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Algebraic Topology I (FS'24 , ETHE) 14 Feb

Lecturer : Lukas Lewark Coordinator : Senyon Abramyan

Als Top I Top
.
Space X

Singular Chain Complex C(X) =... ->G(X) * Co(X) -> 0

&

Homology groups Hi (X)

Alg Top # Spice up C(X) before taking homology

to get more sensitive invariants and more goom - applications

Topics : * Homology with Coefficients (for abelian groups M define
chain complex((X) M

with homology groups Hi (X : M))

* Cohomology (cochain complex Hom(C(X) , M) with

cohomology groups H" (X : M)
* Poincare Quality for compact i-dim manifolds X

(Hi(X ; M) = HM-" (X ; M) , leading to

interrection forms Husz(X) x Hmcz(X) -> 1 for

even n)
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Prop8 f : M -> N , f' : M' -> N' R-module homons. 23 Feb &
(1) Jhomo fof' : MQM -> NON With XQXH f(* f'(x) .

(2) (fof')o(gag') = (fog) 0(f'og') .

(3) (f + g)0 f = fof' + gef' and similarly in second factor .

Pf (1) Induced by the bilinear map MxM' -> NON'
,

(x
, y) + f(x f(x) .

(2) , (3) Check that xQx' has the same image under both maps. . B

Prop 9 Man abelian group ,
S a commutative ring. Then MOS

carries an S-module structure given by s . (x) = X st.

For homom f : M-> N and Schomom
g

: S -> S,

fg : MQS -> NOS is an S-homon.

Proof : Exercise (careful : why is the function xth XESt well-def ?)

Category theory intermezzo Weibel Sec 1
.
1
,
1

.

2

Reminder A Category E consists of a clare (2) of objects , for

all X
.
Ye (3) a set E(X , 5) of morphisms with a

distinguished identity momplism 1x EE(X , X) ,

and

composition functions o : E(X
,
Y) x &(T

, 2) -> E(X , E)

such that (foglob = folgok) and fo 1x = 1x of =f -

A (covariant) fuctor F : E-D consists of functions
141 -> 181 and E(X , Y) -> D/FX , FY) with

F (fog) = FfoFg and F1x = 1x .

For a contravariant

gunator , one has instead E(X ,Y) -> D (FY ,FX) and

F (fog) = Ego Ff .

1. Tensor products of modules Lecture 2 on 23 February
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Goal Chain complexes & homology groups with any cofficients ML
have all the good properties proven for T coefficients in AlgTopI.

Ruck 4 Recall Ci(X) is a free -module with basis the singular

simplexes - : A-> X => Ci(X) M E & M
.

So one may
T :-SX

think of a chain in Ci(XIOM as a finite linear combination

with coefficients mjEM of singular simplexes Ti :

5. j

28 Feb

Def (Eitenberg-Steenrod Axions from Alg Top I)

A homology theory is the following .

Data : For all n = R :

-

* Functors hm from Cat of pairs of spaces -> D-Mod
.

* Natural Homomorphisms & : hm(X ,
A) -> hm(A) : = hm(A,)

--

↳ Antr (X,
A) hn(t) commutes for all

fxh ↓fx
Cont

. f : (X , A) -> (T , B)
kn +r(Y , B)- hm(B)

Axioms : (1) fEg -> fx = 9 * (Homotopy)

(2) ECAO
,

inclusion i : (XLU , ALU) -> (X
,
A) = if iso

(Excision)

(3) In (one point space) = 0 for +0 (Dimension)

(4) For inclusions is : Xx -> AXc,

④kn(Xx) Exidtche (1Xal is an iso. (Additivity)

(5) There are long exact sequence (Exactness)

incx incx G

...

- br(t) - kn(X) -> kn(X , A) -> km-1 (A) ->
...

2. Homology with coefficients Lecture 3 on 28 February



A more precise Goal Them 5 Hu)- ; MS is a homology theory. L
Prop 6 F : -Mod -> E an additive functor .

(1) An additive funchor Ch(1-Mod) -> Ch(2)
,
which we

also denote by F
,

is given by sending a chain complex C
.

T-de
F(C) =

...

- FCEFC -> FCo -> G

and a chain map f : C -> C' to F(f) with

F(f)i = F(fi) .

(2) If f , g
: C-> C'are homotopic ,

them so are

F(f) and F(g) .

(3) f : C -> C'a homolopy equivalence = so is #f
.

Proof (1) Fdeo Fdz = F(dode) = FO =0

di Fdi

Ei -> Ci
-1 FCi -> FCi-1

F

fil
I

E ↓ fü-m - Ffi ↓ E ↓Ffür
ci - Si-1

di FC Fa #Cre

Check that I is an additive fuctor .

(2) f =

g = I homotopy 4 : C-C'
,

is hi : Ei-Cites

dCi
+ t
-> Ci Ci with

h

fle,/ flis, the hd + d = f-g
Ci

+

-> CiCind'

=> Fh : FC- FC homotopy and ThFd + Fd'Th =Ff - Fg .

(3) g
: C'-> C and fogfide , gof = ide =>

F(f) . F(g) = idF(c' I
F(g) . F(f) = idF(c)

↳

2. Homology with coefficients Lecture 3 on 28 February
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Corollary 7 (apply Prop 6 to F= -* M)

(1) ( (X ,
A) M is a chain complex (that was Prope)

(2) Cont
. f : (X

,
A) -> (T

, B) induce chain maps

foid : C(X
,A)QM - ((Y ,B)M .

(3) fEg = faQM = 9 ,
M

.

(4) fcQM induces fx : Hu(X
,
A ; M) -Hu(Y , Bi M)

Notation We'll write fo for fo id..

Overview of function

(X
,
A) Cont f

ConstructionI Iin AlgTop I -QM

C(X , A)- C(X
,
A) M chaimaps fa- fo

homologI Thomolog I E
Hu(X , A) Hm(X , A ; M) homom fx f

Rink 8 For a commutative ringS ,
C(X

,
A)S is a chai complex

over S
,

Hi (X,
A ; S) is an S-module ,

and f, and f

are S-linear. Particularly useful for S a field !

2. Homology with coefficients Lecture 3 on 28 February



11L
We have constructed half of the data to show Hm(- - M)

is a homology theory ,
and we have proved axion (1) (Homotopy)

Proof of Axion (2) (Excision) ic : C(X(U
,
A14) -> C (X , A)

is a homotopy equivalence (Alg Top I).
- M : Ch (R-Mod) -> CLCR-Mod) preserves homestopy equir.

(by Prop 5 (3)
.

=> ic M is a hom
. equiv .

=> ix : Hu(XLU ,
ALU ; M) -> Hu(X

,

A : M) is an iso
.

T

Proof of Axion (3) (Dimension ( For X the one-point space ,

1 G 1 G

c(x) -
--

-> R-> M -> R -> M -> 0

idM idM
=> C(X)Me

...

-> M = M - M- M ->o

M n = 0

=> Ha(X , M) = & O else (J

I(ia)

Proof of Axion (4) (Additivity) & C(Xd) -> C(X) is

X

(Ilial)Gide
a homolopy equir . (AlgTop I) => so is (C(Xd(M-> CINOM,

= (in) ide

which is isomomplic to /C(Xa)EM)-> CIXIQM B

2. Homology with coefficients Lecture 3 on 28 February



1 .März

Construction of connecting maps & and Proof of Axiom (5) (Exactness)
incla incla

0 - C(A) - ((X) -> C(X
, A) -> 0 i a SES of

chain complexes of free abelian groups =
inda

o + ((A) M (M-> ((+ ,A)M - G

is also exact ! (Exercise)

This concludes the proof , using :

Lemma 8 (Als Top I) If 0 -> 2 fo DEE -> 0 is a SES

of chain complexes over a sing ,

then there is a LES in homology :

...

- Hn() Hm(D) Hu(E)- Hm-1))- ...
Moreover

, the O
may

be chosen naturally , which means :

f g
0 -> C -> D -> E -> 0

If < ↓ Bl Wh is commitative with exact rows

o -> C -> D - E -> 0

Hn(e) Hm-1()

ther Wxh ↓ <* commutes
.

Hm(E) Hu
-1(C) I

Useful trosens for homology with D-coefficients may now

be generalized to arbitrary coefficients M in one of the following ways :

* Deduce from Eilenberg - Steenrod axions

* Deduce from the -version

* Prove in the same way as for R

Prop9 Ho(X > M)E [[TzOm3lmeM3
-

where one chooses

zeTo(X)-
T: A

°

-> X
,
u() E E for each path-connected comp. . ZETo(X).=

{"k3

2. Homology with coefficients Lecture 4 on 1 March



↳
Theorem 10 (Mayer-Victoris) If A ,

BEX with A - B = X
,
then Hare

is a LES

(inc (indx - inca)

...

-> Hu(AnB ; M) + Hu(A ;M) Hm(B: M) -> Hn(X, M) -> Hm-1 (AnB;M)-...

Theorem 11 If (X ,
A) is a good pain lie

ACX is closed and a strong deformation

retract of X) , then the projection map p : X -> X/A induces isos

Px : Hm(X
,
A ,M) -> Hu(X/A

,
A/A ; M) E Fm(X/A : M)

Remark 12 Reduced homology groups En (X : M) may be defined

as over I coefficients for X-6 .
One has

Fu(XiM) = Hm(X , Exo3 : M3 igo Hu(X)

and Ho(X ; M) E M * Fo(X ,M).

Def (AlgTopI) X a CW-complex with cells E4. Let

CN(X) = free ablian group with basis 2 and

d : C(x) + C (X) given by dei = E daß Im,e

where daß E * is the degree of
go-e-> Xw/(xm Levj) = grave

attaching M

map of e ↳ -
(n-1)-Skeleton of X = U e

kan

CCW(X) is the cellular clain complex of X and

HQW (X) : = Hm ) C (X)) the cellular homology of X .

Theosem 13 Hu(X ; M) : = Hn(C(X)M) = Hn(X, M)

2. Homology with coefficients Lecture 4 on 1 March
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③ Calculations & the throsem of Borsuk-Mam

Prop 1 For all 620
, FluCS" ; M) =M if m = k

,
trivial otherwise

Three ways
to
prove
it (1) SP has a CW structure with one 0-all , one h-all .

(2) Mayer-Victoris with A = SPLe ,
B = SP2-2

(3) LES of the good pair (D" , 0D") D

Def Real Projective -space IRP" : = 5 "/xerx
K
-Runk 2 * (RP = ((p+1T) /Xnxx for all &EIRLO

* IRP
°

= onepoint space ,
IRPESU

R n = 0

R12 1 EnEK-1
,
Modd

O 1 MK-1
,
n even

* Alg Top I : Hu (RP4 , (2) E R n = K oddE O n = 4 even

O k+ 1 -> n

Prop 3 Hu(RP" ; 212) E /2 if Omek and 0 otherwise.

Prop 4 Let f : Y-> X be a twofold covering. Then there is a LES

fx
---

-> Hm(Xi R12) -> Hm(Y; &(2) -> Hu(X; 212) -> Hu-1(X; (2)- ...

(a special case of the bysin (ES)

Proof Recall that : a cont . map 2
: E -> X on a contractible

space I has exactly two lifh E
,
&2 : E-> Y

.

Here
,
a

lift is a map & : E -> Y so that

-

↑

~ ↓ f commutes.

z- > X
-

·

-

3. Calculations and the theorem of Borsuk-Ulam Lecture 4 on 1 March



Define the so-called transfer homomorphism T : Cn(X) -> Cn(i) (
by T(W :A-> X) = E + F2

.

Check that T is a chain map.

We'll show that the short requence of complexes

T fa
0 -> C(X)GRK -> C(YGRK- C(XGRk-> G

is exact. This induces the desired LES in homology (Lemma 2 .

9)
.

Lifte exist .

m

*samsche e. For a sing simplex 7 , eine

let Pr : C(X)& R12
+ 212 be the projection [WQ- + St .

c= 2 0* 10 #0 - 7 T with &
+
= 1 for some I

T

=> &E(T()) = 1 for a lift of i => T(c) #0. V

* ) = her fo . fck = * war) =0
↑

=> P = (fc(c) =0 T :A-X .

Since P = (fc(c)) = PE(c) + PE2K) , it follows that

f( = 0(c = 2 Xt(E + E2) = T(- &
= 1)

[if"- X

ECEim(T). B
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Last time 6 March 16L
Prop 4 Let f : Y-> X be a twofold covering. Then there is a LES

fx
...

-> Hm(Xi R12) -> Hm(Y, R(2) -> Hm(X; 2(2) -> Hu -1 (X> +(2) -> ...

(a special case of the bysin (ES)

Today For the remainder of : Hn(X
,
A) means Hu(X , A ; &(2)

Prop 3 Hu(RP")E /2 if Omek and O otherwise .

Proof We already know this for n = 0 , 1 .

So anume n > 2.

For the covering f: S"-> RPM
,
the Gysin LES breaks into pieces :

g Ta
· -> th(RPY)-> Ho(RD2) -> Ho (SU) E> Ho(RPY) -> O

All homology groups are R12-vectorspaces (by Ruh 2
. 8)

.

f surjective and Ho (SP) => Ho((RPY) ER12 or 0 .

Exactuen at Ho(SY) => Ho((RPY) ER12 => fx = 1 => TA = 0

=> He (RPM) E R12
.

0 -> Ha(RPY) & Hun (RPY) ->O ifk {0, 1 , min+1)

So
,
Hy(IRPY) E Ha(IRP") => Hu((RPM) ER12 for KEm-1

by induction.

fx
0 - Hu+((p2) & Hu(RP"( = Hu(SY) -> Hm(ROY)

&
-> Ha-n(RPY) - 0

- -

R12 R12

Since IRP" has a
CW-structure without k-celle for K In+1

=> He (IRPM) = 0 for Kim + 1 .

=> Hu(IRP") surject onto 112 , and injects into 1/2

=> Hu((RPM) = R/2
. B

3. Calculations and the theorem of Borsuk-Ulam Lecture 5 on 6 March



Prop 5 The Gin sequence from Prop 4 is natural
,
in if ↳

f
Y -> X

21 ↓B commutes and fif' are two fold coverings , the

Y'-> X

f

... - He(X) Hn(i) Hu(X)GHa-
. (X) - ...

