Example $3 \subseteq \subseteq S^{3}$ with $K \cong S^{1}$ is called a knot. By Alexander Duality, $\tilde{H}_{i}\left(S^{n} \backslash K\right) \cong \tilde{H}^{2-i}\left(S^{1} ; \mathbb{2}\right)$
$H_{0}\left(S^{n} \backslash k\right) \cong H_{1}\left(S^{n} \backslash K\right) \cong \mathbb{Z}$, and all other homology groups are trivial This is easy to see geometrically for an "unknotted" k, since then $S^{3} \backslash K \simeq S^{1}$.

Corollary $4 M^{n-1}$ nom-orientable, compact. Then M does not embed into S^{n}. Proof Assume $M \neq \varnothing, M \subseteq S^{M}$. By Alexander duality:

$$
H^{n-1}(M) \cong \tilde{H}^{n-1}(M) \cong \tilde{H}_{0}\left(S^{n} \backslash M\right)
$$

So $H^{n-1}(M)$ is free. By UCT we also know:

$$
\begin{aligned}
& \begin{aligned}
H^{n-1}(M) & \cong H_{0 m}(\underbrace{H_{n-1}(M)}_{\text {because }}, \mathbb{R}) \oplus \underbrace{E_{x t_{\lambda}^{1}}^{1}\left(H_{n-2}(M), ~ R\right)}_{\cong T\left(H_{m-2}(M)\right)}
\end{aligned} \\
& \text { M mon-arientable } \\
& \text { (Prop } 7.2 \text { (ii)) } \\
& \text { since } H_{\mu-2}(M) f . g \text {. }
\end{aligned}
$$

$H^{m-1}(M)$ free \Rightarrow Ext-term zero $\Rightarrow H_{m-2}(M)$ free and $H^{m-1}(M) \cong 0$.
Again by UCT:

$$
\begin{aligned}
& H^{n-1}\left(M ; \mathbb{F}_{2}\right) \cong \underbrace{\operatorname{Hom}\left(H_{n-1}(M), \mathbb{F}_{2}\right)}_{\cong 0 \text { as above }} \oplus \underbrace{E x x_{\lambda}^{1}\left(H_{n-2}(M), \mathbb{F}_{2}\right)}_{0 \text { because } H_{M-2}(M) \text { free }} \\
\Rightarrow & H^{m-1}\left(M ; \mathbb{F}_{2}\right) \cong 0 \text {. But } P D \Rightarrow H^{n-1}\left(M ; \mathbb{F}_{2}\right) \cong H_{0}\left(M ; \mathbb{F}_{2}\right),
\end{aligned}
$$

which is nontrivial since $M \neq \phi$. Contradiction.

Lemma $4 \quad K \subseteq \mathbb{R}^{m}$ with K compact and locally contractible.
(1) There is $U_{0} \subseteq \mathbb{R}^{n}$ open with $K \subseteq U_{0}$ and a refraction $r: U_{0} \rightarrow K$.
(2) For all open $U \subseteq U_{0}$ with $K \subseteq U$, there exist an open $V \subseteq U$ with $K \subseteq V$ st incl $V \rightarrow u$ is homotopic to incl $K \leftrightarrow u$ $0 r l_{V}$.

Proof (1) Hatcher Thun A.7
(2) Shipped in Lecture

Because we'ri is \mathbb{R}^{μ}, one may simply define a "linear" homotopy
$h: U \times I \rightarrow \mathbb{R}^{\mu}, \quad h(x, t)=(1-t) x+t r(x)$
between ide and r. However, this is a homotopy through maps to \mathbb{R}^{μ}, not maps to U. $h^{-1}(U)$ is open in $U \times I$. By def. of the product topology, for every $t \in I$ there is $V_{t} \leq U$ open, $\varepsilon_{t}>0$ such that

$$
V_{t} \times\left(\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \cap[0,1]\right) \subseteq h^{-1}(u)
$$

We have $[0,1]=\bigcup_{t \in[0,1]}\left(t-\varepsilon_{t,} t+\varepsilon_{t}\right) \cap[0,1]$, and since $[0,1]$
is compact, there is a finite subcovering. The intersection of the corresponding
V_{t} is an open set V such that $V \times I \subseteq h^{-1}(u) \Rightarrow$
In yields a homotopy from $V \hookrightarrow u$ to $r I_{V}$ through map, to U.IJ

