(12) Künneth Theorem (not in exam)

If A and B are R-algebras, then $A \otimes B$ is too, via

$$
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime} .
$$

If A and B are graded, then $A_{R} B$ is too, via

$$
\operatorname{deg}(a \otimes b)=\operatorname{deg} a+\operatorname{deg} b .
$$

Theorem $1 \quad X, Y$ spaces, $H^{i}(X ; R)$ free of finite rank for all i.
Then there is an isomorphism of graded R-modules

$$
H^{\bullet}(X \times Y ; R) \cong H^{\bullet}(X ; R) \otimes_{R} H^{\bullet}(Y ; R)
$$

The ring structure is respected up to sign.
Example $2 H^{\bullet}\left(S^{1} \times S^{1}\right) \cong H^{\bullet}\left(S^{1}\right) \otimes_{\pi}^{\otimes} H^{\bullet}\left(S^{1}\right)$
as graded rings, with multiplication only respected up to sign,

$$
\begin{aligned}
& \cong \mathbb{R}[x] /\left(x^{2}\right) \otimes \mathbb{Q}[y] /\left(y^{2}\right) \\
& \cong \mathbb{R}[x, y] /\left(x^{2}, y^{2}\right)
\end{aligned}
$$

This is the result we obtained in Example 6.8, up to sign
Example $3 H^{\bullet}\left(S^{2} \times S^{4}\right) \cong \mathbb{Z}[x, y] /\left(x^{2}, y^{2}\right)$
with deg $x=2$, deg $y=4$. This iso respects multiplication including the sign, since all degrees are even. More explicitly:

$$
\begin{aligned}
& H^{2}\left(S^{2} \times S^{4}\right) \cong \lambda \text { gen. by } x \\
& H^{4}\left(S^{5} \times S^{4}\right) \cong \mathbb{Z} \text { gen. by } y \\
& H^{6}\left(S^{2} \times S^{4}\right) \cong \mathbb{Z} \text { gen. by } x y
\end{aligned}
$$

Proof ide a for Theorem 1

$$
\begin{aligned}
& x^{2}=0 \\
& y^{2}=0
\end{aligned}
$$

tensor product of chain complexes,
(1) Eilenberg-Zilber Thu: $C_{0}(X x Y) \simeq C_{0}(X) \otimes C_{0}(Y)$
(2) Compute $H_{i}\left(C_{0}(X) \otimes C_{0}(Y)\right)$ - similar to $H_{i}\left(C_{0}(X) \otimes A\right)$ for a B-module A
(12) Twisted Homology (not in exam)

Motivation $K \subseteq S^{3}$ a knot, ie $K \cong S^{1}$. Consider the composition

By the classification of coverings, her $\rho \subseteq \pi_{1}\left(S^{3} \backslash K\right)$ corresponds to a two-sheeted connected covering $M_{k} \longrightarrow S^{3} \backslash k$. What is $H_{1}\left(M_{k}\right)$? It depends on K !

$H_{1}\left(M_{k}\right) \cong \mathbb{Z}$

$$
H_{1}\left(M_{k}\right) \cong \mathbb{R} \oplus \mathbb{R} 13
$$

$H_{1}\left(M_{k}\right) \cong \mathbb{R} \oplus \mathbb{R} / 5$

So these are three distinct knots!
Moreover, it illustrates that homology of coverings of X cam be a rich invariant.

Def For a (non-abelian) group G, let the group ring $\mathbb{Z}[G]$ be the free \mathbb{Z}-module with basis G, and multiplication

$$
(\underbrace{\left(\sum_{g \in G} a_{g} g\right)}_{\text {I }} \cdot \underbrace{\left(\sum_{g \in G} b_{g} g\right)}_{\text {finite } \mathbb{R} \text {-linear combinations }}:=\underbrace{\sum_{\text {-lin }} a_{g} b_{h}(g h)}_{g, i \in G}
$$ of elements of G

$\lambda[G]$ is a unital ring, and commutative if and only if G is abelian.

$$
\begin{aligned}
\text { Ex } & \mathbb{R}[\mathbb{R} \ln] \cong \mathbb{R}[t] /\left(t^{n}-1\right), \quad \mathbb{R}[\mathbb{R}] \cong \mathbb{R}\left[t, t^{-1}\right] \\
& \mathbb{Z}\left[S_{3}\right] \cong \mathbb{Z}\langle x, y\rangle /\left(x^{2}-1, y^{3}-1, \quad x y x y-1\right)
\end{aligned}
$$