↓Bx ↓A ↓ B* ↓ Bx
... -> Hu(X')-> Hu(Y'l -> Ha(X") -Hm-(X')----T

* f'
commutes

Proof Check that

0 + Cu(X) / Is Ca(Y) Rx = Ca(X) &Rk - 0

Bat sch Bart

· ->Cux 12 - Cali'lak -> (n(x) R- G
T f'

commutes , then use Lemma 2
.

8
.

B

Borsule-Man Theorem f : S"-> H" continuous =>

-x e S" : f(x) = f(- x) .

Proof If no such x exist
,
let g : S"-> S* ,

ga-f, ·

Then g(-x) = - g(x) .

This contradich the following theorem
.

B

Theorem 6 There is a cont - map g : S -> SM with

and g(- x) = - g(x) > ncm
.

Proof (f nam ,
the embedding i : (Xx

..., Xm +e)

#> [Xes-. , Xete , Op -.. 0) Sahifies i(-X) = -i(X) .

For the other direction , ansume n > m ? 1 and

3. Calculations and the theorem of Borsuk-Ulam Lecture 5 on 6 March



↳
let such a

g be given . 18 Pm(x) = pu(y) ,
then Pmog(x) = Pmog(y) .

Because the coveringpu
is a quotient map , there is h : IPP-IRPM s

.

t.

se gen

PmogPo I - LPm
Rpu -> Rpm
h

commutes.

Now
, apply Prop 5 (naturality of the Gysi sequence) to

the pieces of the Gejin LES (see proof of Prop 3) :
156

0 - Hy(IRPM) -> H (IRP "I -> G
k-1

↓
k x

,
4 ↓ lx-1

0 -> Hy((Rpm) -> H(RPun) ->
iso

commutes for 15K <m-1. Also
,
ha

,
o
iso because MP2

,
Ipm

path-connected => ha
,
eiso => &A iso - ... - ham- iso

.

R)2 O
R/2 R2

iso C iso
-> Hm(RPM) -> Hm (SM) Hm (IRPM) -> Hm-n(IRPY) ->O

does not

↓ iso commute ! ↓ Liso Lis.
0 -> He (IRPM) -> Hm (SM) -> Hm (RPM) -> Hm

-1
(RPM) -> G

iso ⑥ iso
2212 R/2 R12 1/2

Contradiction! B

3. Calculations and the theorem of Borsuk-Ulam Lecture 5 on 6 March



19L
The Ham Sandwich Theorem An ... Am CR Lebesgue-measurable & bounded

=> I hyperplane in IR" cutting each Ai in half by volume .

Proof Identify IR" with IR" x [13 CIR
+ 1.

1

hyperplane Hx half-space UxR·
-X Ru

+ 1

O
.

7

For XES"
,
let Hx = RYx{13 [yER"

+Y

/ <X , y) = 03

Ux = (R" x 9 13 9 yE/R2* 1 < x
, y) = 03

Let f : SP-R"
, fi(x) = vol (VXnAi) .

f is continuous since the Ai are bounded .

Borsuk-Mam -> EXES" : f(x) = f(-x)
=> vol (VXnAi) = vol (x1Ai) = Vol (AilWx)

=> Hx cuts all A : in half .
I

3. Calculations and the theorem of Borsuk-Ulam Lecture 5 on 6 March



④ The Universal Coefficient Theorem for Homology 8 March ↳
f q

The splitting Lemma For a SES O - M -> N -> P -> 0 of abelian

groups ,
the following are equivalent :

(2) There is a commutative diagram with exact rows

0 -> M = N- P -> 0

idp ↓ Liso hidp
o -> M -> MOP -> P ->0

incl proj

(2) Fi : P-N with goi = idp.
(3) F w : N -> M with rof = idp

SES satisfying these conditions are called split .

UCT for Homology Let C be a chain complex of free abelian groups.

Let M be an abelian group .

(1) For all n
,
there is a split SES of abelian groups :

[x]0m r[Xqm]

8 -> HulleM -> Hn(d , M) ->Tor (Hm-(C)
,
M)- 0

(2) This SES is natural
,
ic for a chain map 8: (x),

8 -> HulleM -> Hn(d , M) ->Tor (Hm-(C)
,
M)- 0

↓ fx ide ↓ fx ↓ Tor (fx , idn)
8 -> Hu(COM -> Hn(C'iM) ->Tor (Hm-(C)

,
M)- 0

commites.
Correction 12 March
--

(3) There is no natural choice of splitting maps In the lecture it was

-> Exercise 2. 4 erroneously claimed that
"or" suffices

Remark 1 Tow (N ,
M) will be defined for all abelian groups N ,

M
.

We will show that for if M N are finitely generated , then-
Tor (N

,
M) = T(N) T(M)

,
where

TIN) = 4 XEN / 7 x = 11503 : &x = 03 is the tomion subgroup of N .

4. Universal Coefficient Theorem for homology Lecture 6 on 8 March



Remark The UCT implies that homology with any coefficients can E
be read off homology with R coefficients , i . e. I coefficients are

"Universal". However
, for a cont

- map f . fx on H(- > M)
is in general not determined by fx on HC- ; R) .

-> Exercise 2. 4

ExampleL For IRP
,
HoER

,
H
,

E 1/2
,
He EO

, Hy = R

UCT for M = R/2 :

O - HQR12 ->A(128", <(2)
-> 04

,
+(2) -> c

R/2 R/2
①

0 -> H2((RP3) RK -> H2(Ros ; -(2)->3) , 2K) ->- -

C R/2 R/2

Reminder M finitely generated abelian group
->

bp ,w
M = M* * (R/ ( with a

, bp , uniquely determined .

pr
5 > 1

a is called the rank of M ,
Written rkM or rank M

.

Prop] Assuma #Hm(X) is finitely generated . Let I be a field of
characteristiap .

rank Hm(X) if p = 0

dem Ha(X ; (F) = rank Hn(X) elseE+ #P/pr-summands of Hu(X)+ #R/pw-summands of Hm-1(X)

Proof UCT - Hu(X , A) E Hu(X)QI Im(X) , It
Correction 12 March

[The Proposition is true , but the proof doesn't work in ET(Hm-(X) * T(IF)

general since IF need not be finitely generated. by Remark 1

We'll need to understand Tor better first to prove Prop 3

4. Universal Coefficient Theorem for homology Lecture 6 on 8 March



↳
D if p

= 0

Now use T(IF) = E IF else

and R/m IF = (F/m = &
D p(m

(F else T]

Prop 4 Let X be a space s
.

t
. Hu(X)EO for sufficiently largem ,

and Hm(X) finitely generated for all n. . Then

* Fel dem p /Ha(X> (F) E &

n = 0

does not depend on the choice of a field IF
.

This integer is

called the Enter characteristic of X , written X(X).

Proof Note that #R/pr-summands of Hn(X)) appears as

summand in dim Hn(X ; (F) and in din Hute(X ; #F). So
,

this cancels int due to opposite signs. A

To prove
the UCT

, we
need a fundamental tol of homological

algebra .
Let R be a commutative sing .

Def A free resolution of an R-Module M is a LES

... Er F- M - 0

where the Fi are free R-Modules.

4. Universal Coefficient Theorem for homology Lecture 6 on 8 March



Last time ↳
To prove

the UCT
, we need a fundamental tol of homological

algebra .
Let R be a commutative sing .

Def A free resolution F of an R-Module M is a LES

... Er F- M - 0

where the Fi are free R-Modules.

Today 13 March

Note that ...
-> F

>
E To ->0 is a chain complex .

It is called

deleted resolution
, devoted FM,

with Ho (FM) M
,
Hm(FM) ECO

M

für n + 0. Understanden
q
Hn(F ; N) is a

special case of understanding Hm(C ; N) for all complexes !

M
--

Ex For R = R :.. + 0 -> 0 -> 1- 2 - R13 -> 0

... 0 -> R -> n -> 0

... 0 ->REBR -> 02

? -> Q -> 0

Prop 5 Every module has a free resolution.

Lemma 6 For
every

module M there exist a free moduleF with

a surjection p : F-> M
.

Proof
F := Rx with RxER. Fis free (with bas

indexed by M) and p : F-> M
, RyJ1NX is surjective. B

4. Universal Coefficient Theorem for homology Lecture 7 on 13 March
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Proof of Prop 5 Pick do : Fo-> M will do surjective , Fofree .

Pick di : Fr -> Ker do will di surjective ,
Es free and let

de : Fn-Fo
,
de = (Kerdo > Fol o di

Pick de : Fa -> Kerd
,
with da surjective , Fe free ...

etc. Is

The 7 Every subgroup of a free ablian group is free ablian.

Proof using Zorn's Lemma (Ser eg Lang
"

Algebra" Appendix 292)

Prop 8 For R = R : Every abelian group M has a free resolution of
di do

leugter 1 ,
in 0 -> F -> Fo -> M -> 0

Proof Pick do :Fo -M with do surjective , Fo free . By Them
,

Ker do is free .

So let Fr = her do
,
and do the inclusion

. 1

Prop 9 ("Comparison Thm" ,
" Fundamental Them of Homological Algebra")

(2) If f : M-> N is R-linear and F
,
G are free resolutions of M

,
N

,

N

then f may
be extended to a chainmap F :-G

,
in

di do
... F -> Fo -> M -> 0

FF 7 Fo ↓ f
... G -> G - N ->0

es Co

(2) I is unique up to homotopy.

(3) F, G free resolutions of M => The unique chain map
FM-> GM

extending id. is a homotopy equivalence.

4. Universal Coefficient Theorem for homology Lecture 7 on 13 March
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Proof (e)

-

Fo
fodo

Since Co surjective and to free,
7 fo L there is To : To-> Go making the diagram
Go-> N

Co commute (proof : for each basis element

b of Fo , pich folb) such that e. (Fo(b)) = f(d .
(b)

.

Fe f (do(d ,
(x(l) = 0 x => 20(fold , (x))) = 0 x

~ ode

=> im Foode E Ker lo = im 2. .G--> Go
es

=>7 In : IntE making the diagr commute etc.

(2) Let two such chain maps be given ,
and let q be their difference .

Then : da
... Er-> F, To M -> 0

826
,
/ 18r/no 180

↓

o
li

... Ga -> Es -> G
. -

> N -> 0

ez Co

commutes
.

Of Oodo = Logo
Es im

so E Ker eo= im en

=> I ho with eroho = go

e. (ge-hoode) = 20ge-good .

= 0

=> The with 220h = Ge-ho ode etc.

1

(3) F ,
G free res. of M => 7 chain maps f : F

*
-> Gand

M -n M

: G -> F" that extend idp : M -> M => Gof : F -> F

-

M

and fog : G-> G" extend ide ,
but so do id , idet

1

=> By uniqueren , 9 of =id +*, fogeide
.

⑰

4. Universal Coefficient Theorem for homology Lecture 7 on 13 March



26L
Def Let M

,
N be R-Modules

,
andF a free resolution of M ,

then Torn(M , N) : = Hm(FM , N) for 1 = 0
.

Proof that Tor does not depend or choice of F : F
,
G free res . of M

=> FM =GM = FMQN = GMQN (Con &. 7 (3) =

Hm (FM , N) = Hn(GM, N) .
1]

Remark 10 Over R = R
,
Torn (M ,

N) = 0 KM22 since M

has a free res. of length 1 (Prop 8). So we write

Tor (M ,N) : = Tor
,
(M

,N) .

Lemma 11 f : M -> N R-linear
,
PR-module =

(Cokerf)P E Coher(fidp) . Proof Exercise .

Proof of the UCT (1) Constructing the SES

Bu = im dut E Zu = ker du
--

n-boundaries -cycles

Make Bu
.
In into chain complexes , taking O as differential.

There is a SES of chain complexes :

!
incl d

0 -> 7 + c -> B -> 0
n + 1 n+ 1 M

oh de Lo
ind d

0 -> Zu -> Cr -> Bur -> 0

i
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Proof of the UCT (1) Constructing the SES
15 March 27

Bu = indut1 E Zu = ker du
- -

n-boundaries u - cycles

Make Bu
.
En into chain complexes , taking 0 as differential.

There is a SES of claim complexes :

:
inal d

0 -> z + c -> B -> 0
N + 1 M+ 1 M

O ↓ dh ho
inal d

0 - Zu -> Cn -> Burn -> O

:

Bu free by Thm7 => each now spliks => tensoring with M

preserves exactren (Exercise). The SESM inducs a LES :

indidr

... - By0M zu0h- dide-> Bn-1M -> Zn 10M - ...

im duxidM
112

=> SES 0+Hn(C)M -> Hm(CiM) -> few indidn -> 0

-

E coler so by
Lemma 11

There is a SES

0-> Br > Zu
-
-> Hur(C) -> 0

which is a free resolution of Hn-(C) .
So

her indidn Tor (Hm-1(C) , M).
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(1) The SES splits In free => = Pm : C -> En St. Lo
ich 0 pm

= id
zu

Correction 5April p :C-Z is in general not

a chain map ! (Indeed , p
chain

map => differential of C is zero)
.
Proceed instead

as follows :
Let t En -> Hn(C) = Zu/Br be the projection .

Then noPr

is a map (n-Hr(C) ,
and this is a chain

map when one considers

Hu(C) as complex with zero differential (since forxe(m : dm(X) EBm-1EZm-1
,I Iso Pm(dm(x)) = dr(x) and Tm-1(Pm-r(dn(x(l) = [du(x)] = 0)

Thus ( 10idm : COM -> HnCC)QM is also a claim map , inducing a

map Hn(C >M) HnCM on homology .

To see thatq is a splitting map,

check that q([XQm]) = [x]0m for all XEZn and m EM.

(2) Naturality (Sketch)
f : C -> C'chainmap => f(z) = !

, f(B) B !.

So f induces a map between the SES of chain complexes

0 + z -> C -> B -> 0 and 0 - z -> c+ B 0
n - n - 1 M

also after M ,

and so also between the ansociated LES
,

and so also between the SES in the UCT.

(3) Unnaturality of Splitting : Exercise 2
.

4

Prop 12 Towo(M,) MON.

