then the following commutes (left triangle by def of $P D_{M}$, right square by Maturality of rel. Cap (roduct):

$$
\begin{aligned}
& H_{c}^{n}\left(\mathbb{R}^{n}\right) \stackrel{\text { iso by } E_{x} 7}{\leftarrow} H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash B_{n}(0)\right) \longleftarrow f^{*} \cong H^{n}\left(\Delta^{n}, \partial \Delta^{n}\right)
\end{aligned}
$$

So it suffices to check that $f_{*}\left(\mu_{B_{1}(0)}\right) \sim$ is an iso, which can be Seen using simpticial (co-) homology.
(2) $M \subseteq \mathbb{R}^{n}, \quad M=V_{1} \cup \ldots \cup V_{k}$ for $V_{i}$ open and convex

By induction over $k$. For $k=1$, follows from (1) since $V_{i} \cong \mathbb{R}^{n}$. If true up to $k$ : $M=U \cup V_{k+1}$ for $U=V_{1} \cup \cdots \cup V_{k}$. $P D_{V_{k+1}}$ iso by $(1), P D_{u}$ iso by induction hypothesis, and $P D u_{n} v_{k+1}$ iso also by induction hypothesis, since

$$
U_{\cap} V_{k+1}=\left(U \cap V_{1}\right) \cup \cdots \cup\left(U \cap V_{k}\right)
$$

with $U_{n} V_{i}$ open and convex. So $P D_{M}$ iso by $(A)$.
(3) $M \subseteq \mathbb{R}^{m}$ open Write $M=\bigcup_{i=1}^{\infty} V_{i}$ with $V_{i}$ open and convex. (eg take as $U_{i}$ all open balls $\subseteq M$ with rational radius and rational coordinates) Let $U_{k}=V_{1} \cup \ldots \cup V_{k}$. Then $P D u_{k}$ iso for all $k$ by (2). Done by (B).
(4) $M$ with finite atlas, ie $M=V_{1} \cup \ldots \cup V_{k}$ with $V_{i}$ open and $\cong \mathbb{R}^{n}$. Proceed as in (2), using (3) on $U_{\cap} V_{k+1}$, which is homes to an open set $\subseteq \mathbb{R}^{M}$
(5) General $M$ has a countable atlas (using 2nd countability), ie $M=\bigcup_{i=1}^{\infty} V_{i}$ with $V_{i}$ open and $\cong \mathbb{R}^{n}$, Proceed as in (4).
$\mathscr{L}_{\text {ogical strecture of } C h .5-9 ~(i e ~ C o h o m o l o g y) ~}^{\text {s }}$

Gluing local orientations (7)
$\mu_{k}, H_{n}\left(M^{n}\right)$ and [M]
Cap product (8)

(10) Alexander Duality

Theorem 1 (Alexander Duality) Let $n \geqslant 0$ and $K \subseteq S^{n}$ be a locally contractible, compact subspace, $k \neq \phi, k \neq S^{n}$.
Then for all $i$

$$
\tilde{H}_{i}\left(S^{n} \backslash k ; \pi\right) \cong \tilde{H}^{n-i-1}(k ; \pi)
$$

Remark 2 This means: if a compact top. Space $K$ is locally "tame" (ie locally contractible, eg a manifold), and you embed $K$ into a sphere $S^{n}$, then the homology of the complement $S^{n} \backslash K$ does not depend on the choice of embedding!