$Y \xrightarrow{p} X$ a regular covering with deck transformation group G (group of homos $g: Y \rightarrow Y$ with $p=p \circ g$)
G act from the left on Y.
C_{5} also acts from the left on $C_{i}(Y)$ by $g \cdot \sigma:=g \circ \sigma$. That makes $C_{i}(T)$ into a left $\pi[G]$-module.
The differentials of $C .(Y)$ are $\mathbb{R}[G]$-linear!
Def We write $C_{0}^{+\omega}(X ; \mathbb{R}[G])$ for $C .(Y ; \mathbb{R})$ with the above left $\mathbb{Z}[G]$-module structure and $c_{n} l l$ this a twisted chain complex. Its neth homology $H_{n}^{+\omega}(x ; R[G])$ inherits the left $\mathbb{Z}[G]$-module structure!
In particular, if X admits a universal covering \tilde{X}, we may consider

$$
C_{0}^{+\infty}(x ; \mathbb{Z}[\pi, x])
$$

Remake $C_{i}^{+\omega}(x, \pi[G])$ is a free $\mathbb{Z}[G]$-module! But $H_{i}^{+\omega}(X ; \lambda[G])$ need not be free.

Ex $C^{+\infty}(S^{1} ; \underbrace{\mathbb{R}\left[\pi_{1} S^{1}\right]}_{\cong \mathbb{R}\left[t, t^{1}\right]})$ using cellular homology:

$C_{0}^{C W}\left(S^{1}\right): \underset{\substack{\left.X t^{*}\right]}}{\infty\left[t^{*}\right] /(t-1)}$
$\pi \stackrel{\circ}{\rightarrow} \pi$

$$
C^{t w, c w}\left(s^{1} ; \pi\left[t^{t_{1}}\right]\right)
$$

$$
\mathbb{Z}\left[t^{ \pm 1}\right] \xrightarrow[d_{1}]{t-1} \mathbb{Z}\left[t^{ \pm 1}\right]
$$

$$
\begin{aligned}
\Rightarrow & H_{1}^{t \omega}\left(S^{1} ; \lambda\left[t^{ \pm 1}\right]\right) \cong \operatorname{ker} d_{1}=0 \\
& H_{0}^{t_{\omega}}\left(S^{1} ; \lambda\left[t^{ \pm 1}\right]\right) \cong \text { cobber } d_{1} \cong \pi\left[t^{ \pm+1}\right] /(t-1)
\end{aligned}
$$

$$
\begin{gathered}
H_{1}\left(S^{3} \backslash k ; 2\left[t^{t+1}\right]\right) \\
\cong 0
\end{gathered}
$$

$H_{1}\left(S^{3} \backslash k ; 2\left[t^{t+1}\right]\right)$

$$
\cong \mathbb{R}\left[t^{t_{1}}\right] /\left(t^{-1}-1+t\right)
$$

$H_{1}\left(S^{3} \times k ; 2\left[t^{t+}\right]\right)$
$\cong \mathbb{2}\left[t^{ \pm 1}\right] /\left(t^{-1}-3+t\right)$

Theorem (Twisted Poincare Duality)
If X is compact and Y orientable, then

$$
H_{t \infty}^{i}(M ; \lambda[G]) \cong H_{i}^{+\infty}(M ; \lambda[G])
$$

Ex $C_{0}^{+\omega}\left(\mathbb{R} P^{2} ; \mathbb{R}[\mathbb{R} / 2]\right)$ again using cellular homology:

and a 2-all f

$$
\begin{aligned}
& C_{0}^{C W}\left(\mathbb{R} p^{2}\right) \quad{ }_{0}^{\frac{Q_{R} R}{} R /(t-1)} C_{0}^{t w, c w}(\mathbb{R} p^{2} ; \overbrace{\mathbb{R}[t] /\left(t^{2}-1\right)}^{R}) \\
& \mathbb{R} \xrightarrow{2} \mathbb{O} \xrightarrow{0} \mathbb{Z} \\
& R \xrightarrow{t+1} R \xrightarrow{t-1} R \\
& H_{0}^{t \omega} \cong R /(t-1) \\
& H_{1}^{+\omega} \cong 0 \\
& H_{2}^{t_{\omega}} \cong(t-1)
\end{aligned}
$$

$C_{t \omega, C \omega}^{\bullet}\left(\mathbb{R} P^{2} ; R\right)$ is the dual of $C_{0}^{t w, C \omega}: R \stackrel{t+1}{\leftarrow} R \leftarrow^{t-1} R$ So $\quad H_{t w}^{0} \cong(t+1), \quad H_{t w}^{1} \cong 0, \quad H_{t w}^{2} \cong R /(t+1)$ Indeed, we find $H_{0}^{t \omega} \cong H_{t w}^{2}, H_{2}^{t \omega} \cong H_{\text {Lw }}^{i}$, using the iso $R \rightarrow R, \quad t \mapsto-t$.

