ALGEBRAIC TOPOLOGY II, ETHZ, FS 2024

LUKAS LEWARK

Contents

Overview 1

1. Tensor products of modules 2
Category theory intermezzo 5
2. Homology with coefficients 7
3. Calculations and the theorem of Borsuk-Ulam 14
4. The Universal Coefficient Theorem for homology 20
5. Cohomology 32
6. The cup product 45
7. Manifolds and orientations 58
8. Poincaré Duality 68
9. Cohomology with compact support and proof of PD Duality 79
10. Alexander Duality 92
11. Künneth Theorem (not in exam) 97
12. Homology with twisted coefficients (not in exam) 98

All comments and corrections are highly welcome.
Please email lukas.lewark@math.ethz.ch.
Version 3 from 13 June 2024.
Changelog. Version 2: Small layout changes. Version 3: correction on page 22.

Algebraic Topology II (FS' 24 , ETH)
Coordinator: Sunyou Abramyan
Alg Top I Top. Space x
Singular Chain Complex $C(x)=\cdots \rightarrow C_{1}(x) \xrightarrow{d_{1}} C_{0}(x) \rightarrow 0$ ξ
Homology groups $H_{i}(x)$
Alg Top II Spice up $C(X)$ before taking homology to get more sensitive invariants and more geom. applications
Topics: * Homology with Coefficients (for abelian groups M define chain complex $C(x) \otimes M$
with homology groups $\left.H_{i}(X ; M)\right)$

* Cohomology (cochain Complex Ham $(C(X), M)$ with Cohomology groups $\left.H^{i}(X ; M)\right)$
* Poincare Duality for compact n-dim manifolds X $\left(H_{i}(X ; M) \cong H^{n-i}(X ; M)\right.$, leading to intersection forms $H_{m / 2}(x) \times H_{m / 2}(x) \rightarrow \mathbb{Z}$ for even n)

Color Scheme: Sections, Date
Def / Thu / Proof etc.
Newly defined terms

Corrections
(1) Tensor Products of modules (Spaniel : Intro, Sec 4 \& Ch 5 Sec 1 ; Hatcher Sec 3.2/AKümeth formula; Atiyah-MacDomald Ch 2 / Tensor Product of modules)

Let R be a commutative ring with 1 (after this section only $R=\mathbb{Z}$). Prop 1 Let M, N be R-modules. Then there exists an R-module T and a bilinear $\operatorname{map} \mu: M \times N \rightarrow T$ such that:

For all R-modules K and bilinear maps $f: M \times N \rightarrow K$ there is a unique homomorphism $g: T \rightarrow K$ with $g \circ \mu=f$.

Proof $U:=$ free R-module with basis the set $M \times N$.
$I:=$ submodute of U generated by

$$
\left\{\left(\lambda x+x^{\prime}, y\right)-\lambda(x, y)-\left(x^{\prime}, y\right) \mid \lambda \in R, x, x^{\prime} \in M, y \in N\right\}
$$

$\cup\left\{\left(x, \lambda y+y^{\prime}\right)-\lambda(x, y)-\left(x, y^{\prime}\right) \mid \lambda \in R, x \in M, y, y^{\prime} \in N\right\}$
Let $T=U / I$ and $\mu: M \times N \rightarrow T, \mu(x, y)=[(x, y)]$ Check that μ is bilinear! Now let $f: M \times N \rightarrow K$ as above be given. Check existence of g :
Let $\tilde{g}: U \rightarrow K$ be the homomorphism with $\tilde{g}((x, y))=f(x, y)$. Check that $I \subseteq$ her $\tilde{g} \Rightarrow \tilde{g}$ induces $g: T \longrightarrow K$.
We have $g(\mu(x, y))=g([(x, y)])=\tilde{g}((x, y))=f(x, y)$ Check uniqueness of g :
If $g^{\prime}: T \rightarrow K$ with $g^{\prime} \circ \mu=f$, then $g^{\prime}([(x, y)])=g([(x, y)])$ for all $x \in M, y \in N$. But such $[(x, y)]$ generate $T \Rightarrow g=g^{\prime}$

Prop 2 I $\delta \mu: M \times N \rightarrow T$ and $\mu^{\prime}: M \times N \rightarrow T^{\prime}$ bore
satisfy the condition in Prop 1, then there is a unique isomoxphisen $\varphi: T \rightarrow T^{\prime}$ such that $\varphi_{0} \mu=\mu^{\prime}$.

Proof By assumption (existence of g), $\exists \varphi: T \rightarrow T^{\prime}$ with $\varphi_{0} \mu=\mu^{\prime}$ and $\exists \psi: T^{\prime} \longrightarrow T$ with $\psi \circ \mu^{\prime}=\mu$. Then $\psi \circ \varphi: T \rightarrow T$ with $\psi \circ \varphi \circ \mu=\mu$. By assumption (uniqueness of g) $\Rightarrow \psi \circ \varphi=i d T$. Similarly $\quad \varphi \cdot \psi=i d_{T^{\prime}}$.
Def T as in $\operatorname{Prop} 1$ is called the tensor product of M and N over R, written $M \otimes_{R} N$. Drop R if there is no ambiguity. Write $x \otimes y=\mu(x, y) \in \operatorname{MQR}_{R}^{\otimes} N$.

Notation x and \oplus is the same for finitely many modules.
Prop 3 (1) \exists iso $M \otimes N \rightarrow N \otimes M$ with $x \otimes y \mapsto y \otimes x$.
(2) \exists iso $(M \oplus N) \otimes K \rightarrow(M \otimes K) \oplus(N \otimes K)$ with

$$
(x, y) \otimes z \longmapsto(x \otimes z)+(y \otimes z)
$$

(3) $I \subseteq \mathbb{R}$ ideal $\Rightarrow \exists$ iso $(R / I) \otimes M \rightarrow M / I M$ with $r \otimes m \longmapsto[\mathrm{rm}]$

Rok 4 Special case of (3): Iso $R \otimes M \rightarrow M, \quad v \otimes m \mapsto r m$.

Let $h: M \oplus N \rightarrow N \oplus M$ be the haman. with $(x, y) \longmapsto(y, x)$.
Then $\mu_{N, M} \circ h: M \oplus N \rightarrow N \otimes M$ is bilinear.
By the universal property of $\otimes, \exists \varphi: M \otimes N \rightarrow N \otimes M$ with $\varphi \circ \mu_{r, N}=\mu_{N, M \circ h}$, ie $\varphi(x \otimes y)=y \otimes x$.
Let ψ be the analognous homo with M,N switched \Rightarrow φ, ψ are mutually inverse homomorphisms.
In the lecture, a similar (but incorrect) proof was given, based on the erroneous assumption that h is bilinear (it is, in fact, linear).
Proof of (2)-(4): Exercises.
Rok Using Prop 3, we can calculate $M \underset{2}{M} N$ for all finitely generated abelian groups M, N.
Example $6 \mathbb{Z}^{2} \otimes \mathbb{R}^{2}=(\mathbb{R} \oplus \mathbb{Z}) \otimes(\mathbb{Z} \oplus \mathbb{R}) \cong \mathbb{R}^{4}$
So $\pi^{2} \otimes \mathbb{R}^{2}$ is free with basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$.
Careful! Not every element of $\mathbb{R}^{2} \otimes \mathbb{R}^{2}$ is of the form $x \otimes y$, eg $e_{1} \otimes e_{1}+e_{2} \otimes e_{2}$ isn't (and isn't equal to $\left(e_{1}+e_{2}\right) \otimes\left(e_{1}+e_{2}\right)$).

Rok (1) Every element of $M \otimes N$ is equal to $\sum_{i=1}^{M} x_{i} \otimes y_{i}$ for some Finite $n, x_{i} \in M_{1} y_{i} \in N$.
(2) $(\lambda x) \otimes y=x \otimes(\lambda y)$
(3) $\left(x+x^{\prime}\right) \otimes y=x \otimes y+x^{\prime} \otimes y$

1. Tensor products of modules

Prop $8 \quad f: M \rightarrow N, \quad f^{\prime}: M^{\prime} \rightarrow N^{\prime}$ R-module homous. 23 Feb 5
(1) Z homo $f \otimes f^{\prime} M \otimes M^{\prime} \rightarrow N \otimes N^{\prime}$ with $x \otimes x^{\prime} \mapsto f(x) \otimes f^{\prime}\left(x^{\prime}\right)$.
(2) $\left(f \otimes f^{\prime}\right) \circ\left(g \otimes g^{\prime}\right)=(f \circ g) \otimes\left(f^{\prime} \circ g^{\prime}\right)$.
(3) $(f+g) \otimes f^{\prime}=f \otimes f^{\prime}+g \otimes f^{\prime}$ and similarly in second factor.

Pf (1) Induced by the bilinear map $M \times M^{\prime} \rightarrow N \otimes N^{\prime}$,

$$
\left(x, x^{\prime}\right) \longmapsto f(x) \otimes f^{\prime}\left(x^{\prime}\right)
$$

(2), (3) Check that $x \otimes x$ ' hae the same inge under both maps.