Proof of Theorem 1 Treat the case $i \neq 0$ first. Then

$$
\begin{align*}
\tilde{H}_{i}\left(S^{n} \mid k\right) & \cong H_{i}\left(S^{n} \backslash k\right) \\
& \cong H_{c}^{n-i}\left(S^{n} \backslash k\right) \tag{-1}\\
& \cong \lim _{\substack{l \leq S_{k}, k \\
\text { kompalt }}} H^{n-i}\left(S^{n} \backslash k, S^{n} \backslash(k \cup L)\right) \\
& \cong{\underset{L}{L}}_{\lim _{L}} H^{n-i}\left(S^{n}, S^{n} \backslash L\right) \\
& \cong{\underset{L i m}{L}}^{\lim ^{n-i-1}\left(S^{n} \backslash L\right)} \\
& \cong \widetilde{H}^{n-i-1}(K)
\end{align*}
$$

by Prop 9.4
incl* is iso by excision

LES of pair

Proof of the last iso: Let us prove iso for unreduced cohomologey. This implies iso for reduced. Pick $p \in S^{n} \backslash K$. Then $K \subseteq S^{n} \backslash p \cong \mathbb{R}^{n}$. So one may pick U_{0} as in Lemma $4(1)$ and retraction $r: U_{0} \rightarrow K$.
By Prop $9.6, \underset{L}{\lim } \cong \underset{S^{m} \backslash u_{0} \leq L}{ } \underset{\lim _{2}}{ }$. Then, the universal property yields a map s :

Let us show that s is an iso.
Surjectivity of s: $\left.\quad \pi\right|_{S^{m} \backslash L} \circ$ incl $=i d_{k} \Rightarrow$
incl* $\circ\left(\left.r\right|_{S^{\mu}, L}\right)^{*}=\left.i d_{H^{m-i-n}(k)} \Rightarrow i n c\right|^{*}$ surgective.
Injechivity of s :
Let $x \in \lim _{\rightarrow}$ with $s(x)=0$ be given. Pick L such that $x=g_{L}(y)$ $\Rightarrow S(x)=\operatorname{incl}^{*}(y)=0$. By Lamia $4(2)$, pick L^{\prime} with $L \subseteq L^{\prime} \subseteq K$ st $S^{n} \backslash L^{\prime} \hookrightarrow S^{\mu} \backslash L$ is homotapic to $r l_{S^{\mu} \backslash L^{\prime}}$.

$$
\begin{aligned}
& \Rightarrow f_{L, L^{\prime}}=\left(\left.r\right|_{\left.S^{u} \backslash L^{\prime}\right)^{*}} \circ \text { incl } 1^{*} \Rightarrow f_{L, L^{\prime}}(y)=\left(\left.r\right|_{S^{n} \mid L^{\prime}}\right)^{*}\left(\left.\mathrm{mic}\right|^{*}(y)\right)=0\right. \\
& \Rightarrow x=g_{L}(y)=g_{L^{\prime}}\left(f_{L, L^{\prime}}(y)\right)=0 .
\end{aligned}
$$

Case $i=0$: As before, we have $H_{0}\left(S^{n} \backslash K\right) \cong \underset{L}{\lim } H^{n}\left(S^{n}, S^{n} \backslash L\right)$. LES of pair:

$$
\begin{aligned}
& \widetilde{H}^{n-1}\left(S^{n}\right) \rightarrow H^{n-1}\left(S^{n} \backslash L\right) \rightarrow H^{n}\left(S^{n}, S^{n} \backslash L\right) \rightarrow \underbrace{H^{n}\left(S^{n}\right)}_{=\frac{1}{2}} \rightarrow \overbrace{H^{n}\left(S^{n} \backslash L\right)}^{\left.\Rightarrow S^{n}\right)} \\
& \Rightarrow H^{n}\left(S^{n}, S^{n} \backslash L\right) \cong H^{n-1}\left(S^{n} \backslash L\right) \oplus \mathbb{R} . \\
& \Rightarrow H_{0}\left(S^{n} \backslash K\right) \cong H^{n-1}(K) \oplus \mathbb{R} \\
& \Rightarrow \tilde{H}_{0}\left(S^{n} \backslash K\right) \cong H^{n-1}(K) .
\end{aligned}
$$