Proof ... - F Fo -> 0 deleted free res of M .

=> Toro (M , N) = coken(didp) Coker (de)QN

= Ho(F/QN = MON I

Remark 13 For fiM-> M
, g : N -> N

,
one may set

Torm (fig) : Torn (M ,
N) -> Torm (M', N') to be

given by (9) · Fixing one argument then makes

Tor into an additive functor R-Mod-> R-Mod
.

M
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Prop 14 Let A

,
B

,
2 be abelian groups.

(1) B free = Tor (A ,
B) = 0

(2) If 0 -ABC-> 0 is exact
,
then

OftTOBETorp
o

is exact
.

(3) Tor (A , B) E Tor (B
,
A).

(4) B torsion-free => T(A ,B) = O

(5) +(A , B) E Tor (T(A) ,
T(B))

·

(6) Tor (R(n
, A) E EXEA / mx = 03

(7) Tor (AOB ,
C) E Tor (A

,
C) Tor (B

,C)

(8) Tom (A , B) = T(A)T(B) if A and B are F . g .

↑

Proof (1) 0 -> F - Fo -> A + 0 free res of A =>

0 + F
,B -> FB -> AB -> 0 is exact => Tor (A ,BIO .

de

(2) Pick free res 0 + F -> Fo + D +> 0
1

id f id9
1 T

0 + F
,
01 - F0B -> ( -> 0

1

=> deidAL d, id ↓ droide ↓
0 + F. A -> F.B -> F. C -> 0

ideOf id
+ G

commutes and has exact rows
.

It is a SES of chain complexes !

(Each complex made of two groups). The associated LES in homology

is the desired sequence . ~
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(3) Apply (1) to a free res 0- F + F

.
+ B +> 0

> LES O because Fr free O becauseFo free
--

o

TOSFOTOris-o
idAQ de

=> Tor (A ,B) er (idde) = Tor (B
,A) by def of Tor

,

using ABE BA. ~
d+

(4) Pick fre s 0 + F + . A + 0.

It's enough to show that FB -> FoQB is injective .

So let EFB with deid(x) = 0 be given. To show : 4 = 0
.

Claim There is a f. g . subgroup B & B will <EB' and didz(x) =0
.

Pf that Claim => < = 0 Btorionfree => B'torionfree . Bitorionfree and Fig .

=> B free by clarification of S.g .

ab
. groups .

We already know that tensoring
With a free module is exact => deidz injective => 2 = 0

.

1

PS of Claim Use construction of Q : FoB free module U will basis

FoxB modulo submodule U generated by

(2x + x
, y) - x(x, y) -(x/, y)

(x)
(x , xy + y) - x(x

, y) - (x
, y))

Write
= fibi .

Then deid() = 0 E de (fi) bi = 0

= elements of the form (* ) E Ifo B
j = 1

Let B'EB begenerated by bes
..., bm

and all elements of B appearing
in the sum on the RHS .

Then &EF
,
B'

,
and

d id , (x) = 0 ~
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the following proofs were shipped in the lecture

(5) Apply (2) to the SES 0 -T(B) -> B -> B/+(B)+ >0 :

0 - Tor(A , T(B)) -> Tor (A , B) +> Tor (A
, B/(B)) +>.

. .

-

0 by (4) Since

B/T(B) torion-fore
=> Tor (A , T(B)) E Tor (A , B)

.
Now use (3) and repeat

the argument. ~

(6) 0 + 2 = 2 + RIm -> 0 is a free res of Alm.

=> Tor (k(n , A) = kuw (A= A) = Ex+ A(nx =03

(7)0 -> F
1
+ Fo -> A -> 0

3 free wes.

0 -> 6
- -
> 60 -> B + 0

=> 0 -> FG + Fo Go -> AB-> 0 freenes

Now Tor (AB, C) = ber ((F.
0Gn/C -> (Fo Go) C)

= ber (F10( ->F.C)

⑦ her (G -

C + GoQC)

= Tor (A ,
C) Tor (B

, c) -

(8) Using (7) ,
(3)

,
(1) and the clamification of S. g .

ab groups ,

it is enough to check this for AE Fla ,
BE /b.

This will be an Exercise on Sheet 3. -

B
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⑤ Echanology
Goal Dualize the singular chain complex ,

in apply Hom(- , R)

low Hom(- , M) for any aldian group M) -> cochain complex

with cohomology . Why ? Cohomology 32

* ... has more structure than a homology (it is a wing !)

* ... may frise
in a natural way from grometic applications

Def A cochain complex Cover a commutative ring M is a

collection [of R-module, for me T called cochain modules
/

R-linear
maps &" :C-C

*

with d" od = 0 called differentials
.

The n-th cohomology modile of C is

n-cocycles

anx
HW(C) =

Ker

im aust
n-coboundaries

-

A cochainmap f : C - D is a collection of R-linear

fr : C" -> D" St fret1o dic = d o f "Fr.

fig : C-D are homotopic ,
written f = g , if I a homotopy

h : C-D
,
in a collection of R-linear hi : <" -> DM-V

,

s .

t
. fu-gn = dijohn + but

,
o d

Remark 1 C cochain complex

E D with Du = C
"

,
di = d is a chain complex

Under this 1 : 1-correspondence , cohomology E homology ,

cochain maps charenaps ,
homotopies of homotopies etc.

So everything that is true for chain complexes also holds

true mentatis mutaudis for cochain complexes , eg Prop 2.
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Prop 2 (1) f : C-D a cochain

map =>

& *: H" (C) -> H" (D) , f
*
([x3) = [f(x] is a

well-def R-homom .

(2) H (-) is an additive functor

CoCh(R) -> R-Mod
-

Category of cochain complexe over R , cochain maps

(3) f = g = f
*
=
g*.

No proof

Prop 3 If F : R-Mod -> R-Mod is a contravariant additive
--

femator , then F: Ch(R) -> CoCh(R) is also contravariant additive :

F(dn)
... Cn -C.....

...

F((n)- F((m- 1) ---

cochain complex FCC)
with F(C)

"

= F((n)
,

die
FI)

= F (d*")

No proof
Def X top - space , ACX , M an abolian group.

Them the cochain complex obtained from C(X,A) by

applying Hom(- , M) is called the singular cochain

complex of (X ,A) with efficients in M ,
denoted C" /X

,
A ; M)

and its cohomology the singular cohomology of (X . A) with

coefficients in M
,
denoted H"(X

,
A ; M). Wemay drop", M" for M = 1.

For f : (X , A) -> (Y ,B) continuous ,
write f for the

cochain
map ["(Y , B;M) -> ((X , A : M)

,

- = Hom (fc , M) ,
and f

*

for the induced

homon. H (Y , B = M) -> H" /X , A ; M).
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Ex4 (o(X , M) = Hom(Co(X) , M) . Corresponds to

functions X -> M
.

Let HEC(X ; M). Then (4) sends

: 11 = [0
,
1] -> M to 4(de(r)) = 4 (0 (1) - 4((0))

So d (4) = 0 ( 4 (5 (011 = 4(t(1)) - E Y constant on

path-connected components. Hence
note : for o(X) infinite

H
°

(X , M) = berdo E i HO(X ; 2) EHo(X;A(I
To(X]Runk 5 A hands-on approach to cochains :

T R S R

An u-cochain 4E C"(X;M) is a homon . (n(X) -> M.

S n-chains correspond to functions0

Esingularn-simplies W:1 -> X 3 -+

The (n +1)-cochain d"(4) sends 5 : 1
*
-> X to 4 (dml) .

So 4 is an -cocycle >4 is zero on n-boundaries EBn
.

↑ is an n-coboundary => 4(t) is determined by dn (5) .

-> 4 is zero on u-cycles & Zu-

Correction 22 April The implication "E" does not generally hold : there may be

cochains I that are zero on u-cycles ,
but that are not coboundaries .

Indeed
,
thisI happens if 4 is a cocycle ,

[4] OE(X/M) , and er ([4]) = 0 .

I
Thus : An n-cocycle 4 induces a homon. (n(X) /Bu-> M

.

I

by restriction it also induces a homon .

Zu(Bn = Hm(X) -> M
.

-

for n-coboundaris 4
, this homom . is zero . Thus We

have a homom
. called the evaluation homomorphism

ev : H(X ; M) -> Hom(Hn(X)
,
M)

which may be seen to be natural in both X and M.
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Universal Cofficient Them for Cohomology

Let C be a chain complex of free abelian groups and A an abelian group

(2) There is a split SES

0 -> Ext(Hu-1(C) ,A) -> H"(C : M) - Hom(Hm(2) ,A)
->

↑
to be defined !

(2) These SES are natural in C and A
.

(3) The splittings cannot be chosen naturally
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Def Let M
,
N be R-modules

,
andF a free res. of M .

Then let

n

EXt(M , N) : = H (Hor (F"
,
N()

FM unique up to hom
. equiv .
= De of Ext independent of choice of F.

As with Tor
,
we have :

* EXtO(M ,
N) E Hom (M

,
N).

* Extr, (A ,B) = 0 for all 12
,
so we

Write Ext(A ,
B) for Ext, (A ,

B)
.

For the proof of the first point , one needs :

Lemma 6 M
,
N

, PR-modules , f : M -> N R-linear

=> Hom (cokerf , P) E her (Hom (f , P()

Proof M -> N -> coherf ->0 exact

=>O -> Hom (coherf , P) -> Hom/N , P) -> Hom(M
, PI is exact

I same argument as in Ex Sheet 1 , 26) B

Rech 7 * Ext is not symmetric : Ext (RIm
,
&) =RIu

Ext (R
, R(n) G

(as we shall see from Prop 8)

* Ext can behave unexpectedly :

Ext(Q
, 2) E uncountably -dimensional

④ - vector space

5. Cohomology Lecture 10 on 22 March



↳
Prop 8 For all ab groups A , B

,
C

,
the following hold :

(2) Ext(AB ,
C) E Ext(A ,) Ext(B,4)

12) Ext/A , BC) E Ext(A ,B) Ext(A ,C

(3) A free = Ext (A , B) EO .

(4) Ext (R/m ,
A) E A/mA

Note this suffice to compute Ext (f . g . group , A) .

(5) Ext (A , B) E T(A)B if A , B f . g .

Compare (4) , (5) to Tor : Tor (R/n
, A) E {xEA/mx = 03

Tor (A ,B) T(A) T(B) for A , B fig .

Proof of (4) O -> T => R -> Mm -> 0 free res. F

Hom(F
*"

,

A) = 0 Hom (R
,
A) Hom (R , A)< 0

EA EA

=> Ext = H of this cochain complex A/m A B

Rmb 9 Let R-modules M
,
N be given. An extension of N by M

is a SES O -> N -> P-> M -> 0
. I is equivalent

to another extension 0 -> N -> P' -> M-> 0 if 3 f : P-SP'st

0 -> N -> P -> M -> 0

idek ↓ f ↓ id
0 -> N -> P' -> M -> 0

commutes
,
Five-Lemma => f is iso .

So equivalence is an equir . rel .

One finds {Extensions of N by M3/equin E > Extr (M ,N) .
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Prop 10 Assume Hu(X

,
A) is fig. . for all m. Them

H(X ,
A ; 2) E X

, A) T(Hm-1(X
,
Al)

free part F(B) : = B/T(B)

Proof UCT - HY/X
,
A ; 2) E How)Hu(X , A) , 2)

④ Ext(Hm
-1
(X
, A) , R)

E Hom (F(Hu(X
,
All I , 2) EF(Hn(X

,
All

④ Hom (T(Hu(X
,
All , 2) E o

④ Ext(F(Hm
-
(X

, A)) , 2) E O

④ Ext (T(Hn-(X ,All , R) => T(Hu
-
(X , All B

Def The cellular cochain complex Cir(X) of a

Ch-complex X is Hom (Cw(X) , M). Its cohomology

HYw(X ; M) is the n-the cellular cohomology group.

Them 11 Hw(X-M) H"(X = M).
2 G

Example 12 C: ((RP4) = 0 + 1 -> 4 ->

HER , H ER12
, He = 0

Hands-on Trick : C a chain complex of f.g . free al. groups

with a chosen basis
,
then

(Matrix of dn) = Matrix of Hom(dm ,
R)

cort to the basis cort the dual basis

=> (w(IRP: ) = of&* &* T

and HiwER , Hw =O , HiwE M/2
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Proof of UCT (1)

There is a SES of claim complexes :

:
inal d

M + 1

0 -> z + c -> B -> 0
N+ 1 M+ 1 M

oh du + 1 h Oh
inal d

A0 - Zu-> Cu -> Burn -> O

:

Bu free by Thm 4.
.

7 = each now spliks => SES of cochan complexes
dn

- 1

inc)
*

0 -> Hom (Bn
-. ,
M) -> Hom/n

,
M) -> Hom(7n

,
M) -> O

oh deL of
0 + Hom(Bm

,
M Hom(Ente .

M) c Hom(Zm+1 , M) ->0

This induces a LES

- - 7

-> Hom (Zm-1
,
M)

n
- 1

d
-> Hom(Bu-

,
M) -> HM(2 ; M -> Hom (EusM)

de
-> Hom(Bn

,
M) ->

.n

Check that 0" = Hom (Bm2> Zu ,
M)

=> SES

0 -> Coher (m -> H(C : M) -> herdw -> 0

- -

- Ext (Hn - 1 (C) , M) = Hom (coher Bu- Zu ,
M

(by Lemma 6)

↳ = Hom (Hn(C) , M)

besause : free res 0 -Bunn-> Zu
-1

-> Hm
-e
(C) -> 0

ju
- 1

-> coChain complex OF Hom (Bu - 1, M)5- Hom17m-1 ,
M)

With HE color O"" , and H Ext by def of Ext .
D
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Prop 11 Singular cohomology satisfies axious that are analogue

to the Eitenberg-Steenrod axious for homology (see) :

Cat > M) are contravariant functions <Pairs of Space] -> R-Rod
There are natural connecting homom. 0 : Im (A ; M) -> H

**

(X
,
A; M)

Axions
--

Homotopy (1) f = g = fx = g
*

*

Excision (2) A = ind : H (X
, A,M) -> H (X >U , ALUM) iso

Dimension (3) H (E3 ; ME M for n = 0 , trivial for +o.