Prop 9 an abelian group, S a commutative ring. Then $M \otimes S$
Carries an S-module structure given by $S \cdot(x \otimes t)=x \otimes s t$.
For honor $f: M \rightarrow N$ and S-homom $g: S \rightarrow S$,
$f \otimes g: ~ M \otimes S \rightarrow N \otimes S$ is an S-homom.
Proof: Exercise (careful: why is the function $x \otimes t \mapsto x \otimes s t$ well-def?).
Category theory intermezzo
Reminder A Category ε consists of a class $|\varepsilon|$ of objects, for all $X, Y \in|\varepsilon|$ a set $\varepsilon(X, Y)$ of morplisuns wite a distinguished identity momplism $1_{x} \in \varepsilon(x, x)$, and composition functions $0: \varepsilon(X, Y) \times \varepsilon(T, Z) \rightarrow \varepsilon(X, Z)$ such that $(f \circ g) \circ h=f \circ(g \circ h)$ and $f \circ 1_{x}=1_{x} \circ f=f$. A (covariant) functor $F: \varepsilon \rightarrow D$ consists of functions $|\varepsilon| \rightarrow|D|$ and $\varepsilon(X, Y) \rightarrow D(F X, F Y)$ with $F(f \circ g)=F f \cdot F_{g}$ and $F 1_{x}=1_{F x}$. For a contravariont functor, one has instead $\varepsilon(X, Y) \rightarrow \infty(\mp Y, \mp X)$ and $F(f \circ g)=F g \circ F f$.

Def A preadditive category E is a category wite abelian group structures on $\mathcal{E}(X, Y)$, such that compositions are bilinear. A functor F between preadditive $C \rightarrow \infty$ is additive if the functions $\varepsilon(X, Y) \rightarrow D(F X, F \bar{\imath}) \quad($ or $\rightarrow \infty(F Y, F X)$ if F is contravariant) are linear.

Examples $10 R$ commentative ring with 1.
(1) The category R-Mod of R-modules and R-homomorphisms is preadditive.
(2) Chain complex over a preadditive category E :
sequence of $C_{0}, C_{1}, \ldots \in|\varepsilon|$ and momplisuns $d_{1}: C_{1} \rightarrow C_{0}, d_{2}: C_{2} \rightarrow C_{1}, \ldots$ with $d_{i} \circ d_{i+1}=0$. The cat. Ch (E) of \mathcal{E}-chain complexes and chain maps is again preadditive. Chain maps $f: C \rightarrow C^{\prime}$ are sequences f_{0}, f_{1}, \ldots with $f_{i} \in \mathcal{E}\left(C_{i}, C_{i}^{\prime}\right)$ and $f_{i} \circ d_{i+1}$ $=\alpha_{i+1}^{\prime}$ of i+1 for all $i \geqslant 0$.
(3) Cat of Top space $\longrightarrow \mathrm{Ch}(\pi$-Mod $)$,
$x \longmapsto C(x), \quad f \longmapsto f_{c}$ is a functor $\left(A l g T_{o p} I\right)$
(3^{\prime}) Refinement of (3): Functor
Cat of Pairs of Top spaces $\rightarrow C h\left(\lambda-R_{\text {od }}\right)$
$(X, A) \longmapsto C(X, A)$,
$f \longmapsto f_{c}$
Objects: (X, A) with X Top space, $A \subseteq X$.
Morplisme, $f:(X, A) \rightarrow(Y, B): \quad f: X \rightarrow Y$ cont. with $f(A) \subseteq B$.
(4) $\quad \operatorname{Ch}(R-\operatorname{Mod}) \longrightarrow R-\operatorname{Mod}, C \longmapsto H_{i}(C):=\operatorname{ker} d_{i} /$ in d_{i+1} $f \longmapsto f_{k}$ are additive functors for each fixed $i \geqslant 0$.
(5) Composing (3') and (4) gives functor

Pairs of top spaces \longrightarrow 2-Mod, $(X, A) \longmapsto H_{i}(X, A)$,

$$
f \longmapsto f_{*}
$$

(6) M a fixed R-module. Then R-Mod $\rightarrow R$-Mod, $N \longmapsto N \underset{R}{\otimes} M, \quad f \longmapsto f \otimes i d_{M}$ also written as $f \otimes M$ is an additive functor! (see Prop 8)
(6') \mathbb{Z} - Mod $\rightarrow S$-Mod,

$$
M \longmapsto M \underset{R}{\otimes} S, \quad f \longmapsto f \otimes \text { ids }
$$

is another additive functor (see Prop 9)
(2) Homology with coefficients Spanier 5.1, Hatcher 2.2
X top. space, $A \subseteq X, M$ an abelion group.
Prop $1 \quad \cdots \underset{d_{2} \otimes i d_{M}}{\longrightarrow} C_{1}(x, A) \otimes M \underset{d_{1} \otimes i d_{M}}{\longrightarrow} C_{0}(x, A) \otimes M \longrightarrow 0$ is a chain complex.

Proof postponed.
Def We call the complex in Prop 1 the chain complex of (X, A) with coefficients in M. denoted by $C(X, A) \oplus M$. We call $H_{i}(C(X, A) \otimes M)$ the it homology group with coefficients in M, denoted by $H(X, A ; M)$.
Rok $2 C(X, A) \oplus R$ is naturally isomorphic to $C(X, A)$.
2. Homology with coefficients

Goal Chain complexes \& homology groups with any coefficients M 8 have all the good properties proven for \mathbb{Z} coefficients in Alg Top I.
Rank 4 Recall $C_{i}(X)$ is a free 2 -module with basis the singular simplexes $\sigma: \Delta^{i} \rightarrow X \Rightarrow C_{i}(x) \otimes M \cong \bigoplus_{\sigma: \Delta^{i} \rightarrow x} M$. So one may think of a chain in $C_{i}(X) \otimes M$ as a finite linear combination with coefficients $m_{j} \in M$ of singular simplexes σ_{i} : $\sum_{j=1}^{u} \sigma_{j} \otimes m_{j}$.

Def (Eitenberg-Steenrod Axioms, from Alg Top I)
A homology theory is the following.
Data: For all $n \in \mathbb{R}$:

* Functor ln from Cat of pairs of spaces $\rightarrow \mathbb{R}$-Mod.
* Natural Homomorphisms $\partial: h_{n+1}(X, A) \rightarrow \operatorname{hn}_{n}(A):=h_{n}(A, \phi)$

$$
\begin{aligned}
& \longrightarrow \underset{f_{*} \downarrow}{ } \quad \ln _{n+1}(x, A) \xrightarrow{\partial} \underset{\substack{ \\
\left\lfloor f_{*}\right.}}{\operatorname{hn}(A)} \quad \text { commutes for all } \\
& \operatorname{hn}_{n+1}^{+*}(Y, B) \longrightarrow \operatorname{hnn}^{+f^{*}}(B) \quad \text { Cont. } f:(X, A) \rightarrow(I, B)
\end{aligned}
$$

Axioms: (1) $f \simeq g \Rightarrow f_{*}=g *$ (Homotopy)
(2) $\bar{u} \subseteq A^{0}$, inclusion $i:(x \backslash u, A \backslash u) \rightarrow(x, A) \Rightarrow i_{*}$ iso (Excision)
(3) \ln (one point space) $=0$ for $n \neq 0$ (Dimension)
(4) For inclusions $i_{\alpha}: X_{\alpha} \longrightarrow \frac{11}{\alpha} X_{\alpha}$,
(t) $\operatorname{hn}\left(X_{\alpha}\right) \xrightarrow{\sum_{\alpha}\left(i_{\alpha}\right)_{*}} \ln \left(\frac{11}{\alpha} X_{\alpha}\right)$ is an iso. (Additivity)
(5) There are long exact sequences (Exactness)

$$
\ldots \rightarrow h_{n}(A) \xrightarrow{\text { ind }_{*}} \operatorname{hn}(x) \xrightarrow{\text { ind }_{*}} h_{n}(x, A) \xrightarrow{\partial} \ln _{n-1}(A) \rightarrow \ldots
$$

A move precise Goal Thu $5 H_{n}(; M)$ is a homology theory.
Prop $6 F: 12-\operatorname{Mod} \rightarrow \varepsilon$ an additive functor.
(1) An additive functor $C h(\lambda-M$ od $) \rightarrow C h(\varepsilon)$, which we also denote by F, is given by sendrig a chain complex C.

$$
F(c)=\ldots \rightarrow F C_{2} \xrightarrow{F d_{2}} F C_{1} \xrightarrow{F d_{1}} F C_{0} \longrightarrow 0
$$

and a chain mop $f: C \rightarrow C^{\prime}$ to $F(f)$ with $F(f)_{i}=F\left(f_{i}\right)$.
(2) If $f, g: C \longrightarrow C^{\prime}$ are homotopic, them so are $F(f)$ and $F(g)$.
(3) $f: C \rightarrow C^{\prime}$ a homotopy equivalence \Rightarrow so is Ff.

