12) Twisted Homology (not in exam)

Motivation K ⊆ S3 a knot, ie K ≅ S1. Consider the composition

By the classification of coverings, ther $p \subseteq \pi_A(S^3 \setminus K)$ corresponds to a two-sheeted connected covering $M_K \longrightarrow S^3 \setminus K$. What is $H_A(M_K)$? It depends on K!

$$Y \xrightarrow{P} X$$
 a regular covering with deck transformation group G
(group of homeos $g: Y \longrightarrow Y$ with $p = p \circ g$)
G acts from the left on Y.
G also acts from the left on $C_i(Y)$ by $g \cdot \sigma := g \circ \sigma$.
That makes $C_i(T)$ into a left $\mathbb{Z}[G]$ -module.
The differentials of $C_i(Y)$ are $\mathbb{Z}[G]$ -lineas!

In particular, if X admits a universal covering
$$\tilde{X}$$
, we may consider
 $C^{+\omega}(X; \mathbb{Z}[\pi_{\lambda}X]).$

$$\underbrace{\mathcal{E}_{\mathbf{x}}}_{\bullet} \left(\begin{array}{c} S^{1} \\ \end{array}\right) \underbrace{\mathcal{E}_{\mathbf{x}}}_{\bullet} \left(\begin{array}{c} S^{1} \\ \end{array}\right) \underbrace{\mathcal{E}_{\mathbf{x}}}_{$$

 $H_{o}^{t\omega}\left(S^{1}; \mathbb{Z}\left[t^{t}\right]\right) \cong \operatorname{color} d_{A} \cong \mathbb{Z}\left[t^{t}\right]/(t-1)$

ງງ