Additivity (4) Hm(XaiR) = I H(X , M) is an iso,
L

L

with i given by ix = (inclusion Xa -> #Xa)*.

Exactness (5) There are LESs
imcl
*

...

+ H(X
,
A ; M) - H(X ;M) HSA I MI HW (X

,Am .. -

Similarly as for Homology with coefficients , all axious follow
more or len directly from homotopy equivalences of

singular chain complexes being send to hom
. equin of singular

cochain complexes by the additive Hom)- , M) functor.
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Proof of (4) AlgTop I :(indalc: (2) - C XC·

is a homotopy equivalence => So is

Hom (C
. ( Xx) ,

M Hom([lincsc, M)
> Hom (((X) , M)

&

↓ iso

isa ↓ ↑ Hom (C
. (X)

,
M

(by def)
Liso (by def
->( Xx;M) x-component is

#(Xa ; M)
I

Linclak

Further good properties of cohomology :

Thur12 (Mayer - Victoris) A
,
BEX , AB" = X => LES

..

+ Hm(X , M) - H (A ;M H (B > M) -> H(An B;M) -> HY
*

(X) +.

Remark 13 Understanding the connectin homomorphisms in the

Mayer-Victoris - sequence :

Homology Hn(X) -> Hm
- 1
(AMB) :

-

Represent a homology clan [X]EHu(X) as [2 + z],

where & ECn(A) and E - Cn(B) .
(Here

,
we abuse motation

and write
y
also for the image of y under Cu(A) (n(X)

,

similarly for8 . ) Now send [x] +-> [dy J .

(since 0 = dx = d(y + z) => dy = - dz ,
so dy E Cn-s(AB),

again abusingnotation) .

See Hatcher p . 150
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A similar understanding for cohomology is more complicated. The following

wasn't discussed in the lecture
.

Chomology H (AnB) - H"
+

(X) :

Extend a cohomology class [4] EH
M

(AnB) ,
which is a

map In(A1B) -> R
,
to a map ↑ : Cn(A) -> R

,
in

a cochain ↑E [
*

(A). Correction 30 April

For each XeOnte(X)
,
Choose yeCute(A) , zeCn + r (B) such Kat

X - (y + z) is a boundary .

Then send [4] to the cohomology clas

in Hm+ 1(X) that sends each X to ↑ (dy).

The 14 (Good Pairs) AEX non-emphy closed
,
A a deformation

retract of an open neighborhood of A in X =

the projection (X , A) -> (X/A
,
Ex3) induces an iso

Hw(X /A
,
(*3) -> Hu(X , A)
-

= Fu(X/A)
Def For X#0, the nith reduced cohomology group F (X> M)

is the m-th cohomology group of the augmented cochani complex

0 -> M = ((X = M) -+ ( (X = M) +
...

with 5(m) (W) = m for all 5 : 5
o
-> X.

Prop 15 HW(X , M) = #" (X ; M) for m = 1 ,

Ho(X , M) = #(x ,M) M
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S(n
, k) ↳

EX16FM(S") E I
k =0 : V

.

Assume now = 1.

1st Proof ( (54) = Hom(((5") , 1) = CS(S")

2nd Proof Ho(S") free HM(S) = Hm(S")

3rd Proof A = S" 29213 ,
B = 5" -en3 - A ,

B contractible

=> Mayer-Vietoris gives iso H (AnB) -> Hi (S..)
-

= sk-1
Proceed by induction.

4th Proof Hi (SY)
↑

iso h LES of Pair (D*, S4)

Hitjpk+1, Sm)

iso ↓ due to good pair

Hi+ (gx +e)

Prop 17 Let~1 . If f : S- S" has degree & E A
,
then

f *: H (S) -> H(S) is multiplication by K

Reminder "I has degreek" is by def equivalent to :

fx : He(S) -> Hm(SM) is multiplication by k

1st Proof

O

- - (5) . apply ... (: CYcw(5) ...
Sanctor

↓ fc = mult by b
- ↓ f = Hom(fR)Hom( :, 2)

= mult by i

..

= (5) = ...

- ( (v(577 ...
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2nd Proof Use naturality of UCT . (Shipped in lecture ↳
Ext (Hn-e(S)

,
REO since Hum(S") is free (namely ,

it

is O (if 122) or (if u = 1) .

So we have an iso

er : Hm (S") -> Hom(Hm(S") , R)

It is natural , so the following commutes :

H(S)- Hom(Hm(S)
,
R)

Isa

L
* ↓ Hom(fx , 2) = mult by k

H(S- Hom(Hm(S) , 1) B
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⑥ The cup product
Reminder about Simplexes If Voc .... Un ER S .

t
. V- Vo ... Vn Vo are

lin indep ., then the convex hull of NV.. ...,
Vm3

,
in

Saei (1, (-. / [0M ER

together with the tuple (Vos
...,
Vn)

,
is called an n-simplex ,

devoted

[Vo ....,
Vn]

.
Every pair of n-simplexes [Vo . . . . , Vn], [Vo . . .

, Vi]

is naturally homeomorphia via iVi iv

The standard n-simplex is A : = [eo ..., em] ER

A singular nnsimplex of a top . space X is a cont
. map & : 1 -> X.

They form the basis of Cn(X). The boundary operator
d : Cu(X) -> Cu-1(X) is given by d(H) = U

[los
,
Ei, ..., em]
-

means i is left out

I where we implicitly identify the non-standard simplex [eo , ..., Ei , ...,
en]

with A via the natural homeo),

Throughout ,
let R be a commutative unital ring.

Def X top space ,
YECM(X ; R)

,

EC(X ; R).

Let the Cup-product 4-T E (
+*
(X ; R)

1

L (smile ,
not Icup ,

in LaTeX

be given sending singular simplexes 5 : Awth = [20 , ..., enth] -> X to

( ((4-4)(2) = 4(0/0
... m] :

↑ (0)[em)
. . . , (n+h]- I -

↑ multiplication ↑
in R

"Front face" "back face" ofa
of +
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Prop 1 (1) v : (M(X / R) x ("(X , R) - (
*

(XiR) L
↑ is R-bilinear

.

(uses distributivity & associativity of R)
(2) - is associative : (44) ~ 2 = Y ~ (T - M)

Cuses associativity of RC

(3) Let EEC(XiR)
,
ECH = 1ER for all . Then

4- s = E - 4 = 4. (uses unit of R

Proof Exercise

Remark 2~makes ((X : R)= C"(X ; R) into a

(generally non-commitativel unital R-algebra (by Prope)

Moreover
, Co(X; R) is graded -

a grading on an R-algebra S is a decomposition
5 = ⑦ Sn as an R-module , such that SuS Sutr

n E R

We write deg X = n for XESm/X#O · deg is not defined if XSn Vm.

Example 3 (0 ; R) = the zero ring

· (Ex3 > R) : For all 20 , Cm({3) is genealed by the

constant on :1-53
,
and [ (+3; R) by Yn : In 1.

Check 4n-Yn = Yuth .

So we have an isomomphism of graded

R-algebras : co([* 3 ; R) -> R[x] ,
4n + X.

Here
, deg on REX] is different from the usual deg of polynomials :

deg (vx) = m
, deg not defined for non-monomials.

Prop 4 (Graded Leibniz rul). For YEC(X / R) ,
E((X; R) :

d(4- P) = (4) - 4 + (- 154 ndT

↑
Koszul sign rule :

"

when d jumps over something of degree I , (1) "appears
"
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Calculate : ↳
Proof
(dY) T) (0 : [20 1 . . cen + n +1] + X)

= (d9)([e
...... en +r

31) · (H)
entes ..., em +n +r])

= 4(dt)
...

1. + ( ...)
n + /

= 4)
..,

...

ente]) - ) --

n+1

= 2 (1) 3([ ...
--- en+) (U/

entes ..., en+ n +1)i = 0

andi

(4 - d) (H) =

x + 1

-= z (1) 4(W(
. ...,
en]) (W)(em

, ..., Entf , - -- en+ +
1))

j = 0

Now plug this into :

((d4( (T)(0) + (- 1) (Y - &4)(o)

Notice the last summand (i =
u +1) cancels the first (j = 0) !

= ( 1)
:

4(Ulfea
...,
ei

, ...,
e +
13) (8)

ent ...
emente)

N
i = 0

n + k + 1

1+
(- 1) 4(0([e0 . ..., an3) + (0/[ems e men])---sms

-r

.,
2

m = n + 1

Findex strift m = j + m

= (d(Y-+1) (r)
B
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↳
Prop 5 (1) cocycle ~ cocycle = Cocycle

(2) coboundary~ cocycle = coboundary and

cocycle ~ coboundary--

(3) For [4] (X/R) , []EH" (X : R) ,

[4] - [4] : = [4-4] EHM
+
(X ;R) is well-def

(4) - makes (XiR) := H(X , R) intoa

graded R-algebra

Proof (1) 1fdY = dt = 0 => d(4-4) = (dY) - 4 = Y-d= 0
.

(2) If Y= dy and d = 0 => 4- 4 = (dy) -4 = d(y-T) .

(3) Y-Y is a cocycle by (1).

18 4' = 4 + dy ,

1
= 4 + d)

,
the

[4'- 43 = [4- 4] + [4- d3] + [dy- 4]
--

= G = 0 by (2)

(4) Follows from Prop 1 I
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12 April ↳
Example 6 18.1 , then Ho(SE , R) ER[x] /IX With

deg X = 1 (X = 0 since since there is no non-trivial

cohomologydars of deg 21).

Def For a -complex X , define~ in the same
way as before

on the simplicial Cochain complex ((X = R) =

Hom(C(X) , R) , and on in cohomology Hi (X ;R).

Prop 7 The chain homotopy equivalence Thm 2
.
27 in Hatcher

& (X) -> C
.
(X)
, sending simplex to simplex ,

induces a chain homotopy equivalence ((X) +C (X)
that preserves the cup product.

Proof Immediate from def D

Example 8 X = Sx S. Know Ho(XI = R , (X) = R2 ,

H(X) = R .

So
may

be interesting on H(X).

Put a -complex-structure on X :

9 be Ch

·

(((1)
>

C
, ((2)

⑳ A & C(X)
,

be
,
bu

, by EC(X)
(z((c) (1 ,

22 EC& (X) =
C

by dbi = 0 ,
-

-

be -c b2 dc
,

=da = be - by + b2

2
One computes that :

C(lo A

(2(lo) Ca(es) Ho(X ; R) has basis [a]
· 7 ·

a

bi
a H& (X ; 2) - . - [b]

,
[32]

H2(X; 2) -.. - [c - cz]
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50
1 L

Since H
.
(X ; 2) is torion-free , the UCT implies

#(X ; R) = Hom (H ! (X : A))
.

So the dual basis of the
A

basis [9]
, [b] ,

[b2]
,
[c-c] is a basis for H(X ; R) :

[4] . [4] .
[4]

. [2]
deg 01 1 2

with ( (a) = 1 , Pi(bj) = Sij , n(c -c) = 1 .

Let's calculate [4] ~ [4] ! Since [4] ~ [3] EH (X ; R)

=> [4] - [4] = [m] for some < ER.

Evaluate both sides on [1-c2] :

x = ev([1] - [+Y])([c- - ( 3)
= ev([t-43)([c - c2]) by def of ~ on cohomology

= (4 ~42)(cn - an) by def of ev

= (44(e) - (4) (22) by linarity

= (c((20e1) (on(en) - ↑ (c) Leoien) (Clfeiert
by defof-on cochains

= + (b2)42(be) - ↑v (b1) 42(32)
== 1

=> [1] - [47] = -[2] .

Similarly , one computes [2] [4] = [22]
and [4] - [4] = 0.

So Ho (S1 x S ; R) = R (x ,y) /(xy = -

yx , x z=
y
=0)

-

free algebra generated by x
, y
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Prop 9 (Naturality of~( ↳
fix -> Y cont . map of top · spaces , [MEH(T; R), [T]EH (4 · R)

S

=> f
* ((4)- [47) = (f

+[4]) - (f *[T])

Proof (shipped in the lecture
E

For all (n +b) -simplexes : If (4 -4) (0) = 4- ↑ /fox)
= 4(fo/( . ..., enz) ↑ (fo Ul[ens

-..,
en+2])

= f9(01
...
) . fY(41 ... ) = ((f 4) -(f+)(r) .

Now f
*

([4] - [+]) = f
*

([4 - 4]) = [f (Y-+)]
= [(f(y) - (f+)] = [ f 4] - [ft] =

f
*

([4]) - f
*

([4]) D

In other words : f
↑
is a homomopliam of graded R-algebras !

Prop 10 X
,
Y top spaces -> We have graded R-algebra isos

() # (XwY ; R)T
Ho(X ; R) x H(Y ; R)

(2) #
·

(XvY ; R)-> Subalgebra of Ho (X ; R) X HJY ; R)

I finc containing in dog 0 only those (4
, 4)

with C(xo) = ↑(yo)

wedgeproduct XrY/Exody for some X0Ex
, you that

are deformation retracts of neighborhoods Nx Ny .

Proof (1) We know (indA) is an R-module isom . Leguse MV).

It's an algebra homon by Prop 9 .

(2) Mayer-Victoris gives isos for 21
,
and a SES

0 -> Ho(XvY ; R) -> H(X - N > R) Ho (YNx > R) -> HP ( NxnNy ; R)+0Y
- - -

=X -Y ↓ =&A3

the Gernel is
the desired Subalgebra D
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Example 11 /SivSvS2)E ↳
R <X1

, X2 ,xs) / (xi Xi =0 for all isi)

deg .

= degx = 1 , deg X3 = 2

This is not isomomplic to the ring H (SXS) , which
contains elements of degree 1 with non-zero product.

=> sus's S xSt

Theorem 13 X top . space , AEX , YEH(X ,
A ; R)

,

PEH(X , A : R). Then

9 - 4 = ( - 1) +- y

Proof : next lecture.

This property of the graded R-alg. H(X , A ; R) is called

graded commutative.
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(12 was skipped in enumeration) 17 April (
Theorem 13 X top · space , [4] EH" (X ; RI

,

[t] -H*

(X : R) .