Proof (1) $F d_{1} \circ F d_{2}=F\left(d_{1} \circ d_{2}\right)=F 0=0$

Check that F is an additive functor.
(2) $f \simeq g \Rightarrow \exists$ homotopy $h: C \longrightarrow C^{\prime}$, ie $h_{i}: C_{i} \rightarrow C_{i+1}^{\prime}$,

with

$$
h d+d^{\prime} h=f-g
$$

$\Rightarrow F h: F C \rightarrow F C^{\prime}$ homotopy and $F h F d+F d^{\prime} F h=F f-F g$.
(3) $g: C^{\prime} \rightarrow C$ and $f \cdot g \simeq i d_{C^{\prime}}, g \circ f \simeq i d_{C} \Rightarrow$

$$
F(f) \cdot F(\jmath) \simeq i d F\left(c^{\prime}\right)
$$

$$
F(g) \circ F(f) \simeq i d F(c)
$$

Corollary 7 (apply Prop 6 to $F=-\otimes M$)
(1) $C(X, A) \otimes M$ is a chain complex (that was Prop 1)
(2) Cont. $f:(X, A) \rightarrow(Y, B)$ induce chain maps $f_{c} \otimes i d M: \quad C(X, A) \otimes M \rightarrow C(Y, B) \otimes M$.
(3) $f \simeq g \Rightarrow f_{c} \otimes M \simeq g_{c} \otimes M$.
(4) $f_{c} \otimes M$ induces $f_{*}: H_{m}(X, A ; M) \rightarrow H_{M}(T, B ; M)$

Notation We'll write f_{c} for $f_{c} \otimes i d_{M}$.
Overview of functions

Rank 8 For a commutative ring $S, C(X, A) \oplus S$ is a chain complex over $S, H_{i}(x, A ; S)$ is an S-module, and f_{c} and f_{*} are S-linear. Particularly useful for S a field!

We have constructed half of the data to show $H_{m}(-; M)$ is a homology theory, and we have proved axiom (1) (Homotopy)

Proof of Axiom (2) (Excision) $i_{c}: C(x \backslash u, A \backslash u) \rightarrow C(x, A)$ is a homotopy equivalence (Alg Top I).
$-\otimes M: C h(\mathbb{Z}$ - Mod $) \rightarrow C h(\pi$-Mod) preserves homotopy equiv. (by Prop 5(3)).
$\Rightarrow i_{c} \otimes M$ is a home. equiv.
$\Rightarrow i_{*}: H_{\mu}(x>4, A \backslash U ; M) \rightarrow H_{\mu}(x, A: M)$ is an iso.

Proof of Axiom (3) (Dimension) For X the one-point space,

$$
\begin{aligned}
& C(x) \cong \quad \cdots \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\square} \mathbb{O} \mathbb{Z} 0
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow H_{n}(X ; M) \cong\left\{\begin{array}{cl}
M & n=0 \\
0 & e l s e
\end{array}\right.
\end{align*}
$$

Proof of Axiom (4) (Additivity) $\bigoplus_{\alpha} C\left(x_{\alpha}\right) \xrightarrow{\sum\left(i_{\alpha}\right) c} C(x)$ is a homology equiv. (Alg Top $I) \Rightarrow$ so is $\left(\oplus C\left(X_{\alpha}\right)\right) \otimes \Pi \xrightarrow{\left.\left(S\left(i_{\alpha}\right)\right)_{c}\right) \otimes i d_{r}} C(x) \otimes \pi$, which is isominplic to $\oplus\left(C\left(X_{\alpha}\right) \otimes M\right) \xrightarrow{\sum\left(i_{\alpha}\right)_{c} \otimes d m} C(X) \otimes M \quad \square$

Construction of connecting maps ∂ and Proof of Axioms (5) (Exactness)

$$
O \rightarrow C(A) \xrightarrow{\text { incl. }} C(X) \xrightarrow{\text { incl }} C(X, A) \rightarrow 0 \text { is a SES of }
$$

Chain complexes of free abelian groups. \Rightarrow

$$
0 \rightarrow C \xrightarrow{\text { ingle }} C(A) \otimes(x) \otimes \xrightarrow{\text { in dc }} C(x, A) \otimes M \rightarrow 0
$$ is also exact! (Exercise)

This conclucles the proof, using:
Lemuria 8 (A ls Top I) if $0 \rightarrow C \xrightarrow{f} D \xrightarrow{g} E \rightarrow 0$ is a SES of chain complexes over a sing, then there is a LES in homology:

$$
\ldots \longrightarrow H_{m}(c) \xrightarrow{f_{*}} H_{m}(D) \xrightarrow{\partial_{*}} H_{n}(E) \xrightarrow{\partial} H_{m-1}(c) \rightarrow \ldots
$$

Moreover, the ∂ may be chosen naturally, which means:

$$
0 \rightarrow C^{\prime} \rightarrow D^{\prime} \rightarrow E^{\prime} \rightarrow 0
$$

$$
H_{m}(E) \xrightarrow{\partial} H_{m-1}(C)
$$

then

$$
{H_{m}}^{H_{m}\left(E^{\prime}\right) \xrightarrow{\partial} H_{m-1}\left(C^{\prime}\right)} \text { commutes. }
$$

Useful theorems for homology with \mathbb{Z}-coefficients may now be generalized to arbitrary coefficients M in one of the following ways:

* Deduce from Eilenberg - Steenrod axioms
* Deane from the \mathbb{Z}-version
* Prove in the same way as for \mathbb{R}

Prop $9 \quad H_{0}(X ; M) \cong \bigoplus_{Z \in \pi_{0}(X)}^{\cong} \underbrace{\left\{\left[\sigma_{z} \otimes m\right] \mid m \in M\right\}}_{\cong M}$, where one chooses

Theorem 10 (Mayer-Vietoris) If $A, B \subseteq X$ with $A^{\circ} \cup B^{\circ}=X$, then there

$$
\begin{aligned}
& \text { is a LES } \\
& \ldots \rightarrow H_{n}(A \cap B ; M) \xrightarrow{\left(\begin{array}{l}
\text { incl } \\
\text { incl* }
\end{array}\right.} H_{n}(A ; M) \oplus H_{n}(B ; M) \rightarrow H_{n}(x ; M) \rightarrow H_{n-1}(A \cap B ; M) \rightarrow \ldots
\end{aligned}
$$

Theorem 11 If (X, A) is a good pair (ie $A \subseteq X$ is closed and a strong deformation retract of $X)$, then the projection map $p: X \rightarrow X / A$ induces iss $P_{*}: H_{m}(X, A ; M) \rightarrow H_{m}(X / A, A / A ; M) \cong \tilde{H}_{m}(X / A ; M)$

Remark 12 Reduced homology groups $\tilde{H}_{n}(X ; M)$ may be defined as over 2 coefficients for $X \neq \phi$. One has

$$
\tilde{H}_{n}(x ; M) \cong H_{n}\left(x,\left\{x_{0}\right\} ; \Gamma\right\} \underset{\text { if } n>0}{\cong} H_{m}(x)
$$

and $H_{0}(x ; M) \cong M \oplus \tilde{H}_{0}(x, M)$.
Def (Al gTopI) X a $C W$-complex with cells e_{α}^{u}. Let $C_{n}^{c w}(X)=$ free abalian group with basis $e_{\alpha}^{\mu} \quad$ and
$d: C_{m}^{c w}(x) \rightarrow C_{n-1}^{C W}(X)$ given by $d e_{\alpha}^{m}=\sum_{\beta} d_{\alpha \beta} e_{\beta}^{n-1}$, where $d_{\alpha \beta} \in \mathbb{R}$ is the clegree of

$$
\begin{aligned}
S^{n-1} \\
\text { attaching } \\
\text { map of } e_{\alpha}^{n}
\end{aligned} X^{n-1}\left(X^{n-1} \backslash e_{\beta}^{n-1}\right) \cong S^{n-1} \xlongequal[(n-1) \text {-skeleton of } X]{ }=\bigcup_{\substack{k<n \\
\alpha}} e_{\alpha}^{k}
$$

$C^{c \omega}(X)$ is the cellular chain complex of X and $H_{m}^{c w}(X):=H_{n}\left(C^{c w}(X)\right)$ the cellular homology of X.

