29 May /93

Example 3
$$K \subseteq S^3$$
 with $K \cong S^4$ is called a kinit. By Alexander
Duality, $\widetilde{H}_1(S^n \setminus K) \cong \widetilde{H}^{2-i}(S^4; \mathbb{Z})$
 $H_0(S^n \setminus K) \cong H_n(S^n \setminus K) \cong \mathbb{Z}$, and all ollar hamily groups are trivial
This is easy to are geometrically for an "unknotted" K , since then
 $S^3 \setminus K \cong S^4$.
Goodlang 4 M^{n-4} non-orientable, compost. Then H does not embed into S^n .
Proof Assume $H \neq \phi$, $M \subseteq S^n$. By Alexander duality:
 $H^{n-4}(H) \cong \widetilde{H}^{n-4}(H) \cong \widetilde{H}_0(S^n \setminus M)$
So $H^{n-4}(H)$ is free. By UCT we also know:
 $H^{n-4}(H) \cong Hom(H_{n-4}(H), \mathbb{Z}) \bigoplus \operatorname{Ext}_{\mathbb{Z}}^{n}(H_{n-2}(H), \mathbb{Z})$
 $\cong O$ because $\cong T(H_{n-2}(H))$
 $H^{n-4}(H)$ free \Longrightarrow Ext-term deror \Longrightarrow $H_{n-2}(H)$ free and $H^{n-4}(H) \cong 0$.
Again by UCT:
 $H^{n-4}(H_1, F_2) \cong$ Hom $(H_{n-4}(H), F_2) \bigoplus \operatorname{Ext}_{\mathbb{Z}}^{n}(H_{n-2}(H), F_2)$
 $= 0$ because $H_{n-2}(H)$ free $H_{n-2}(H)$ free
 $H^{n-4}(H_1, F_2) \cong 0$. But $PD \Longrightarrow H^{n-4}(H_1, F_2) \cong H_0(H_2, F_2)$,
 $Which is mon-trivial since $H \neq \phi$. Confrontion.$

Lamma 4
$$K \subseteq \mathbb{R}^n$$
 with K compact and locally contractible.
(1) There is Uo SRⁿ open with $K \subseteq U_0$ and a refraction $\tau: U_0 \longrightarrow K$.
(2) For all open U $\subseteq U_0$ with $K \subseteq U$, there exists an open $V \subseteq U$
with $K \subseteq V$ st incluse is homotopic to incluse τT_V .

Proof (1) Hatcher Thun A.7

(2) Shipped in Lecture

Because we're in \mathbb{R}^{n} , one may simply define a "linear" homotopy $h: U \times I \longrightarrow \mathbb{R}^{n}$, $h(x, t) = (1-t) \times + t + (x)$

between idu and π . However, this is a homotopy through maps to \mathbb{R}^{4} , not maps to \mathcal{U} . $\mathbb{R}^{-4}(\mathcal{U})$ is open in $\mathcal{U} \times \mathbb{T}$. By def. of the product to pology, for every $t \in \mathbb{I}$ there is $V_t \in \mathcal{U}$ open, $\mathcal{E}_t > 0$ such that $V_t \times ((t - \mathcal{E}_t, t + \mathcal{E}_t) \cap [0, 1]) \subseteq \mathbb{L}^{-4}(\mathcal{U})$.

We have $[0, 1] = \bigcup_{t \in [0, 1]} (t - \varepsilon_t, t + \varepsilon_t) \cap [0, 1]$, and since [0, 1]is compact, there is a finite subcovering. The interaction of the corresponding V_t is an open set Y such that $V \times T \subseteq h^{-1}(U) =)$ he yields a homotopy from $V \longrightarrow U$ to $\tau \mid_V$ through maps to $U \cdot T$ Proof of Theorem 1 Treat the case $i \neq 0$ first. Then $\widetilde{H}_{i}(S^{n}(K) \cong H_{i}(S^{n}(K))$ $\cong H_{c}^{n-i}(S^{n}(K))$ PD^{-1} $\cong \lim_{\substack{k \in S^{n}(K) \\ k \neq k \neq k}} H^{n-i}(S^{n}(K, S^{n}(K \cup L)))$ by Prop 3.4

$$\stackrel{\sim}{=} \lim_{L} H^{n-1}(S^n, S^n \setminus L)$$
 incl^{*} is iso
by excision

$$\stackrel{\sim}{=} \lim_{L} \widetilde{H}^{n-\lambda-1}(S^n \setminus L) \qquad LES of pair \\ \stackrel{\sim}{=} \widetilde{H}^{n-\lambda-1}(K)$$

Proof of the last iso: Let us prove iso for unreduced cohomology. This implies iso for reduced. Pick $p \in S^n \setminus K$. Then $K \subseteq S^n \setminus p \cong \mathbb{R}^n$. So one may pick Uo as in Lemma 4(1) and retraction $\tau: U_0 \longrightarrow K$. By Prop 9.6, $\lim_{L \to \infty} \cong \lim_{S^n \setminus U_v \subseteq L}$. Then, the universal property yields a map s:

95

Let us show that s is an iso.
Surjectivity of s:
$$\tau |_{S^{n}\setminus L}$$
 o incl = id_k =>
incl* o $(\tau |_{S^{n}\setminus L})^{*} = id_{H^{n-in}(k)} \Rightarrow$ incl* surjective.
Injectivity of s:
Let xe lim with $s(x) = 0$ be given. Pick L such that $x = g_{L}(y)$
 $\Rightarrow s(x) = incl*(y) = 0$. By Lemma 4(2), pick L' with $L \subseteq L' \subseteq K$
st $S^{n}\setminus L' \hookrightarrow S^{n}\setminus L$ is homotopic to $\tau |_{S^{n}\setminus L'}$.
 $\Rightarrow f_{L,L'} = (\tau |_{S^{n}\setminus L'})^{*} \circ incl^{*} \Rightarrow f_{L,L'}(y) = (\tau |_{S^{n}\setminus L'})^{*} (incl^{*}(y)) = 0$
 $\Rightarrow x = g_{L}(y) = g_{L'}(f_{L,L'}(y)) = 0.$

Case i=0: As before, we have
$$H_0(S^n \setminus k) \cong \lim_{L} H^n(S^n, S^n \setminus L)$$
.
LES of pair:

$$\stackrel{\cong O}{\longrightarrow} S^{m-1}(S^{m} \setminus L) \longrightarrow H^{m}(S^{m}, S^{m} \setminus L) \longrightarrow H^{m}(S^{m}) \longrightarrow H^{m}(S^{m} \setminus L)$$

$$= H^{m}(S^{m}, S^{m} \setminus L) \cong H^{m-1}(S^{m} \setminus L) \oplus \mathbb{Z}.$$

$$= H^{n}(S^{m} \setminus K) \cong H^{m-1}(K) \oplus \mathbb{Z}.$$

$$= H^{n}(S^{m} \setminus K) \cong H^{m-1}(K).$$

 \Box