Then Hatcher Tum 3
.

1
, p .

210

[4] - [4] = (1) [4] - [4].

Proof For 5 : 1 - X
,
let F : 1 -> X

be = = 00 (natural home [lo) ..., en] -> [en s em-e ... Ce , es]),
i

.

e. F (li) = W(en -i)
.

Ge+ p : C
. (x) + C

. (X)
,

H ( 1) F
,

When En =

(n + 1) m

-

Claim 1 : I is a chain map

Claim 2 : f = id
c

. (X)

Pf that Claim 182 => Thm :

En + k

(4 *
(4 - 4))(0) = ( 1) 4(5/semm

...,
er]) ↑ (w/[em

...,
203)

1(+
*4 - ( +

+ Y))(0) = (- 1)En
+ 3

+ (0/(en
. ...
203) (4) dem

+ m .....
en])

=> [4] - [4] = [4- 4] = [e
*

(4 - 4)]
nk

= (-1)En
+ m + = +

2n(((*+( - ( +* 41] = (- 1) [+
*+] - [e * 4]

nk

= (-1) [4] - [4]
.

Check theat Enth + En + En = rb (2)

Pf of Claim 1 : (du = e)
...,ei ... (

=u festen [em -.. , is -o e

-de = 3 (1) + En

/[em
...., en -j , ..., es] n-j =ij = 0

=
n - i + En

Ul[em
-ss --- Co]

Check : En
..

= n + Em(2)() n +w=
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Pf of Claim 2 : Need homotopy s : Cn(X) -> Cu +
1(X) with ↳

Im+Sun In-iden (x)
Construction of s is inspired by the prism operator :

cut the prism Ax[0 , 1] IRXR = AM
+2

into n + 1 many (n + 1-simplices.

Wo We 1 x [13

Let viele d and

des↳ich
cos i 21

V
2

Vo :
W1

21=
Vo

!
W1

Let #t : Six [0 ,
13 be the projection ,

so that h (Wil = # (Vi) = ei
.

Define

i + En -i

Sn(t) : = = (1) Wo ([Voc -- s Vie Was -..Wi

Let us check by calculation that (* ) holds.
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Skipped in lecture 55(1)
-

L
dn +1(Sn(t)) = 2 (- 1)i

+En- i +j
Cott ([Vo . ...,

jc ..., VisWm1 - - .

,
Wi])

OEji < n

*

(2)
z c)

En-i
+ n +j + 1

To ([vo
. .., Vi , Wa , ...,Ej , ...wi])

On ↑
index n -j + i + 1

Consider the summands with i =j .

(-1( (ot([Wm ...,
Wo]) +

n + 1

+ & (- 1)En - i

Ott ([Vos ... Vi-1 / Wn) ..,Wi])
i = 1

En
- 2 + n +k + 1 g+ ( 1) Tot ([Vo ..., V ,

Wm , ... , Wmin])-
k = 0

-

~
+ ( 1)50 To ([Vos

..., V m]) these cancel :

index shift K = int
,
check

Ex-i = En -i+1
+ n + i (2)

= ( 1)
-

5 + t = pu - +

So
,
to prove (X) ,

one has to check that the summands with i j

equal - Sn-s(dn(t)

== Sne (2 (1) 8)[v
.. ..., f) - - - v3)

j = 0

7 1 +j +h + En - k - 1

= 2 (1) 50+( [Voc
..., j - . . , Vp +11 Wm) ... , Wk +1])

0jk= n

index shift : k = i-1
.
check i + En-i

+ j = 1 + j + i - 1 + En -i

=> equals summands of (1) with j < i

+ I (- 1)
1 + j + i + En -i - 1

20 + ([Vo . . . . , Vi , Was ... Ej , .. - wi])
0xi <jn

check : Eni + n + j + 1 = 1+ j + i + En-i - 1

=> equals summands of (27 with i<j
A
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56Remark 14 We'll
prove later that : L

Ho(CPM) = R[x]/(xm+ ) with deg x = 2

(commitative since H (CP1 = 0 for odd K)
Ho (P ; (2) = 12 [X]/(xm+ 1) with deg x = 1

(commutative because of R12 coefficients)
Ho(((

+

m) = (xx
..., xn) / (XiXj + xjxi) Xi)

With deg Xi = 1

(not commitativs
,
but graded commutative)

Reminder from AlgTop 1 X top . Space ,
A ,
BE X.

Cn (A + B) E Cn (AuB) is generated by Cn(A) v (n(B) [[n (AuB).
i

En (A + B) is a chain complex , and C
. (A +B) > C

. (A UB)

is a homotopy equivalence (proved by barycentric subdivision).

Lemma 14 There is a (natural) iso

j

Hm(X ,
AuB ; R) -> (X

,
A + B i R) induced by i.

Proof (shipped in leature
0 + Cn(A +B) - Cu(X) -> Cu(X

,
A + B) +> 0

hie Lidy ↓
0 - Cu(AB) -> (m(x) -> Cu(X

,
AuB) -> 0

commutes
,
has split exact rows. Apply Hom(- , R) and take the

natural LESs in cohomology :

... H" (A +BiRl H(X : R) HY(X
,
A + B ; R) E ...

M

iso Pi * Tial Ic
- ↓ H (AuBIR) H(XIRIE H(X ,

AuB) ;RE ...

j is an iso by the five lemma. A
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Def Let X be a top . Space and A
, BEX .

Let the
↳7

relative cup product
~: H(X

,
A ; R) x He(X

,
B ; R) -> H(X ,

ABR)

be the postcomposition withj of the bilnearmap on cohomology induced by

k n+ k

v : C"(X, A : R) x C (X ,
B ; R -> 2 (X,

A +BiR)

(4 - + /(H) = 4(O((
, ...,

en]) (O/[en
. ...,

en+1])↑ ---
in&A or O if im A O if in &B
im T& B

6. The cup product Lecture 14 on 17 April



Chapter 7: Manifolds and Orientations

Motivation

Manifolds

58

⑤

Def (Poincarealgebra) A connected (1) gea
=# over a field I

j=0

is called a Poincare algebra of formal dimension in if.
( A = 0 for jon.

(ii) A = Ik

(ii) the bilinear pairing"-Alk is now-degenerate
= the map -> Hom (Ar ,

(k) is an isomorphism.

Clim Let M" be a closed connected orientable manifold
-

Then HCM :R) is a Poincare algebra of formal dimension n.

⑪

Def (Topological manifold) A Hansdorff second countable topological space A is called a topological
manifold (resp. top.

mufd with boundary) of dimension n if each point M has a neihborhood
g

homeomorphic to an open subset of R (resp .

of RR").

P (Boundary) Let I be a manifold with boundary.The subset & of points cet that do not have

a neighborhood hemeomorphic to an open subset of R2 is called the boundary of M.

Def (Closed manifold) A compact manifold withoutGoundary is called closed.

les : is R" any any open subset of I

(ic : = h(x
, ...,

() eR
*)(x)=

= 1) · (orth pole

Two charts : En : Shn - R"
xn

- 1

&
On

(
, ...,

3)->) j ...;,xt)
Cs : S 1953-> RY *

-----------

(i
, ...,
x)t( :.. -;

·

with transition maps : 3,0: 4.04,

"

: Ricos-> Rinos.

(t,
...,
+- (i ---i · (outh pole)

Civil n-dimensional torus "

,

cir real and complex projective spaces RP" & CP!

... ithboundary: (ilD ;

(ii) solid torus SxD2.

xamples: (i)
(iil RP8:RP" & CD-CP"

n= C)

Proposition1. Let As be a topological manifold.Then for any e: Hi S
,KOREin

-> Let B be an open
ball around a (sits inside of a neighborhood 1i
of homeorphic to a subset of R"). *

Chart

=> Z:= MIB is closed
. C
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Orientations

59
By excision therem

, Hi, ;RLH : (ALZ ;(i)Z:R) Hi LB
,

Bi:R
&

=>> ... - Hi(B ;R- H; (B ,

B1;R)=Fi (Bin ;R-Fi (B ;R- ...

"
Hi

..

:R) '

Def (Local homology) Hil, ;R local homology group
H(1

,

11;RL local cohomology group.

Def (Homology manifold) A Hansdorff second countable space is a homology R-manifold of dimension n

if for
any
e H.(,13;R) .

(S:R).

⑪

Def (Local orientations) A local orientation Mo in I is a generator of the local homology
group Hr(, (6;).

Note that there are two choices of a generator in 2.

=> At each point there are two possible orientations .

D.of (Drientation) An orientation of an n-dimensional manifold

is a choice of a local orientationH ,
M;2) at every 1

,
st. chart

.1it is locally consistent
,
i.e.

if yel can be covered by a ball B
x
↳ I&

within one chart
.

then Mo andMy map one to each other ⑳
under the isomorphisms :

H.(1
,
Mix;2) H

.
(1

,

MIB;2)= H
-
(M

,M:2)C
((non-Drintable manifold) A manifold is orientable if there exists an orientation on M

.

* manifold is non-orientable if it is not orientable.

Examples : (i S is orientable.

(ii) The Mobius band is non-orientable.

*posi Let I be a closed connected manifold of dimension n.

( The homomorphism Ha(1; -He( ,
#1;2) is an isomorphism for any

cel.

(ii) IfM is orientable
,

then Hu(;)-> H-(M
,
M;) is an isomorphism for any

cel.

#M is non-orientable
,

then Un( ; )= 0
.

(ii) Hi(:) = for in

an Lemm
.

Let AEM be a compact subset of a manifold M of dimension n . (not necessary compact).

(is Hi(Y
,
MIA;R) = If is n.

& Hn(M
,
MA ;R) is zero iff its image in He(, ;R) is zero for every

A.

ci For
every locally consistent choice of Orientations MCCCA ,

exists a unique MASH (M ,
ALAIR) s .

A
.

is Moc for all CA.
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TED 60D S
-
> If the assertion holds for compact A

,
B and AuB

,

then it holds for ArB
.

Relative Mayor-Victoris sequence :

Mnx(
,
/(AcB)- He( ,M/(AB) Ha(M

,
MIA)OH(M

,
MIB)EH . (M ,

MIAB)
b

For isn we have Hi(, (A)= Hi(
,
MIA) = MILL

,
MIB) = ->> HiLM

,MILAUB) is locked between

two zeros zera itself.

If MeHn( ,
MIAUB) is st

. MoHu( ,
MID) is zero for all eAuB => its images in Hu(M

,
MIA) and HOSM

,
MIB)

are zero by the assumption. -> Since O is injective, M = 4
.

(Proves (i)

Let M ,
AuB be a locally consistent choice of orientations

-> 7! Hu(M
.
MI)

, M-H( ,
MIB)

= M .
M = MlaMB/AH( ,

/(AB)
.

its image is zero in Ha(M
,
Min)

since is injectiv
for

any
Ce Au ↓

=> it is zero itself by assumption on AnB.= By exactness
, <MA , Mrs) is the image of auinque

&.

element Mavis H-( , 1 /(AuB)
.

1

2. It is enough to prove the assertion for a compact subset of a single chart
.

(i
.
e

.
inR

Any compact subset AFM is a union of a finite number of compact subsets
,
sit

.
each belongs

to a chart= > We can apply induction and

If L is a chart
,

then Hi(M
,
#(A)Hi(L

,
HA) by excision

.

2

=> From now on we assume H= R"
.

#3 If AER is a finite simplicial complex,
st

.
its simplices are linearly embedded

,
then the assertion

follows by induction
,
and it is enough to prove for one simplex. The latter follows from the definition

of local consistency.
3

↳ &R compact
LEHI("

,
RMA) is represented by a relative cyclez and let CERA be a union of the images of

the singular simplices of Oz.

# and C are compact - they have positive distance 8 between them.

Cover A with a finite piecewise linear simplicial complex K with KnC =: (i) cover A by one big enough simplex:

from STEP (ii) take Garycentric subdivision s .

t. the-

diameter of a piece is less than 8

Civil take simplices that intersect A
.

The same chain z represents a class XEL(RYK) that maps to <H
. (R, R&A).

ByS for in = and Hi(R"
,
RYA) = > for isn.

7

Finally, assume i = n. If
K

= EHn(RRiss) for allA
,

then it also holds for all ok
.

Indeed
,

for
any simplex ACK and

any EA the map HLRR)-> HOLR
,
Rise) is an iso.

3 now implies that k= => x = 0
,

which concludes the proof of cit and uniqueness part in (ii)
.

Existence : let ASHR
,
RMA) be the image of HLRRYB)

,

where B is a big hall containing .
↑
I

exists by definition
of local consistency.
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Last time : Proof of 26 April Se
Lamma 3 M without boundary , AEM compact , R commitative wite ring.
(i) Hi/M ,

MA ; R) = 0 for i >n .

<E Hm /M . M/A ; R) is zero (

image of a in Hm(M ,M\{x3 / R) is zero for all XA.

(ii) Mx locally consistent choice of orientation for XEA

=> existe unique MACHr(M , MAR) mapping toMx for all xA

Today :

Prop2 M"Closed (E) Compact , no boundary) connected .

(i) Hu(M ; (E) +> Hu(M
, MIEx3 ; E) iso for all XeM .

(ii) M orientable => Hu(M : R) -> Hu(M , MEx3 ; R) iso AxeM .

M non-orientable => Hu(M ; R) = 0
.

(ii) HilM ; l = 0 for isn

.
t

Note that (iii) follows from Lemmas (1) with A = M .

For (i) E(ii),

we'll also use Lemma3
,
but need some more tools.

For M" without boundary ,
let Hatcher

p .

235

↑ : = SMx(XEM and MxCHn(M , M15x3) a local orientation3

Note p : -M
, MxHX

is a 2 : / surjection .
For Be chart &M

an open ball and a generator MzEHu(M , MLB)
,
let ↑

U(B) : = EMxEMIXEB , Mx image ofMB under

Hu (M , M(B) -> Hu (M ,
M((x 3) 3

Exercion The Url form the base of a topology on M
,
st

p
is a 2 : 1 covering.