Theorem $13 \quad H_{n}^{C \omega}(X ; M):=H_{n}\left(C^{C \omega}(X) \otimes M\right) \cong H_{n}(X ; M)$
(3) Calculations \& the theorem of Borsuk-Ulam

Prop 1 For all $k \geqslant 0, \quad \tilde{H}_{n}\left(S^{k} ; M\right) \cong M$ if $n=k$, trivial otherwise Three ways to prove it (1) S^{k} has a CW structure with one O-all, one k-cell.
(2) Mayer-Vietoris with $A=S^{k} \backslash e_{1}, B=S^{k} \backslash-e_{1}$
(3) LES of the good pair $\left(D^{k}, \partial D^{k}\right)$

Def Real Projective k-space $\mathbb{R} P^{k}:=S^{k} / x \sim-x$
Rok $2 * \mathbb{R} P^{k} \cong\left(\mathbb{R} P^{k+\lambda} \backslash \overrightarrow{0}\right) / x \sim \lambda_{x}$ for all $\lambda \in \mathbb{R} \backslash 0$

* $\mathbb{R} P^{0}=$ one point space, $\mathbb{R}^{1} \cong S^{1}$

$$
\text { * Alg Top I: } H_{n}\left(\mathbb{R} p^{k} ; \mathbb{R}\right) \cong \begin{cases}\mathbb{R} & n=0 \\ \mathbb{R} / 2 & 1 \leq n \leq k-1, n \text { odd } \\ 0 & 1 \leq n \leq k-1, n \text { even } \\ \pi & n=k \text { odd } \\ 0 & n=k \text { even } \\ 0 & k+1 \leq n\end{cases}
$$

Prop $3 H_{n}\left(\mathbb{R} P^{k} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2$ if $0 \leq n \leq k$ and 0 otherwise.
Prop 4 Let $f: Y \rightarrow X$ be a twofold covering. Then there is a LES

$$
\ldots \rightarrow H_{n}(X ; \mathbb{Z} / 2) \rightarrow H_{n}(Y ; \mathbb{2} / 2) \xrightarrow{f_{*}} H_{n}(X ; \mathbb{R} / 2) \rightarrow H_{n-1}(X ; \mathbb{R} / 2) \rightarrow \ldots
$$

(a special case of the bysin LES)
Proof Recall that: a cont. map $\sigma: Z \rightarrow X$ on a contractible space Z has exactly two lift $\tilde{\sigma}_{1}, \tilde{\sigma}_{2}: Z \rightarrow Y$. Here, a lift is a map $\tilde{\sigma}: Z \rightarrow Y$ so that

commutes.
3. Calculations and the theorem of Borsuk-Ulam Lecture 4 on 1 March

Define the so-called transfer homomorphism $T_{:} C_{n}(X) \rightarrow C_{n}(Y) / 15$ by $T\left(\sigma: \Delta^{n} \rightarrow x\right)=\tilde{\sigma}_{1}+\tilde{\sigma}_{2}$. Check that T is a chain map.
We'll show that the short sequence of complexes

$$
0 \rightarrow C(x) \otimes \mathbb{R} / 2 \xrightarrow{T} C(y) \otimes \mathbb{R} / 2 \xrightarrow{f_{c}} C(x) \otimes \mathbb{Z} / 2 \longrightarrow 0
$$

is exact. This induces the derived (ES in homology (Lemma 2.9).

* f_{c} surgichive Lift exist.
* Ti ingective. For a sing simplex $\tau: \Delta^{n} \rightarrow X$,
let $P_{\tau}: C(X) \otimes 12 / 2 \rightarrow \mathbb{R} / 2$ be the projection $\sum_{\sigma} \sigma \otimes \lambda_{\sigma} \mapsto \lambda_{\tau}$.
$c=\sum_{\sigma} \sigma \otimes \lambda_{\sigma} \neq 0 \Rightarrow \exists \tau$ with $\lambda_{\tau}=1$ for some τ

$$
\Rightarrow \lambda_{\tilde{\tau}}(T(c))=1 \text { for } \tilde{\tau} \text { a lift of } \tau \Rightarrow T(c) \neq 0 \text {. }
$$

* in $(T)=\operatorname{her} f_{c} \quad f_{c}\left(c=\sum_{\sigma} \sigma \otimes \lambda_{\sigma}\right)=0$

$$
\Leftrightarrow p_{\tau}\left(f_{c}(c)\right)=0 \quad \forall \tau: \Delta^{n} \rightarrow x .
$$

Since $p_{\tau}\left(f_{c}(c)\right)=p_{\tilde{\tau}_{1}}(c)+p \tilde{\tau}_{2}(c)$, it follows that

$$
\begin{aligned}
f_{c}(c)=0 & \Leftrightarrow c=\sum_{\tau: \Delta^{n} \rightarrow x} \lambda_{\tau}\left(\tilde{\tau}_{1}+\tilde{\tau}_{2}\right)=T\left(\sum_{\tau} \lambda_{\tau} \tau\right) \\
& \Leftrightarrow c \in \operatorname{im}(T) .
\end{aligned}
$$

3. Calculations and the theorem of Borsuk-Ulam Lecture 5 on 6 March

Last time
Prop 4 Let $f: Y \rightarrow X$ be a twofold covering. Then there is a LES

$$
\ldots H_{n}(X ; \mathbb{Z} / 2) \rightarrow H_{n}(Y ; \mathbb{Z} / 2) \xrightarrow{f_{*}} H_{n}(X ; \mathbb{R} / 2) \rightarrow H_{m-1}(X ; \mathbb{R} / 2) \rightarrow \ldots
$$

(a special case of the bysin LES)
Today For the remainder of (3): $H_{m}(x, A)$ means $H_{m}(x, A ; R / 2)$
Prop $3 H_{n}\left(\mathbb{R} P^{k}\right) \cong \mathbb{Z} / 2$ if $0 \leqslant n \leqslant k$ and 0 otherwise.
Proof We already know this for $n=0,1$. So assume $n \geqslant 2$.
For the covering $f: S^{n} \rightarrow \mathbb{R}^{n}$, the Gysin LES breaks into pieces:

$$
0 \rightarrow H_{1}\left(\mathbb{R} P^{n}\right) \xrightarrow{\partial} H_{0}\left(\mathbb{R} P^{n}\right) \xrightarrow{T_{*}} H_{0}\left(S^{n}\right) \xrightarrow{f_{*}} H_{0}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

All homology groups are $\pi / 2$-vector spaces (by Rush 2.8).
f_{*} surjective and $H_{0}\left(S^{\mu}\right) \Rightarrow H_{0}\left(\mathbb{R} P^{\mu}\right) \cong \pi / 2$ or 0 .
Exaction at $H_{0}\left(S^{\mu}\right) \Rightarrow H_{0}\left(\mathbb{R}^{p^{\mu}}\right) \cong R / 2 \Rightarrow f_{*}=1 \Rightarrow T_{*}=0$
$\Rightarrow H_{1}\left(\mathbb{R} P^{m}\right) \cong R / 2$.

$$
0 \rightarrow H_{k}\left(\mathbb{R} P^{n}\right) \xrightarrow{\partial} H_{k-1}\left(\mathbb{R} p^{n}\right) \rightarrow 0 \text { if } k \notin\{0,1, n, n+1\}
$$

So, $H_{k}\left(\mathbb{R} P^{m}\right) \cong H_{k-1}\left(\mathbb{R} P^{M}\right) \Rightarrow H_{k}\left(\mathbb{R} P^{m}\right) \cong \mathbb{R}(2$ for $k \leq m-1$ by induction.

$$
0 \rightarrow H_{n+1}\left(\mathbb{R} P^{n}\right) \xrightarrow{\partial} H_{n}\left(\mathbb{R} P^{n}\right) \xrightarrow{T_{*}} H_{n}\left(S^{n}\right) \xrightarrow{f *} H_{n}\left(\mathbb{R} P^{m}\right) \xrightarrow{\partial} H_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

Since $\mathbb{R}^{P^{2}}$ has a $C W$-structure without k-cells for $k \geqslant n+1$

$$
\Rightarrow H_{k}\left(\mathbb{R}^{n}\right)=0 \text { for } k \geqslant n+1 \text {. }
$$

$\Rightarrow H_{m}\left(\mathbb{R} P^{m}\right)$ surjects ono $\pi / 2$, and injects into \mathbb{R}_{12}

$$
\Rightarrow H_{n}\left(\mathbb{R} p^{n}\right) \approx \pi / 2 .
$$

3. Calculations and the theorem of Borsuk-Ulam Lecture 5 on 6 March

Prop 5 The Gysin sequence from Prop 4 is natural, ie if

Commutes and f, f^{\prime} are twofold coverings, then

$$
\begin{aligned}
& \cdots \rightarrow H_{m}(x) \xrightarrow{T_{*}} H_{\mu}(y) \xrightarrow{f_{*}} H_{\mu}(x) \xrightarrow{\partial} H_{\mu-1}(x) \rightarrow \ldots \\
& \int \beta_{*}\left|\alpha_{*}\right| \beta_{*} \mid \beta_{*} \\
& \cdots \rightarrow H_{n}\left(X^{\prime}\right) \underset{T_{*}}{\longrightarrow} H_{n}\left(y^{\prime}\right) \underset{f_{*}^{\prime}}{\longrightarrow} H_{n}\left(X^{\prime}\right) \underset{\partial}{\longrightarrow} H_{m-n}\left(X^{\prime}\right) \rightarrow \ldots
\end{aligned}
$$

commutes,
Proof Check that

$$
\begin{array}{rl}
0 \rightarrow C_{n}(x) \otimes R / 2 & T \\
\beta_{c} \downarrow & C_{n}(y) \otimes R / 2
\end{array} \xrightarrow{f_{c}} C_{m}(x) \otimes R / 2 \rightarrow 0
$$

commutes, then use Lemma 2.8.