Def p
: M -> M is called the Orientation covering of M.
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Eal MxEM has a canonical orientation HuCT
, Frx) S

corresponding to MX under the isos

He (M , ↑Mx) Exciou He (U(r) , Urs Mx)
-> Hu (B

, B(x) -> Hu (M , Mix)
excision

These are locally consistent
,
so M has a canonical orientation.

-

Prop 4 If M is connected
,
then : M non-connectedE) M orientable

Proof Mhas OrientationM => M= em3 ~E-Mx (xM}
-

open open

If M has two components Ne
,
N2

,

then they intent an orientation

from M
. Check that PIN:: Ni-> M are coverings .

Then
, they must

be one-sheeted coverings ,
i. e

.

homeomorphisms TS

~ -
-

Example 52 = STrs2, IRPES2
,
Klein Bottle = Six S

Note that S3-1RP3 is an orientable double covering ,
but not the

orientation covering ,
which is RPPvMP3-> MP3 (since RRP3 is orientable).

Def A section of p is a cont .

map s : M -> Ma with ps-ide.

Note that a section of a covering map has a component of Mas image

Prop 5 Mx is an orientation #S XXMx is a section of p

Pf Exercise B

Def R commutative unital ring ,
Mr without boundary.

Local R-orientation :Mx is a generator of Hr(M , MIX : R

R-orientation : locally consistent choice of local R-orientations.
MR-orientable : E) There exist an R-orientation

Example Every M is /2-orientable
,
since these is precisely one

local IF2-orientation at every point.

7. Manifolds and orientations Lecture 17 on 26 April



↳
Def Let Mr : = [ax / xM

, xxHu (M .
MEx3 ;R)3,

with similar topology as M
.

M -> M is amNoth pi R IRI-sheeted covering.R

Prop 6 Let Mr = Exx / xx is the image of MxQV under the iso

Hu(M , Mix)@R -> Hu) M ,
M(x ; R)

for Mx a generator of Hm (M , M(x) 3

Then : MrEMp is
open ; Mr = M-r;

Mr1 Ms = 0 for # IS;

MrEM if w = -w
,
and MrEM if r = -r-

PS : Exercise D

Prop 7 My is an R-orientation #S

X-Mx is a section of p with each 1x a generator of Her (M ,M) iR)X
R

Pf Exercise
,
similar to Prop 5. B

Prop g If 0 = 2 in R => all M" are R-orientable

160 + 2 in B => M" is R-orientable iff
it is R-orientable

Proof 0 = 2 => My EM => Pehas a section do Me = M is R-orientable

Assume OF2. Generators of Hr/M ,
Mix ; R) are of the form MxQ u

for Mx a gen. of Hn(M ,
M(x) and UER a unit. Then UF -U

=> Mu Y = Prhas a section to Mu iff M-M has a section
.
D
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Proof of Prop2 (i) and (ii) Pointwise suc and pointerise

R-multiplication turn ↑(M
, Mr) into an R-module .

Hu(Mir) -> ↑ (M
, Mr) ,

- (X- image of <in Hm (M
,
M(x;R)

is a homomoghism. By Lemna3 , applied to A = M ,
it

is an isomorphism ! Indeed , Lemma3 (i) yields injectivity. And

Lamma 3 (ii) yelds sarjectivity /here ,
we need a slightly more

general version of Lemma 3 (ii) : namely , for every locally consistent

Choice xHm(M
,
MIX ; R) , 7 ! MACHu(M ,

MA ; R) that maps to

&
x for all X .

The proof is the same- we never use that ax generates).

E = MwM if 0 F2
M R- orientable => SMr = M forallweR if 0= 23 => Mr* M

=> (M
,
Mr) = R Jusing connectedness of M) = ) Hu(M> RIER.

So Hm(M ; Ez) ElEz for all M ( Since all M are Fz-orientable)
,

and Hu (M/ ERC for all orientable M.

M Non-orientable => F is connected =>

M= Now
--

EM

So the only section of p2 goes to Mo => ↑ (M
, M2) = o

=> Hm(M) = 0 .

D
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3 May L

Corollary 9 (i) Let M be a closed R-oriented n-manifold. The

there exists a unique clar MEHm(M ; R) St for all xeM,

the isom Hm (M
, M\Ex3 i R) sends

u
to the given

local orientation.

(ii) If M is connected
,
then 1 generates Hm(M i R) = R.

Proof (i) directly from Lemma3
,
(ii) Similar do Prop2. B

Def The clar from Corollary 9 is called the fundamental clas

of M ,
written [MJ E He (M ; R) -

R
-- drop R from notation for R= K.

Remark 10 If MM is closed and has a S-complex structure ,
then :

(1) Every simplex of M is a subsimplex of an n-simplex.

(2) Every (N-1) - simplex is a face of precisely two n-simplexes
(3) M has only finitely many n-simplexes Tec --- > Th

I8R is oriented
,
the [M] = [5] with

:
=

such that in Leidri ,
each (n-1-simplex appears once with +,

once with- If M is not orientable
,
no such choice of

2 exist. Over IE
, [MJF = [] .

For example :

I
M= *1 ~

Tz

> 2

TorusT klein bottle K

[T] = = [ - +z] [KJIF = [F + +2]
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Def M2

,
N" compact , oriented ,

connected
, f : M-> N continuous .

Then the degree off is the unique integer degf st

fx /[M]) = degf . [N] EHu(N) .

For notrecenarily orientable M ,
N

, there is a unique degie fez st

f) [M] /F) = degref · [NJIF
.

-Hm /N; Iz)

This extends our previous def of deg for f : S"-> S".

Remark 11 deg fog = degf : degg easily follows.

Theorem 12 (Hopf 1927)

fig : M-> S" for M compact , connected , oriented. Then :

f =g() degf = degg .

Conjecture 13 (Hopf 1931)

f : M> M"for M compact , connected ,
oriented Then :

f = idn E) deg f =
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Proposition 14 M"non-compact and connected

=> Hi (M ; R) = 0 for all in .

Proof Let [z]EHi (M) .

To show : [t] = 0 .
Pick UEM" open

St

-& Drop the R from motation in this proof . -

im (z)[U and I compact.
Let V = M/ . - -

G-

Consider the LES of (M ,
UnV

,
V) : ·

-

G inc --

Hit . ( M ,
-V -Hi (U-V , v) + Hi (M , V)

exciciot = ↑ ind*
Hi (U) ->Hi (M)

incy

i In+ 1 = top left & right term zeo by Lena 3 = top middle zero =>

Hill) = 0 => [z] =0eHi(u) => [z] =0 Hi (M) .
-

i = n [2] defines a section M-> Ma by

ser> (ot , image of [E] under Hu(M) -> Hu(Mire)

Pick 20E V .

Then Hor (2
0,
0)

.

M connected =>

= unique section M + Mr with Xor (X0 ,
0) => the section

defined by [7] sends xhe (x, 0) for all X.

Lemma3 => [z] = 0EHi(M , V)
. Top left term zero =>

[G) = 0 Hi /UwV ,
v) = [2] = 0 Hi (u) = [z] =0 Hi (M)

7. Manifolds and orientations Lecture 18 on 3 May



⑧ Poincare Duality ↳
Sneak preview

Theorem 4 (Poincare duality (

Let M be a closed R- oviented n-dim manifold. Then for all be R
,

H" (M : R) = Hm-m (MiR) .

Theorem - M" Compact (potentially with 0) =>

H (M ; R) is a finitely generated R-module .

Proof idea Use that M = some finite S-complex
(Halelor A

.
8

,
A

.
9 p . 527) D

Corollary 8 MW closed
,
IK-orientable for a field I

Hm (M; (k) = HY (M ; (K) = Hm-u (M ; (K)
UCT PD

Corollary 9 M" closed
,
m odd => X (M) = 0 .
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Def Let X be a top space ,

R a commutative unital ring,

reC (X ; R)
,
4e(

*

(X ; R) with hm.
n

Then the cap product is

m 4 = 4(0
- emT) Ulers .... en]

-Cn-r (XiR)

Proposition 1

(1) Linear extension gives an R-bilinear map

Cn(XiR) x (XiR) -> Cu-n (XiR)

(2) Tw E = + for deC(XiR)
,
E(t) = 1 Vi

.

(3) (r- y) -T = +- (4 - t) .

Pf Exercise B

K

Proposition 2 G) d( +- 4) = (d + ) m 4 - undy

Pf diry)= 4(2/en3) Fr
*

Wens ....... en]

(dr) - y = = (1)%4(81
%0...., ..., ex+

) W)Cenry ..., en]
j = 0

+ & =Y(Uleo
, .... en]) Olfen-...... en]l= k+ 1

↓ ~ (d4)= fey(09 ...em ...,
emi)Wer

,e

D
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(1)Proposition 3 cycle - cocycle = cycle

(2) boundary - cocycle = boundary
(3) Cycle - coboundary = boundary

(4) For [c] EHm(XiR) , [4] HR(XR),

[c3 - [4] : = [c - 4]EHm-m(X ; R)

is a well-defined R-bilinear map.

(5) X path-connected ,

S : Ho(X > R) + R the iso [0] +> 1 ,

[c]EHu(XiR)
,

[4] CH"(XiR) ,
then

s([c] - [45) = y() = ev([43)([2])

Proof : Exercise

Theorem 4 (Poincare duality (

Let M be a closed R- ovented n-dim manifold. Then for all be R
,

PD : H" (M : R) -> Hm-m (MiR)

PD([4]) = [M] - [4]
is an isomorphism.

Before we dive into the consequences of PD ,
here are two more

properties of the cap product.

Prop 5 (Naturality of cap) f : X -> Y cout
., a < (m(X) ,

YEC" (Y)

fo(a - f( y) = (f(a)-

Proof Exercise
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Remark 6 Similarly as for the cup , one may define

a relative cap

~ Hm(X
,
AuB ; R) =H

*

(X
,
A , R) -> Hu-n(X ,

Bi R)

using that C
.
(A + B) - C

· (AwB) induces isos

H
.
(X

,
A + B) + H

. (X , AuB).

We'll prove PD ,
but first ,

let us harvest some implications.
Let us take the following for granted.

Theorem - M" Compact (potentially with 0) =>

H (M ; R) is a finitely generated R-module .

Proof idea Use that M = some finite S-complex
(Halelor A

.
8

,
A

.
9 p . 527) D

Corollary 8 MW closed
,
IK-orientable for a field I

Hm (M; (k) = HY (M ; (K) = Hm-n (M : (K) = Hm
-

m(M ; (k)

Proof Since Ho(M) f . g . by Thu 7 :

dim Hr(M : /K) m #X-summands of Hr(M) +

p = char 1k # X-Summands of Hr(M) and Hr-e(M)
UCT pr
cohom

- dim H (M : 1)
This proves the first iso .

The second is PD . D

Corollary 9 M" closed
,

m odd => X (M) = 0
.

K

Proof - (M) = (1) dim Hu(Mi (E) n = 2m + 1

= fedei Hi(Mife) + fem e

dimHzm
+
e-m(MilFz) = 0 B
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Proposition 10 M" connected

,
closed

,
oriented St H

.
(M) is free

Then - : HE(M) = H
- 4 (M) -> H

*

(M) = Ho(M) = T
PD S : [ojc1

is non-singular ,
in

#" (M) -> Hom (Hh (M) , R)

[434([+3 reS(pp([+] - [43))
is an iso

Proof Ho (M) free by assumption => Ext(Hr- (M) , R) is trivial

=> er is iso. So we have isos

er

H* (M) -> Hom(He (M) , i)
PD

A

-> Hom (HM-4(M) · R)

Just need to check that their composition equal the desired

homomorphism [431> ([4]1-> S1PD([4] - [+J))).
Let [9JCH"(M) , [+JEH

--"(M)
.

The

PD
*

(er([4]))([+]) = er([4])(PD([+])
= er ([4])([M] - [4])

= S(([M] ~ [+J) - [4])
= S([M] ~ /[4] - [4])

= s(PD([4]- [4])) 17
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Remark 11 (1) M" closed
,
orientable

,
H

.
/M) free ↳

=> HY (M) = Hu(M) = Hm-h (M) = Hu-m (M) .

(2) A bilinear form b : RM x &M -> R is nor-singular
E RM -> Hom(RM 2) ,

X +> (yreb(x , y))
is an iso

=> F primitive XEXM (i
.
e

. x not divisible by integer 2
,

or equivalently : X can be extended to a basis)
=> yeXmstb(x , y) = 1

.
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Theorem 12 H

*

/PU) = R[X] / (Xh + 1) with deg X = 2
.

Proof By induction over m .

For m = 0 ,
Cp= [*3

,
Ho(*3) = T

For n = 1
,

CPES2 and Ho
·

(S2) = [[x]/(X) .

Assume m = 2

and H*CDU-r1ER[X]/(X)
.

The embedding CPK -> Ph

induces isos on He for b < 2n (evident from CW-structure).

Let X be a generator of H
<
(CPY) . By naturality of ~ and the

induction hypothesis ,
x" generates H2(DPU) for 152m.

It just remainsdo show that xmgenerates H
&

/CPM).

Since - is non-singular (Prop10) and X" is primitive (since

it is a generator) , by Rumb 11(2) = JyEH2-2 (CPM) st
2u

* ~ y generates H (CPM = X
.

Since Him-2((p") = RX* =>

7mEX with y
= mX* Since X-y = mX

*

generates H2((pm)

=> m = 11 = y = 1Xn
- 1

= X"generates H
*

" (CP2)
.

D

Remark 13 Note that [4] ETH"(X)

=> for all [4] EH"(X) we have [9] - [TJe THk
+

e(X)
.

So~indues FH(X) = FH((X) -> FH* +e(X)
.

-

recall : FA = A/TA is the "free part" of an ab . group A-

For M closed
,
connected

,
oriented

,

~: FH"(x) x FHm
- 4

(x) -> FH-(X) = R
.

is non-singular (similar proof as for Prop 10).
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Proposition 14 (EV for other ringe L
Let C be a clair complex , R a commitative unital ring ,

and

M an R-module.

(1) There is an isomorphism of cochain complexes overR

i : Hom (C) M) -> Homp (COR ,
M)

· R

9 -> (corr y(dr)
with invene i :

(c++ (1) 4
.

(2) eve : H
*

(C , M) -> Home (Hu(( ; R) , M)
[4] - ([a] m> i(9)(x) (

is a well-defined R-linear map.

(3) HM(C > MI
*

Hom (Hu(C) , MI

evt
Homm(Hu(Cir) , m) Fre (Cabref((or]

Computes
.

(4) If R is a field , then evp is an isomorphism.

Proof (1) To check : A in (4) is an R-homom . CnQR -> M

* in is an R-homom
.

at each homological degree

* i is a cochain map

A in is an R-homon .

2
.

-> M

* to i
,
i'oI are identity maps .

(2) To check :

E
X boundary ,

4 is cocycle on

i(4)() = 0 if ↓ is cycle , 4 is coboundary

(3) By def of er and evr

14) Same proof as UCT, using Extr is always O since all R-modules
are
free
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Prop15 M" closed

,
connected , Ik-oriented for a field Ik

Then HOM / (K) is a Poincar algebra of formal dim . N.

Proof (i) H
*
(M; ) = 0 for ja m

Since HF(Mil) = Hm-j (Milk) = 0 since n-j < 0.~

(ii) Hm(M ; (K) El Since H(Mi)Ho(M ;1) I .V

(iii) The IK-bilinear pairing
~ H

* (M ; (1) -Hm (My (K) -> HY (Milk) EIR

is non-singular Es the adjoint homom -

H5 (M ; 1) - Homp (H
*-2
(Milk) , 11 )

[4] - /[4] S(PD/[4] - [T]())
is an iso

.

Show (similarly as i Prop10) that the adjoint

equals the composition of
Ho (M =(1) Home (Hj (Milk) ,

(k)

PDX
-> Homp (HW-(Mi (K) , (1) D

Corollary 16 H * RP"; IFz) = #2[X] /(x7) With deg X = 1
.

Proof Same as Thu 12 , using Prop 15. D
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Long Example 17 MY closed

, simply connected.

What do we know about He (M7
,
HIMI !

Simply connected => connected => Ho * Ho = R

-- = orientable => HyFH* = R and PD holds

--> He = 0 by Huraicf Thu = H3 = 0 by PD

UCT = H' = FH1THo = 0
.
PD = Hy = 0 .

UCT = H = FH2OTHe = FHe ,
so He is torion free and thus

bee (because Hof . g . by Them 7) · PD = Hz = H2

So Ho (M)
,
H
*

(M) are determined except for oh Hz (M) E 50 ,
1 1 2, ... 3

What about the cohomology ring ? ~: H" (MIXH2(M) -> H"(M)

is non-singular (Prop 10) and symmetric (since

[2] - [c] = (1) [C] - [21]) .
Pick an orientation of M :

that yields an isomorphism HY(M) -> & (via H* Hot R )

Pick a basis for H2(M) , in an iso H2(M) E XM . Then -becomes

a non-singular symmetric bilinear form Rmx +*-> .

Such a form may be willen as a matrix AE prexer with

~- w = v Aw for v
,
we Rm

.

Eg for M = CP2 we find A = (1) or A = (- 1)
, depending

on the orientation on CP?

~ Non-singular => det A = 1 1
.

~ Symmetric => At = A . Picking a different basis for H (M)

transforms A into TEAT for TEXmxm with det T = In.

Picking the opposite orientation for M transforms A into-A.

8. Poincaré Duality Lecture 20 on 10 May



15 May ↳s
Long Example 17 (cont . 'd) MY closed

, simply connected .

Shown last time : HoEHER , HeFHz = 0 , Hz = ** for some m20.

What about the cohomology ring ? ~: H" (MIXH2(M) -> H"(M)

is non-singular (Prop 10) and symmetric (since

[2] - [c] = (1) [C] - [21]) .
Pick an orientation of M :

that yields an isomorphism HY(M) -> & (via H* Hot R )

Pick a basis for H2(M) , in an iso H2(M) E XM . Then -becomes

a non-singular symmetric bilinear form Rmx +*-> .

Such a form may be willen as a matrix AE prexer with

~- w = v Aw for v
,
we Rm

.

Eg for M = CP2 we find A = (1) or A = (- 1)
, depending

on the orientation on CP?

~ Non-singular => det A = 1 1
.

~ Symmetric => At = A . Picking a different basis for H (M)

transforms A into TEAT for TEXmxm with det T = In.

Picking the opposite orientation for M transforms A into-A.

18 MIN via a map f: M-N

call f E orientation-preserving (op) if deg f = 1 3- reverung if deg f = - 1

thei An = (degf1 . T
+

ANT for some T .

Ex DP2 and F are not o . p .

hom
, equir-

Sime (1) = T
+

(1) T forT = ( + 1)
.

The (Whitehead) The convere holds :

M. N iff Am = TEANT
.
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⑨ Cohomology with compact support & Proof of PD Las
Roofidea for PD : induction over mumber of charts , using Mayer-Victor's to

glue chart together. Problem : Union of chark may be non-compact .
K

Solution : Define a new cohomology theory He st H = H if
M compact , and extend PD :

Theorem 1 (PD without compactness assumption) R Commutative sing with 1,

M"be oriented. Then we have an ison (to be defined later)

PD : H (MiR) -> Hurr (MiR)

Motivation for HE X a locally finde A-complex ,
in every -simplex is

Sace of only finitely many (K +1)-simplexes.

Let the simplicial cochain complex with compact support be

Cs(X) : = [4t((X) 14 (2) = 0 except for finitely many
Note C* &Co is a subcomplex. l-simplexes &EX3

... 000 ...7 3 >Eg X =
V
- 1

2
- 1

Vo

2

-
2e

Vz

di Lite - Di

Since XER = H8(x) = H(x) **, HAWEH(X) 0 VRe1,

S PD doesn't hold for 1 .
Let us check that it does when using Has !

vi(vj) = ei(ej) = Sij .

↓
(is(x) = ⑰

i do (s(x) = O i
V & 2

↓E R itR

vinci-ge

-
since d'(vi)(ej) = vi(de(ej)) = vi(Vj - Vj) = Sie - Si
Sober do = 0 and coker do = & generated by [e"] for any i.

=> H](x) = 0 , H](X) = & and PD holds
.
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Def X top , space ,, A as,

group .

Let the singular cochain

Complex with compact support of X with coefficients in A be

ch(Xit) : = EYEC"(XiA) / Ecompact KEX St

4 (0) = 0 for all w : Sk-X with in (5) nk = 03

Note CC is a subcomplex , became YeC"(X = A) =>

dY(5) = 4 (dm+) = 0 for 2 : S* -> X with in ()-K = 0 ,

Since im (da) in(r) => im (do) - K = 0.

H * (X; A) : = cohomology of C& (XA) is called singular

cohomology with compact support of X with coefficients in A.

Remark 2C2 (XiA) = Ch(X ; A) if X is compact (take K=X)

Def Let I be a set partially ordered by< (ic < is reflexive,

antisymmetric and transitive) . If Fa,B I TVEI with 0, BEX

then (I , E) is called a directed set.

eg subset of a fixed set X ordered by inclusion ,

or open subsels of X , or compact subseh of X.
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Def Let I be a directed set.

Let An be an R-module for eachse I
,
and faß : An -> Aß

a homom
. for each pair LiBEI with LEB ,

such that

fac = id
A and for faß = fas.

A module B with homous
. Ga : As + B for all de I st

gofia = ge kauß
is called direct limit of the Ax ,

denoted B = lim Ax
, if it sahifies the following universal property :

->
LEI

if C is a module with homous ha : Ax -> C and Apofia-ha
then 7 ! i : B -> C stioga = ex ·

- faß I -
- -> 1 ---

-- -

-Aax T
BY

Sgat
gi
ta Ih
·im i

Prop 2 li An exist
,

and is unique up to unique isomorphism.
->

pf Existence : B :=/ < X-fop(x) /XeA,
inal Proj

and
ga : Ax-> B is composition of An Ax-B

.

Given C and ha
,
let i : B + C send [x]EB

, XzAc to ha(x) ·

Uniquenen : the usual proof. 13
-

Ex 3 * Every module is the direct limit of its f . g .
submodules

* The direct lint of

2 = 2 gr = ...

is Q
,
with

maps
: · ----

Q

9. H•
c and proof of PD Duality Lecture 22 on 17 May



Prop4 * top. space ,
I = &KCX 1 K compact] . Then ↳

R l

H
,
(X i A) = lim H (X

, XA) .

->
Kel

Proof Suppress A coefficients from rotation in this proof .

Write L := lim--
->

l l
C (X ,

X(k) = (4C(X) 14(0) = 0 if imveX1k}
-

() im ak = 6
So we have an inclusion of cochain complexes

h -

j : c(X
, X(k) > C

.
(X)

l

By univ. property ,
7 ! i : -> H (X ; A) st

R 94
H(X ,

X(k) ->L- HE(X) commules .

-
j

l

-surjective [4JEHc(X) => 7 compact HEI st4(r)
= 0

l e
X

for im Ink = 0 => [4] in image of j : H (X
,

X (k) -> Hc(X)

=> [4] E im i.

i injective XEL with i(x) = 0 => Pick KEIst

l

X = gm([4]) for [43CH(X, X(V) . Then j
*([4]) = i(x) = 0

l- 1

=> 7 TEC
, (X) with doX = j (4) .

Pick K'compact with

↑ (r) = 0 for im (2)nK' = 0 . Then YeCP(X, X(Kuk'))
b

=> [4] = 0 H(X
, x)(kuk'l = x = gux([4]) = 0 D

Prop 5 Shipped in lecture

* top . Space ,
If Powerset of X , partially ordered by inclusion .

Suppose I is directed, X = Un
,

and UKEX compact JUEI with KIU
UEI

(the last property follows eg if
all UEI are open) .

Then Hr(U ; A) with

inclusion-induced maps
has direct limit

lim Hr(U : A) = Hr(X = A)
-

Proof Exercise
,
similar to proof of Prop 3. B
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Prop6 JEI directed sets st FCCIFBe] : <B
.

The
lin A ~ li Aa

.

=

-> B
->

BeJ XEI

Proof (Skipped in Lecture)
Each Ap has a map gr : Ap- limA .

These are compatible
->

LEI

with the fi .

So the Universal property for in Ap yields

I : li A -> lim Ac
BEJ

7 B ->
-

LEI
BE7

-

Conversely , for each to 7 1 with <B ,
and thus a map

-

faß g
Ac -> Ap-> lim Aß

->

BEJ

These are compatible with the fac. So the univ. properly for

li to gilds ↑: hinAnli ALEI ->

& EI

By the uniquenes part of the universal properties ,
404 and

↑of are the identities .
B

Ex 7 To calculate H : (R" ; A)
,

use

2 = [Br(0))we91 ,
2
, 3

, ...
33 EI.

We have Hell
,
(Br(0) ; A) = St be by LES of pair.

h h
Inclusions induce isos It (IR"

,
IR" (Br(0) ; A) -> H (IR*, IR

*

(Bs(0) : A)

for -S. So

l b l

H (I" ; Al = lin HIR" -KIA) =H (MT
,

M
*

-Br(0) ; A)
kef

h

for any v
.

Thus Ha(RA) St I

So PD as in Them I holds for 12 !
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Theorem 1 with def of map PD Let M"be R-oriented. Then the map

PD : H (MiR)> Hre(M ; R) defined as follows is an iso :

For KEM compact ,
there is a unique MpE Hm(M ,

M(K ; R) St

Mu maps to the generator of Hu (M
,
M/x ; R) given by the orientation

for all XeK /Lemma 7
.

3). The relative cap product yeelds a map

He(M
, M(K ; R) > Hne(MiR),

[4] +> Mn - [4]

16 LEM compact ,
KEL

, then inde(M) =Mm . Using that and

naturality of relutive cap product (
the following commutes :

ha
H (M

, MIK ; R) -> Hn-e (MiR)

Linc
*

-
He (M

,
M L - R)

h

So the univ . property yields a
map

lie HP(M
,
Mik ; R) - Hn-e(Mir) .

Precomposing with the ison
.
HE (MiR) -> Lim H (M ,

MIU , R)

gives our map PD !

9. H•
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Remark8XHausdorf,UpKucom
I

Suit)
Cusing that X Hausdorff => K is closed => X1K open ,

So X(u = ku = (X(k)" = X(k)

is an iso.
.

Its invene composed with gu is a map

H((u ,
un ; 1) -> He (X i 1)

By univ
. property ,

these maps induce

HI(u ; A) - HE(X = A)

So H ? is covariantly (!) fructorial with respect h

inclusions of open subsets of a Hausdorff space.

Lemma 9 M" R-oriented
,
U

,VEM open ,
M = UeV.

Then the following diagram has exact rows and commutes

up to sign /R coefficients suppressed from motation) :

see

(incy) IS anno mas
jede inca to be

-

- incl defined

- He(nV) -He(u) CHICH- HE)M) -> He+1)unu)-
[

[

Dunk ↓(Pr) ↓PDr ↓ PDun
-- > Hn-e(UnV) -> Hure(U)@Hue(r) -> Hure (M) -> Hure-(nur) +...

inc (incle incy)
d

(-inca)
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↳
(1) Commutativity of D ,⑪ follows from naturality
-

of the relative cap product ,
and incx(Mr) =Mun

(2) To show : Commutativity of

He (M ,
M / (KOLD) - He(M

,
MICKLI

=↓ ind
*

Mku ② He(UnV .MnVS (2)! ↓Man
Hure (M) -Hare-e(HnV)

G dropping incla
- from notation

By barycentric subdivision
, Mru

=( U7L
+

unv
+ 2

vK3
H M A

C
1
(U1L) (n(UnV) Cu(Vnk)

V

U

-
L

KO7O
=> Man = incix (Mruz) = [aux + kan + avin]

= [unv] a Hn(M , M(knL))

Since U)L [ M1 /kn2)
,

so <un = Of Ch(M ,
Mi (KnL))

,

and similarly for Gvik

Similarly , Mr
= ind(Mruz) = [anz + Tunv].
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↳
Let [4] CHEM

,
M (KULll . We need to chuck that in @

Mann ind
*

(S([9]1) = 0(Mm~ [43).

Clockwise image of [4]

How to calculate 8([47) ?