Borsuk-Weam Theorem $f: S^{n} \rightarrow \mathbb{R}^{\mu}$ continuous \Rightarrow

$$
\exists x \in S^{M}: \quad f(x)=f(-x)
$$

Proof if no such x exist, let $g: S^{m} \rightarrow S^{n-1}$,

$$
g(x)=\frac{f(x)-f(-x)}{\|f(x)-f(-x)\|} \text {. Then } g(-x)=-g(x)
$$

This contradict the following theorem.
Theorem 6 There is a cont. map $g: S^{n} \rightarrow S^{m}$ with and $g(-x)=-g(x) \Longleftrightarrow n \leqslant m$.

Proof if $n \leqslant m$, the embedding $i:\left(x_{1}, \ldots, x_{n+1}\right)$

$$
\longmapsto\left(x_{1}, \ldots, x_{n+1}, 0, \ldots 0\right) \text { satisfies } i(-x)=-i(x)
$$

For the other clirection, assume $n>m \geqslant 1$ and
let such a g be given. If $p_{n}(x)=p_{n}(y)$, then $p_{m} \circ g(x)=p_{m} \circ g(y)$. Because the covering p_{m} is a quotient map, these is $h: \mathbb{R} p^{m} \rightarrow \mathbb{R}^{m}$ s.t.

Commutes.
Now, apply Prop 5 (naturality of the Gysin sequence) to the pieces of the Gysin (ES (see proof of Prop 3):

$$
\begin{aligned}
& 0 \rightarrow H_{k}\left(\mathbb{R} P^{n}\right) \xrightarrow{15} H_{k-1}\left(\mathbb{R} P^{n}\right) \longrightarrow G \\
& \xrightarrow[0]{\left\lfloor_ { k } \left(h_{*, k}\right.\right.} \underset{\left.H_{0}^{m}\right)}{\rightarrow H_{k-1}\left(\mathbb{R}^{p m}\right)} \rightarrow 0
\end{aligned}
$$

commutes for $1 \leq k \leq m-1$. Also, $h_{*, 0}$ iso because $\mathbb{R}^{m}, \mathbb{R}^{m}$ path-connected $\Rightarrow h_{t, r}$ iso $\Rightarrow h_{*, 2}$ iso $\Rightarrow \ldots \Rightarrow h_{*, n-1}$ iso.

$$
\begin{aligned}
& \xrightarrow{\text { iso }} \stackrel{\pi / 2}{ } H_{m}\left(\mathbb{R}^{P^{n}}\right) \xrightarrow{0} H_{m}\left(S^{n}\right) \xrightarrow{\circ} H_{m}\left(\mathbb{R} P^{n}\right) \xrightarrow{\text { iso }} H_{m-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0 \\
& \text { iso does not } \underset{\text { commante! }}{ } \quad \text { iso iso }
\end{aligned}
$$

Contradiction!

The Ham Sandwich Theoreen $A_{1}, \ldots, A_{n} \subseteq \mathbb{R}^{n}$ Lebesgue-measurable \& bounder
$\Rightarrow \exists$ hyperplane in \mathbb{R}^{n} cutting each A_{i} in half by volume.
Proof Identify \mathbb{R}^{n} with $\mathbb{R}^{n} \times\{1\} \subseteq \mathbb{R}^{n+1}$.

For $x \in S^{n}$, let $H_{x}=\mathbb{R}^{n} x\{1\} \cap\left\{y \in \mathbb{R}^{n+1} \mid\langle x, y\rangle=0\right\}$

$$
V_{x}=\mathbb{R}^{\mu} \times\{\wedge\} \cap\left\{y \in \mathbb{R}^{n+1} \mid\langle x, y\rangle \geqslant 0\right\}
$$

Let $f: S^{n} \rightarrow \mathbb{R}^{n}, \quad f_{i}(x)=\operatorname{vol}\left(V_{x} \cap A_{i}\right)$.
f is continuous sine the A_{i} are bounded.
Borsuk_Ulam $\Rightarrow \exists x \in S^{n}: f(x)=f(-x)$

$$
\Rightarrow \operatorname{vol}\left(V_{x} \cap A_{i}\right)=\operatorname{vol}\left(V_{-x} \cap A_{i}\right)=\operatorname{vol}\left(A_{i} \backslash V_{x}\right)
$$

$\Rightarrow H_{x}$ cuts all $A_{\text {: }}$ in half.
4. Universal Coefficient Theorem for homology Lecture 6 on 8 March
(4) The Universal Coefficient Theorem for Homology

The splitting Lemma For a SES $0 \rightarrow M \xrightarrow{f} N \stackrel{g}{\rightarrow} p \rightarrow 0$ of abelian groups, the following are equivalent:
(1) There is a commutative diagram with exact rows

(2) $\exists i: P \rightarrow N$ with $g \circ i=i d p$.
(3) $\exists \mathrm{r}: N \rightarrow M$ with $r \circ f=i d_{M}$

SES satisfying these Conditions are called Split.
UCT for Horology Let C be a chain complex of free abblian groups.
Let M be an abblian group.
(1) For all n, there is a Split SES of abelian groups:

$$
O \rightarrow H_{n}(C) \otimes M \xrightarrow{[x] \otimes m \mapsto[x \otimes m]} \rightarrow H_{n}(C ; M) \rightarrow \operatorname{Tor}\left(H_{m-1}(C), M\right) \rightarrow 0
$$

(2) This SES is natural, ie for a chain map $f: C \rightarrow C^{\prime}$

$$
\begin{aligned}
& 0 \rightarrow H_{n}(C) \otimes M \rightarrow H_{n}(C ; M) \rightarrow \operatorname{Tor}\left(H_{m-1}(C), M\right) \rightarrow 0 \\
& \downarrow f_{*} \otimes i d_{M} \quad \downarrow f_{*} \quad \downarrow \operatorname{Tor}\left(f_{*}, i d_{n}\right) \\
& 0 \rightarrow H_{n}\left(C^{\prime}\right) \otimes M \rightarrow H_{n}\left(C^{\prime} ; M\right) \rightarrow \operatorname{Tor}\left(H_{m-1}\left(C^{\prime}\right), M\right) \rightarrow 0
\end{aligned}
$$

Commutes.
(3) There is no natural choice of splitting maps

Correction 12 Marl
\rightarrow Exercise 2.4
In the lecture it was erroneously claimed that "or" suffices hare
Remark 1 Tor (N, M) will be defined for all abelian groups N, M.
We will show that for if M and N are finitely generated, then $\operatorname{Tor}(N, M) \cong T(N) \otimes T(M)$, where
$T(N)=\{x \in N \mid \exists \lambda \in \mathbb{R} \backslash\{0\}: \lambda x=0\}$ is the tonion subgroup of N.

Remark The UCT implies that homology with any coefficients can be read off homology with 2 coefficients, ie. \mathbb{Z} coefficients are "universal". However, for a cont. map f, f_{*} on $H(-; M)$ is in general not determined by f_{*} on $H(-; R)$.
\rightarrow Exercise 2.4
Example 2 For $\mathbb{R P}^{3}, H_{0} \cong R, H_{2} \cong \pi / 2, H_{2} \cong 0, H_{3}=\mathbb{R}$ UCT for $M=\mathbb{R} / 2$:

$$
\begin{aligned}
& 0 \rightarrow \underbrace{H_{1}\left(\mathbb{R} p^{3}\right) \otimes \mathbb{R} / 2}_{\mathbb{R} / 2} \rightarrow \underbrace{H_{1}\left(\mathbb{R} p^{3} ; \mathbb{R} / 2\right)}_{\mathbb{R}^{2} / 2} \rightarrow \underbrace{\operatorname{Tor}\left(\tilde{H}_{0}\left(\mathbb{R} p^{3}\right), \mathbb{R} / 2\right)}_{0} \rightarrow 0 \\
& 0 \rightarrow \underbrace{H_{2}\left(\mathbb{R} p^{3}\right) \otimes \mathbb{R} / 2}_{0} \rightarrow \underbrace{H_{2}\left(\mathbb{R} p^{3} ; \mathbb{R} / 2\right)}_{\mathbb{R} / 2} \rightarrow \underbrace{\operatorname{Tor}(\overbrace{H_{1}\left(\mathbb{R} p^{3}\right)}^{H_{1}, \mathbb{R} / 2})}_{\mathbb{R} / 2} \rightarrow 0
\end{aligned}
$$

Reminder M finitely generated abelian group \Rightarrow

$$
M=M^{a} \oplus \bigoplus_{\substack{p p r i m e \\ \tau \geqslant 1}}\left(\mathbb{p ^ { r }}\right)^{b_{p, r}} \text { with } a, b_{p, r} \text { uniquely determined. }
$$

a is called the rank of M, written chM or rank M.
Prop 3 Assume $\notin H_{m}(x)$ is finitely generated. Let $1 F$ be a field of characteristic p.

$$
\operatorname{dim}_{\mathbb{F}} H_{n}(x ; \mathbb{F})= \begin{cases}\operatorname{rank} H_{n}(x) & i \delta p=0 \\ \operatorname{rank} H_{n}(x) & \text { else } \\ +\# \mathbb{R} / p^{\tau}-\text { summands of } H_{n}(x) & \\ +\# \mathbb{R} / p^{r}-\text { summands of } H_{m-1}(x) & \end{cases}
$$

Proof $U C T \Rightarrow H_{n}(x ; \mathbb{F}) \cong H_{n}(x) \otimes \mathbb{F} \oplus \operatorname{Tor}\left(H_{n-1}(x), \mathbb{F}\right)$ Correction 12 March
The Proposition is true, but the proof doesn't work in general since IF need not be finitely generated. by Remark 1 We'll need to understand Tor better first to prove Prop $3 L$

Now use $T(\mid F)= \begin{cases}0 & \text { if } p=0 \\ \mathbb{F} & \text { else }\end{cases}$
and $\mathbb{Z} / m \otimes \mathbb{F} \cong \mathbb{F} / m \cong \begin{cases}0 & p / m \\ \mathbb{F} & \text { else }\end{cases}$
Prop 4 Let X be a space s.t. $H_{n}(X) \cong 0$ for sufficiently large n, and $H_{n}(x)$ finitely generated for all n. Then

$$
\sum_{n=0}^{\infty}(-1)^{n} \operatorname{dim}_{\mathbb{F}}\left(H_{n}(X ; \mathbb{F})\right) \in \mathbb{R}
$$

does not depend on the choice of a field \mathbb{F}. This integer is called the Enter characteristic of x, written $X(x)$.
Proof Note that (\# $2 / p^{r}$-summands of $H_{n}(x)$) appears as summand in $\operatorname{dim} H_{n}(X ; \mathbb{F})$ and in $\operatorname{din} H_{n+1}(X ; \mathbb{F})$. So, this cancels in X due to opposite signs.

To prove the UCT, we need a fundamental tool of homological algebra. Let R be a commentative ring.
Def A free resolution of an R-Module M is a LES

$$
\cdots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

where the F_{i} are free R-Modules.

To prove the UCT, we need a fundamental tool of homological algebra. Let R be a commutative ring.
Def A free resolution F of an R-Module M is a LES

$$
\ldots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

where the F_{i} are free R-Modules.
Today
13 March
Note that..$\rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow 0$ is a chain complex. It is called deleted resolution, denoted F^{M}, with $H_{0}\left(F^{M}\right) \cong M, H_{n}\left(F^{M}\right) \cong 0$ for $n \neq 0$. Understanding $H_{n}\left(F^{M} ; N\right)$ is a
special case of understanding $H_{n}(C \div N)$ for all complexes!

$$
M
$$

ε_{x} For $R=\mathbb{R}: . \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{3} \mathbb{Z} \rightarrow \mathbb{Z} / 3 \rightarrow 0$

$$
\begin{array}{r}
\cdots 0 \rightarrow 0 \rightarrow 0 \rightarrow \pi \\
\ldots 0 \rightarrow \pi \xrightarrow{(\cdots)} \mathbb{R}^{2} \xrightarrow{(11)} \pi \rightarrow 0 \\
? \rightarrow \mathbb{Q} \rightarrow 0
\end{array}
$$

Prop 5 Every module has a free resolution.
Lemma 6 For every module $1 T$ there exist a free module F with a surjection $p: F \longrightarrow M$.
Proof $F:=\bigoplus_{x \in M} R_{x}$ with $R_{x} \cong R$. $F i$ free (with basis indexed by M) and $p: 7 \rightarrow M, \quad R_{x} \ni 1 \longmapsto x$ is surjective.

Proof of Prop 5 Pick $d_{0}: F_{0} \rightarrow M$ with d_{0} surjective, F_{0} free.
Pick $d_{1}^{\prime}: F_{1} \rightarrow$ her d_{0} wite d_{1}^{\prime} surjective, F_{1} free and let $d_{1}: F_{1} \rightarrow F_{0}, \quad d_{1}=\left(\right.$ her $\left.d_{0} \hookrightarrow F_{0}\right) \circ d_{1}^{\prime}$.
Pick $d_{2}^{\prime}: F_{2} \rightarrow$ her d_{1} with d_{2}^{\prime} surjective, F_{2} fee....etc. Is
Thu 7 Every subgroup of a free abelian group is free abelian.
Proof using Zorn's Lemma (see eg Lang "Algebra" Appendix 2 \&2)
Prop 8 For $R=\pi$: Every abelian group M has a free resolution of length 1, ie $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow 0$
Proof Pick $d_{0}: F_{0} \rightarrow M$ with do surjective, F_{0} free. By Thu, Ker d_{0} is free. So let $F_{1}=$ her d_{0}, and d_{1} the inclusion.

Prop g ("Comparison Thu", "Fundamental Thun of Homdogical Algebra")
(1) If $f: M \rightarrow N$ is R-linear and F, G are free resolutions of M, N, then f may be extended to a chain map $\hat{f}: F^{M} \rightarrow G^{N}$, ie
(2) \hat{f} is unique up to homotopy.
(3) $F_{1} G$ free resolutions of $M \Rightarrow$ The unique chain map $F^{M} \rightarrow G^{M}$ extending id is a homotopy equivalence.

Proof (1) F_{0} Since e_{0} surrective and F_{0} free,

there is $\hat{f}_{0}: F_{0} \rightarrow G_{0}$ making the diagram
Commute (proof: for each basis element
b of F_{0}, pick $\hat{f}_{0}(b)$ such that $e_{0}\left(\hat{f}_{0}(b)\right)=f\left(d_{0}(b)\right)$.
$F_{1} \hat{f}_{0} \circ d_{1} \quad f\left(d_{0}\left(d_{1}(x)\right)\right)=0 \quad \forall x \Rightarrow e_{0}\left(\hat{f}_{0}\left(d_{1}(x)\right)\right)=0 \forall x$
$G_{1} \xrightarrow[e_{1}]{\longrightarrow} G_{0}$
$\Rightarrow \operatorname{im} \hat{f}_{0} \circ d_{1} \subseteq$ her $e_{0}=\operatorname{im} e_{1}$.
$\Rightarrow \exists \hat{f}_{1}: F_{1} \rightarrow G_{1}$ making the diagr commute etc.
(2) Let two such chain maps be given, and let g be their difference.

Then:

commutes. $0=0 \circ d_{0}=e_{0} \circ g_{0} \Rightarrow$ in $g_{0} s$ ger $e_{0}=$ in e_{1}.
$\Rightarrow \exists h_{0}$ with $e_{1} \circ h_{0}=g_{0}$

$$
\begin{gather*}
e_{1} \circ\left(g_{1}-h_{0} \circ d_{1}\right)=e_{1} \circ g_{1}-g_{0} \circ d_{1}=0 \\
\Rightarrow \exists h_{1} \text { with } e_{2} \circ h_{1}=g_{1}-h_{0} \circ d_{1} \tag{etc.}
\end{gather*}
$$

(3) F, G free res. of $M \Rightarrow \exists$ chain maps $\hat{f}: F^{M} \rightarrow G^{M}$ and $\hat{g}: G^{M} \longrightarrow F^{M}$ that extend id $M: M \rightarrow M \Rightarrow \hat{g} \circ \hat{\delta}: F^{M} \rightarrow F^{M}$ and $\hat{f} \circ \hat{g}: G^{M} \longrightarrow G^{M}$ extend id, but so do id \vec{F}^{M}, id G^{M} \Rightarrow By uniqueness, $\hat{g} \circ \hat{f} \simeq i d F^{n}, \hat{f} \circ \hat{g} \simeq i d G^{n}$.

Def Let M, N be R-Modutes, and F a free resolution of M, \qquad then $\operatorname{Tor}_{n}(M, N):=H_{n}\left(F^{M} ; N\right)$ for $n \geqslant 0$.

Proof that Tor does not depend on choice of F : F, G free res. of M

$$
\begin{aligned}
& \Rightarrow F^{M} \simeq G^{M} \Rightarrow F^{M} \otimes N \simeq G^{M} \otimes N \quad(\operatorname{Cor}(2) 7(3)) \Rightarrow \\
& H_{M}\left(F^{M} ; N\right) \cong H_{M}\left(G^{M} ; N\right) .
\end{aligned}
$$

Remark 10 Over $R=\mathbb{2}$, $\operatorname{Tor}_{n}(M, N)=0 \quad \forall n \geqslant 2$ since M has a free res. of length 1 (Prop 8). So we write $\operatorname{Tor}(M, N):=\operatorname{Tor}_{1}(M, N)$.
Lemma $11 \quad f: M \rightarrow N R$-linear, $P R$-module \Rightarrow (cover $f) \otimes P \cong$ Cover $(f \otimes i d p)$. Proof Exercise.