Writ 4 = Yn-4c St RECP(M , M(K)
,
MECYM , M2L) ·

Then S[4] = [deYm] = [dYc] (relative colom .

MV connecting hom .)

So Mrn-inc
*

(S([431) = [Goor-dYu]

= [Am(unv)~ Tu]

Since

&euer ~ Tr) = (1) (ducur-Tu-Cunmd'Tr)
= OE Hm-e-e(UnV)

Counterclockwise image of [4] ChainciV

-

d(Ma - (4]) = 0(ka - 4 t <
unv
-4 + xv-4])

~

chain in U

= [dn-e([ux - 4)] by def of MV connecting
homom

.

O (cracking the egg)

= (1) [dn(dux) ~ 4] Since d94 = 0

= Frid [dn Ku) ~ Yn] since dnkun)~T = 0

= ze *

[da(unv) ~ Tr]

since : Kai + dunv] =

Mr => dn(Xux + nev) - (n
-1
(M(k)

=> dn (ux +unv) - Tr = 0
.

D
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Theorem 1 M2R-oriented => HE (M > R) > Hre(M ; R) is an iso.

Lemma 9 M2 R-oriented
,
U

,VEM open ,
M = VeV.

-> He(unv) -> HE(U) HI(H-HE(M)- Her(umV) ->
[

[

Dunk ↓(Pr) ↓PDr ↓ PDun
-> Hn -e(UnV) -> Hure (4) @ Hure (V) -> Hure (M) -> Hn

-e- 1
(UnV)+

has exact rows & commites up
to sign.

Now Fixing the sign in Lemma S

In all
squares that anticommute (ie te = -1)

, simple switch the sign of
one of the horizontal maps. This preserves exactness and yields commutativity.

Proof of Theorem 1

(A) If M = UnV for U
,
V open

and PDu
, PDr , PDuew are isos

,

ther so is PDM . Proof : Fire-lemma & Lemma9 -

(B) If M=Fli with UnEUz E ---open ,
and all PDU: are isos

,

then so is PDM. Proof : Ruh 8 yields a commutative diagram
micIX

---

-> HE (i) -+ H (Min) -> ...

incleX Xinc
HE(M)

The induced map him H ! (Ui) + HE (M) is an iso
, since

KEM compact => Fi : KUi.

Moreover
, lim Hn-e((i) = Hu-e (M) (Prop5/Ex .

on Sheet 6).

By assumption ,
all PDu:: H&(Ui) -> Hure (Ui) are isos.

So the induced map lie H(Hi) -> hi Hure (Wil is also an iso.

It equals PDM .
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(1) M = R" We already know He (RM) = Re = Hu-e(r) (Ex 7)
,

L
but still need to chuck that PDy is an iso.

Let f : (M"
,
MIB(0) + 152

,
05I be a horn - equir .

Then the

following commites(left triangle by def of PDM , right square by

naturality of rel . Cap product) :

HE(IR"
iso by Ex7
/w(/Rh

,
IR" (B

i
(0)) (

f
A

H" (A
, 054=

& ↓Missionen
E

↓ fa (MBe(0)-PDM

>Hot HolAY

So it suffice to check that fx (MBe(0))- is an iso
,
which can be

seen using simplicial (co-) homology.

(2) MERW
,

M = Vew----Ve for Ve open
and convex

By induction over Is
.

For k = 1
, follows from (1) Since V: = RU

. If frue up to k :

M = U - Vere for U = Ver ... u Va PD
Vate

iso by (1) , PDu iso

by induction hypollosis ,
and PDunuan iso also by induction hypothesis,

Since UnVe= (UnVe) -... (UnVr)

with UnVi
open and convex

.
So PDm iso by (A) .

-

(3) MER" open Write M =U Vi with Vi open
and convex

leg take as Hi all open balls &M with sational radius and national coordinates)

Let Un = Vr ... Vm .
Then PDur iso for all b by 121 .

Done by (B)

(4) M wild Suite atlas
,

in M = Vew-- - -Ve will V : Open and He

Proceed as in (2)
, using (3) on Un Vate ,

which is homeo to an

open set ER

151 Generel M has a countable atlas (using 2nd countability) ,
ie

M = Vi with Vi open and ER". Proceed as in (4) D
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↳
Logical structure of Ch

.
5-9 (ie Cohomology

Gluing local orientations ⑰

Cohomology 5
Mr , He (M) and [M]

Cap product o
I

↓ ↓ e
Statement of PD Hand
for compact M D Direct limits &

↓ /
Statement & Proof
of PD for

[
nor-apot M ⑨

over 128

Cup product 6

TO

er & ↓
Non-singularity
of cup product! 2 ↓

~

↓
-( ) =0 H

·

(RPM, IE)8 Ho ((pm)

9. H•
c and proof of PD Duality Lecture 24 on 24 May



↳
⑩ Alexander Duality

Theoret /Alexander Duality) Let m = 0 and KESM be a

locally contractible , compact subspace ,

U + 0
,

K + S
.

Then for all i

#(Sa (K ; 2) = Fn-i - (k ; R (

Remark 2 This means : if a compact top . Space K is locally "tame" (ie

locally contractible , eg a manifold) ,
and you

embed K into a sphere sh I

then the homology of the complement S"/K does not depend on the

choice of embedding !

10. Alexander Duality Lecture 24 on 24 May



29 May ↳

Example 3 KES" with KES" is called a knot
. By Alexander

Duality ,
Fi (S" (K) = F-1(S ; R)

Ho(S" (K) = Hr(S" (K) EX ,
and all offer homology groups are trivial

This is easy to see geometrically for an "unhnolted" K
,
since then

SKES'

n - 1

Corollary 4 M non-orientable
, compact .

Then M does not embed into SV.

Proof Assume M = O (
M & S"

. By Alexander duality :

H"- (M) = F2 (M) = Fo(SMM)
So HU-(M) is free . By UCT we also know :

Hm (M) = Hom(Hm-e(M ,R)(Hm-z (M) , R)um

= O because = T(Hm-2(M))
↑ non-orientable

since Hu-z (M) f. g.
(Prop 7 .

2 (ii))

Hu-1 (M) free => Ext-term Jero => Hm-z (M) free and H" "(MI = 0
.

Again by UCT :

Hr" (MilF) = (Hn-- (M) , IE) @ xtp (Hu-z (M) , 152)
=0 as above O because Hm-z (M) free

=> HW-(MilFzlEO .

But PD = Hur(MilEz) = Ho(MilFz)
,

which is non-trivial since MF ·
Contradiction. D
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Lamma 4 KII" with h compact and locally contractible

(1) There is UoER" open with KEUo and
a retraction r : U-> K

.

O

(2) For all open UElo with KEU ,
there exist an open VEU

with KIV st inclusu is homotopia to ind · Flv
.

ku

Proof (1) Hatcher Thu A
.7

(2) Skipped in Lecture

Because we're in R"
,
one may simply define a "linear" homotopy

h : UXI -> R"
, h(x , t) = (1 -t(x + tr(x)

between ide and r. However
,
this is a homotopy through maps to 14,

not maps to U .
&" (U) is open in UXI . By def. of the product

topology , for every tel there is Vel open , Etso such that

Ve X ((t - de ,
t + (e) - [0, 1))ab - (4)

.

We have [0
.
13 = U (t-Et , ++Ez)v0 .

1]
,
and since [0

,
1]

te[o, 1]

i compact , these is a finite subcovering. The interection of the corresponding

Ve is an open set V such that VXIch"(n) =>

he yields a homolopy from VU to ru through maps to U .B
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↳
Proof of Theorem 1 Treat the case i 0 first .

Ther

F
: (S" (k) E Hi (S(k) ·

= H (S (k) PD1

= lim He
:
(SMIK ,

SU(Kr(1) by Prop 9 .
4

->

LCSuk

Kompakt

= lim Hm-i(gmsm2) incl
*

is iso
->
L by excision

- lim Fn-i = (gm(L) LES of pair=

->

L

↓ in
-i -

1(k)

Proof of the last iso : Let us prove iso for unreduced cohomology. This

implies iso for reduced .

Pick peSIK .

Then KES"\p=R" So one

may pick to as in Lemma 4(1) and retraction r : Uo-K.

By Prop 9
.

6
, him li . Then

,
the univeral property yields a maps :-> -

S UoEL

S

-
incl
*

G LAn
-i-

(k)) Hm- (942) -> lim Hw-
-r

(g4(L)
- ->

fols2)
* S"1401 LESUIK

& ↓fiz-ind
Colsun)

*
-H
: -

(5-2)
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Let us show that s is an iso. ↳
Sjectivity of s : olguy ind = ide =>

ind* /ganz
*

= idymiss => inc
*

surjective.

Injectivityof :

Let Xe lim with s(X) = o be given .

Pick ( such that X = gz (y)

=> s(x) = inc
*

(y) = 0 . By Lamma 4(2) , pick L'with LEL'8k

st S"L'2> SL is homotopic to Night'

=> f2
.
2
= (wlsui

*
o inc

*
=> fc, (y) = flgn)* (inc * (y)) = 0

= x = g((y) = gy)fz
,
v(y)) = 0 . ~

Case i = 0 : As before , we have Ho (SIK) =Li H (g ,
572).

LES of pair :
= O Since (#0 ,

LSY

=O => S21 L non-compact manifold

i -

Hh(gr) -> Hm-154/2) +> A
* (S

, S4(2) ->1) -> H
*

/S"(L)
= R

=> H4(S"
,
542) =H(SL) 0 R

.

=> Ho(S"(k) = HW-(k) R

=> Io (5" (k) = Hm-1 (K)
. D
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⑪ künneth Theorem (not in examt 27
If A and Bare R-algebras , then AQB is too

,
via

R

(a0b) . (aQb)) = aabb!.

If A and B are graded , then AGB is too
,
via

deg (ab) = deg a + degb.

UTheorem +X
,

1 spaces , Hi (X / R) fre of finite rank for all i.

Then there is an isomorphism of graded R-modules

H
·

(XxYjR) = Ho (X , R) @Ho(T ; R),
The ring structure is respected up to sign.

Example 2 H%SxS') = H
*

(SH·S')
as graded rings ,

with multiplication only respected up Co sign

= 2[x]/(x)@2(23/(24
= X(x , y]/(x2, y4

This is the result we obtained in Example 6
. 8

, up to sign

Example 3 H
*

(SixSY) = * [x , g]/(x2, 24
with deg x = 2 , degy

= 4
.

This iso respeck multiplication including

the sign ,
since all degrees ar even. .

More explicity :

H
*

(SSY) ER gen . by X X20

HY (53xSY) = & gen . by y y20

tensor productHS(SSY) ER gen . by XY
of chain complexes
- to be defined !

Proof idea forTheorem
↓

(1) Eilenberg-Zilber Thm : C
.
(XxY) = C

. (X)0C . (T)

(2) Compute Hi(C. (X)@Co(Y) - similar to Hi (C · (X)@ A)
for a R-module A

11. Künneth Theorem Lecture 26 on 31 May
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⑫ Twisted Homology (not in exam

Motivation K & S a hnot
,
in KESV

. Corrider the composition

surjection iso scj
-> He (S3(k)
Hurewicz'sMeisten

M

Theore

T

By the clarification of coverings , ber&t . (53(K) corresponds to

a two-sheeted connected covering Mr -> S37K .

What is He (Mr) ?

It depends on K !

O O D
He(Mr)E R H (Mu) = R*R13 Hi(Mul = RGR15

So these are three distinct knots !

Moreover
,
it illustrates that homology of coverings of X can be

a rich invariant.

Def For a (non-abelian) group
G ,
let the group ring RTG]

be the free R-module with basis G
,
and multiplication

(agg) : (Zbge) := [agbalgineG
-sie

- I S
finite R linear combinations

of elements of G

2) [G] is a unital sing ,
and commutative if and only if G is abelian .

Ex R[Rim] = R(t]/(tr-1)
, R[R] = R[t , t1]

R [S] = R(x , y)/(X2- 1
, y - 1 , xyxy - 1)

12. Homology with twisted coefficients Lecture 26 on 31 May



↳
↑ X a regular covering with deck transformation group G

(group of homeos g : Y+ Y with
p = pog)

& ach from the left on Y .

G also acts from the left on Ci(i) by g
. v : =

got
·

That makes Ci(i) into a left RTG] -module.

The differentials of C . (i) are RCG] - linear !

Def We wile Ct(X ; R(ET) for C
.
(Y ; 1) with the above

left & [G]-module structure and call this a twisted chain complex.

Its n-th homology HE(X ; R[G]) interibs the left
& [G] - module structure !

weImparticular , if X admite a universal covering * , may consider

C (X , R [TeX]) ·

Remark Citr(X ; REE]) is a free RCET - module ! But

HE(X ; R[G]) need not be free

Ex Ct(S" , &[S]) using cellular homology :
-

= [[t ,ti]

C
tv

tr 2

V tv tr
2
~ V ⑧ > E · Ze ⑳

CW(S) : * RCtF/(1 CtwCW (s ; RCt]]
-

2-R [[t
*

] FRCtr]

=> HE (S"; R(t*r]) = Kardi = 0

Hotw (S" ; R[t F2]) Ecoled. = RCtFy/ (tre)

12. Homology with twisted coefficients Lecture 26 on 31 May



L
O & D6

In (53/4 ; R[tF]) He (S314 ; R[tF]) Hn (53/4 ; R[t* J)

= 0 = R[tFr] /(t- e +t) = 2(t=r]/(t" - 3 + t)

Theorem (Twisted Poincare Duality (

If X is compact and Y orientable
, then

HÖ (M ; R[G]) = HI (M ; 2[G])

Ex Ct(RP2; R[R12]) again using cellular homology :

esC ~ Atv ⑨ V

and a 2-all f ef
R
-

CW(RP) GR/(t - 1) Ctw ,
CW

(IRP ; RCt]/(E-l
R

S-
O t+1 t- 1

& R R R-> R -> R

HEWER/(t -1)

Ho

Hat = (t - 1)
t+1

Couch (RP"; R) is the dual of C ,
C

: RRR

So Hi = (t +1)
,
HIr = O

, HE E R((t + 1)

Indeed
, we find HEWEHEw

,
H Hew

, using the iso

R -> R
,
tre-t
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