Proof of the UCT (1) Constructing the SES

$$
\underbrace{B_{n}=\text { in } d_{n+1}}_{n-\text {-boundaries }} \subseteq \underbrace{Z_{M}=\text { her } d_{n}}_{n-\text { cycles }}
$$

Make B_{n}, Z_{m} into chain complexes, taking O as differential. There is a SES of chain complexes:

Proof of the UCT (1) Constructing the SES

$$
\underbrace{B_{n}=\text { in } d_{n+1}}_{n \text {-boundaries }} \subseteq \frac{Z_{n}=\text { bear } d_{n}}{n-\text { cycles }}
$$

Make B_{n}, Z_{n} into chain complexes, taking O as differential.
There is a SES of chain complexes:

Bn free by Than $7 \Rightarrow$ each row splits \Rightarrow tensoring with M preserves exactrens (Exercise). The SES®M induces a LES:

$$
\begin{aligned}
& \ldots \rightarrow B_{n} \otimes M \stackrel{r}{\rightarrow} Z_{n} \otimes M \rightarrow \frac{k e r d_{n} \otimes i d_{M}}{i m d_{n+1} \otimes i d_{M}} \rightarrow B_{n-1} \otimes M \rightarrow Z_{n-1} \otimes M \rightarrow \ldots \\
& \Rightarrow \text { ES } O \rightarrow H_{n}(C) \otimes M \rightarrow H_{n}(C: M) \rightarrow \text { er incl } \otimes i d_{n} \rightarrow 0 \\
& \cong \text { coles r by } \\
& \text { Lernua } 11
\end{aligned}
$$

There is a SES

$$
0 \rightarrow B_{n-1} \xrightarrow{\text { incl }} Z_{n-1} \rightarrow H_{n-1}(C) \rightarrow 0
$$

which is a free resolution of H_{m-1} (C). So

$$
\text { her incl®idm } \cong \operatorname{Tor}\left(H_{n-1}(C), M\right)
$$

4. Universal Coefficient Theorem for homology Lecture 8 on 15 March
(1) The SES splits C_{n} free $\Rightarrow \exists p_{n}: C_{n} \rightarrow Z_{n}$ st.
inch o $p_{n}=i d Z_{n}$. Correction 5 April $p: C \rightarrow Z$ is in general not a chain map! (hided, p chain map \Rightarrow differential of C is zero). Proceed instead as follows: Let $\pi_{n}: Z_{n} \rightarrow H_{n}(C)=Z_{\mu} / B_{n}$ be the projection. Then $\pi_{n}{ }^{\circ} p_{n}$ is a map $C_{n} \longrightarrow H_{m}(C)$, and this is a chain map when one considers $H_{n}(C)$ as complex with zero differential (since far $x \in C_{n}: d_{n}(x) \in B_{n-1} \subseteq Z_{n-1}$, So $p_{n-1}\left(d_{N}(x)\right)=d_{M}(x)$ and $\left.\pi_{M-1}\left(p_{n-1}\left(d_{N}(x)\right)\right)=\left[d_{M}(x)\right]=0\right)$. Thus $\left(\pi_{n} \circ \rho_{m}\right) \otimes i d_{M}: C_{n} \otimes M \rightarrow H_{n}(C) \otimes M$ is also a chain mop, inducing a map $H_{n}(C ; M) \xrightarrow{q} H_{M}(C) \otimes M$ on homology. To see that q is a splitting map, check that $q([x \otimes m])=[x] \otimes m$ for all $x \in Z_{n}$ and $m \in M$.
(2) Naturality (Sketch) $f: C \rightarrow C^{\prime}$ chain map $\Rightarrow f(Z) \subseteq Z^{\prime}, f(B) \subseteq B^{\prime}$.
So f induces a map between the SES of chair complexes $0 \rightarrow Z_{m} \rightarrow C_{m} \rightarrow B_{m \rightarrow-1} \rightarrow 0$ and $0 \rightarrow Z_{m}^{\prime} \rightarrow C_{m}^{\prime} \rightarrow B_{m-1}^{\prime} \rightarrow 0$, alto after $\otimes M$, and so ats between the anociated LES, and so abs between the SES in the UCT.
(3) Unnaturality of splitting: Exercise 2.4

Prop $12 \operatorname{Tor}_{0}(M, N) \cong M \otimes N$.
Proof $\cdots \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow 0$ deleted free res of M.

$$
\begin{aligned}
& \Rightarrow \operatorname{Tor}_{0}(M, N)=\text { conker }\left(d_{1} \otimes i d_{N}\right) \cong \operatorname{coker}\left(d_{1}\right) \otimes N \\
& =H_{0}\left(F^{M}\right) \otimes N=M \otimes N
\end{aligned}
$$

Remark 13 For $f: M \rightarrow M^{\prime}, g: N \longrightarrow N^{\prime}$, one may set $\operatorname{Tor}_{m}(f, g): \operatorname{Tor}_{n}(M, N) \rightarrow \operatorname{Tor}_{m}\left(M^{\prime}, N^{\prime}\right)$ toke given by $(\hat{f} \otimes g)_{*}$. Fixing one argument then makes Torminto an additive functor $R-\operatorname{Mod} \longrightarrow R-\operatorname{Mod}$.

Prop 14 Let A, B, C be abelian groups.
$(1) B$ free $\Rightarrow \operatorname{Tor}(A, B) \cong 0$
(2) If $O \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact, then

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}(D, A) \\
& \rightarrow D \otimes \operatorname{Tor}(D, B) \rightarrow \operatorname{Tor}(D, C) \\
& \rightarrow D \otimes B \rightarrow D \otimes C \rightarrow 0
\end{aligned}
$$

is exact.
(3) $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(B, A)$.
(4) B torsion-free $\Rightarrow T(A, B) \cong 0$
(5) $T(A, B) \cong \operatorname{Tor}(T(A), T(B))$.
(6) $\operatorname{Tor}(\nabla / n, A) \cong\{x \in A \mid n x=0\}$
(7) $\operatorname{Tor}(A \oplus B, C) \cong \operatorname{Tor}(A, C) \oplus \operatorname{Tor}(B, C)$
(8) Tor $(A, B) \cong T(A) \otimes T(B)$ if A and B are $f \cdot g$.

Proof (1) $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0$ free res of $A \Rightarrow$

$$
0 \rightarrow F_{1} \otimes B \rightarrow F_{0} \otimes B \rightarrow A \otimes B \rightarrow 0 \text { is exact } \Rightarrow T_{0, t}(A, B) \cong 0 \text {. }
$$

(2) Pick free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow 0 \rightarrow 0$

$$
\begin{aligned}
& 0 \rightarrow F_{1} \otimes A \xrightarrow{d_{F_{n}} \otimes f} F_{1} \otimes B \xrightarrow{i d_{E_{1}} \otimes g} F_{1} \otimes C \rightarrow 0 \\
& \Rightarrow \quad d_{1} \otimes i d_{A} \downarrow \quad d_{1} \otimes i d_{B} \downarrow \quad d_{1} \otimes i d_{c} \downarrow \\
& 0 \rightarrow F_{0} \otimes A \underset{i d_{F} \otimes f}{\longrightarrow} F_{0} \otimes B \underset{i \delta_{0} \otimes g}{\longrightarrow} F_{0} \otimes C \longrightarrow 0
\end{aligned}
$$

commutes and has exact rows. It is a SES of chain complexes! (Each complex made of two groups). The associated LES in homology is the desired sequence.
(3) Apply (1) to a free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow B \rightarrow 0$
O because F_{1} free
0 because F_{0} free

$$
\begin{aligned}
& 0 \rightarrow \widetilde{\operatorname{Tor}\left(A, F_{1}\right)} \rightarrow \widetilde{\left.\operatorname{Tor}^{\left(A, F_{0}\right.}\right)} \rightarrow \operatorname{Tor}(A, B) \\
& \rightarrow A \otimes F_{1} \underset{i d_{A} \otimes d_{1}}{ } A \otimes F_{0} \rightarrow A \otimes B \rightarrow 0
\end{aligned}
$$

$\Rightarrow \operatorname{Tor}(A, B) \cong \operatorname{ker}\left(i d_{A} \otimes d_{1}\right)=\operatorname{Tor}(B, A)$ by def of Tor, using $A \otimes B \cong B \otimes A$.
(4) Pick free res $0 \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} A \rightarrow 0$.

It's enough to show that $F_{1} \otimes B \rightarrow F_{0} \otimes B$ is injective.
So let $\alpha \in F_{1} \otimes B$ with $d_{1} \otimes i d_{B}(\alpha)=0$ be given. To show: $\alpha=0$.
Claim There is a f.g. subgroup $B^{\prime} \subseteq B$ with $\alpha \in B^{\prime}$ and $d_{1} \otimes i d_{B^{\prime}}(\alpha)=0$.
Pf that Claim $\Rightarrow \alpha=0 \quad B$ torsionfree $\Rightarrow B^{\prime}$ tarionfree. B^{\prime} torrionfree and $f \cdot 8$.
$\Rightarrow B^{\prime}$ free by clarification of f.g. ab. groups. We already know that busoming with a free module is exact $\Rightarrow d_{1} \otimes i d_{B^{\prime}}$ impective $\Rightarrow \alpha=0$.
Pf of Claim Use construction of $\otimes: F_{0} \otimes B \cong$ free module $U_{F_{0}, B}$ with basis) $F_{0} \times B$ modulo submodule $I_{F_{0, B}} \subseteq U$ generated by

$$
\begin{align*}
& \left(\lambda x+x^{\prime}, y\right)-\lambda(x, y)-\left(x^{\prime}, y\right) \\
& \left(x, \lambda y+y^{\prime}\right)-\lambda(x, y)-\left(x, y^{\prime}\right) \tag{*}
\end{align*}
$$

Write $\alpha=\sum_{i=1}^{m} f_{i} \otimes b_{i}$. Then $d_{1} \otimes i d_{B}(\alpha)=0 \Leftrightarrow \sum d_{1}\left(f_{i}\right) \otimes b_{i}=0$ $\Leftrightarrow \sum_{i=1}^{n}\left(d_{1}\left(f_{i}\right), b_{i}\right)=\sum_{j=1}^{k}$ elements of the form (*) $\in I_{F_{0}, B}$
Let $B^{\prime} \subseteq B$ be generated by b_{1}, \ldots, b_{n} and all elements of B appearing in the sum on the RHS. Then $\alpha \in F_{1} \otimes B^{\prime}$, and

$$
d_{1} \otimes i d_{B^{\prime}}(\alpha)=0
$$ the following proof were shipped in the lecture

(5) Apply (2) to the SES $0 \rightarrow T(B) \rightarrow B \rightarrow B / T(B) \rightarrow 0$:

$$
0 \rightarrow \operatorname{Tor}(A, T(B)) \rightarrow \operatorname{Tor}(A, B) \rightarrow \underbrace{0 \text { by }(4) \text { Since }} \begin{aligned}
\operatorname{Tor}(A, B / T(B))
\end{aligned} \rightarrow \ldots
$$

$\Rightarrow \operatorname{Tor}(A, T(B)) \cong \operatorname{Tor}(A, B)$. Now use (3) and repeat the argument.
(6) $0 \rightarrow \mathbb{R} \xrightarrow{\mu} \mathbb{R} \longrightarrow \mathbb{R} n \rightarrow 0$ is a free res of $\mathbb{R}(n$.

$$
\Rightarrow \operatorname{Tor}(\mathbb{R} / n, A) \cong \operatorname{ker}(A \xrightarrow{n} A)=\{x \in A \mid n x=0\}
$$

(7) $\left.\begin{array}{rl}0 & \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0 \\ 0 & \rightarrow G_{1} \rightarrow G_{0} \rightarrow B \rightarrow 0\end{array}\right\} \quad$ free res.
$\Rightarrow 0 \rightarrow F_{1} \oplus G_{1} \rightarrow F_{0} \oplus G_{0} \rightarrow A \oplus B \rightarrow 0$ free res
Now $\operatorname{Tor}(A \oplus B, C) \cong \operatorname{ker}\left(\left(F_{1} \oplus G_{1}\right) \otimes C \longrightarrow\left(F_{0} \oplus G_{0}\right) \otimes C\right)$

$$
\cong \operatorname{ker}\left(F_{1} \otimes C \rightarrow F_{0} \otimes C\right)
$$

$\oplus \operatorname{ker}\left(G_{-} \otimes C \rightarrow G_{0} \otimes C\right)$
$\cong \operatorname{Tor}(A, C) \oplus \operatorname{Tor}(B, C)$
(8) Using (7), (3), (1) and the classification of $\delta \cdot g$. ab groups, it is enough to check this for $A \cong \mathbb{R} / a, B \cong \mathbb{R} 6$. This will be an Exercise on Sheet 3.
(5) Ediandogy

Goal Dualize the singular chain complex, ie apply How $(-, 2)$ Cor $\operatorname{Hom}(-, M)$ for any ablelian group M) \rightarrow cochain complex with cohomology. Why? Cohomology ...

* ... has more structure than a homology (it is a ring!)
* may arise in a natural way frown geometric applications

Def A cochain complex C over a commutative ring R is a collection C^{n} of R-modules for $n \in \mathbb{Z}$ called Cochain modules, R-linear maps $d^{n}: C^{n} \rightarrow C^{n+1}$ with $d^{n+1} \circ d^{n}=0 \quad$ called differentials. The n-th cohomology module of C is

$$
H^{n}(C)=\frac{\text { her } d^{n}}{\operatorname{im} d^{n-1}} n \text {-coboundaies }
$$

A cochain map $f: C \rightarrow D$ is a collection of R-linear $f^{n}: C^{n} \rightarrow D^{n}$ st $\quad f^{n+1} \circ d_{c}^{n}=d_{D}^{n} \circ f^{n} \forall n$. $f, g: C \rightarrow 0$ are homotopic, curilten $f \simeq g$, if \exists a homotopy $h: C \rightarrow D$, is a collection of R-linear $h^{n}: C^{n} \rightarrow D^{n-1}$, s.t. $\quad f_{n}-g_{n}=d_{0}^{n-1} \circ h_{m}+h_{n+1} \circ d_{c}^{n}$

Remark 1 C cochain complex
$\Leftrightarrow D$ with $D_{n}=C^{-n}, \quad d_{n}^{D}=d_{c}^{-m}$ is a chain complex Under this 1:1-correspondence, cohomology \leftrightarrows homology, cochain maps \leftrightarrow chain maps, homotopies \leftrightarrow homotopies etc.

So everything that is true for chain complexes also holds true mutatis mutandis for Cochain complexes, eg Prop 2.
$\operatorname{Prop} 2$ (1) $f: C \rightarrow D$ a cochin map \Rightarrow
$f^{*}: H^{m}(C) \rightarrow H^{m}(D), f^{*}([x])=[f(x)]$ is a well-def. R-homom.
(2) $H^{n}(-)$ is an additive functor

$$
\operatorname{CoCh}(R) \longrightarrow R-\operatorname{Mod}
$$

Category of cochin complexes over 2 , cochain maps
(3) $f \simeq g \Rightarrow f^{*} \simeq g^{*}$.

No proof
Prop 3 if $F: R-M_{\text {od }} \rightarrow R$-Mod is a contravariant additive functor, Hen $F: C h(R) \longrightarrow C O C h(R)$ is also contravariontadditive:

$$
\begin{aligned}
& \ldots C_{m} \xrightarrow{d_{m}} C_{m-1} \ldots \ldots F\left(C_{n}\right) \stackrel{F\left(d_{n}\right)}{\rightleftarrows} F\left(C_{m-1}\right) \ldots \\
& \text { cochin complex F(C) } \\
& \text { with } F(C)^{n}=F\left(C_{n}\right) \text {, } \\
& d_{F(c)}^{n}=F\left(d_{c}^{n-1}\right)
\end{aligned}
$$

No proof
Def X top. space, $A \subseteq X, M$ an abolian group. Then the cochain complex obtained from $C_{n}(X, A)$ by applying $\operatorname{Hom}(-, M)$ is called the singular cockain Complex of (X, A) with coefficients in M, denoted $C^{n}(X, A ; M)$ and its cohomology the singular cohomology of (X, A) with Coefficient in M, denoted $H^{M}(X, A ; M)$. We may drop"; $M^{\prime \prime}$ for $M=\lambda$. For $f:(X, A) \rightarrow(Y, B)$ continuous, write f^{c} for the cochin map $C^{n}(Y, B ; M) \rightarrow C^{n}(X, A ; M)$, $f^{c}=\operatorname{Hom}\left(f_{c}, M\right)$, and f^{*} for the induced homos. $H^{n}(Y, B=M) \rightarrow H^{n}(X, A: M)$.

Ex $4 C^{0}(X ; M)=\operatorname{Ham}(C .(X), M)$ ．Corresponds to functions $X \rightarrow M$ ．Let $\varphi \in C^{0}(X ; M)$ ．Then $d^{0}(\varphi)$ sends $\sigma: \Delta^{1}=[0,1] \rightarrow M$ to $\varphi\left(d_{1}(\sigma)\right)=\varphi(\sigma(1))-\varphi(\sigma(0))$
So $\quad d^{\circ}(\varphi)=0 \Leftrightarrow \varphi(\sigma(0))=\varphi(\sigma(1)) \quad \forall \sigma \Leftrightarrow \varphi$ constant on path－connected components．Hence

$$
H^{\circ}(X ; M)=\operatorname{ker} d^{0} \cong \prod_{\pi_{0}(x)} M
$$

Rink 5 A hands－or approach to cochains：
$\left[\begin{array}{cc}\text { note：for } \pi_{0}(x) \text { infinite } \\ H^{\circ}(x ; \pi) & ⿻ 丷 ⿻ 二 丨 刂 刀 \\ H_{0}(x ; \pi) \\ \pi_{0}^{11} \pi & \bigoplus_{0}^{12} \pi \\ \pi_{0}(x) & \end{array}\right]$

An n－cochin $\varphi \in C^{m}(X ; M)$ is a homom．$C_{n}(X) \rightarrow M$ ．
So n－chains correspond to functions

$$
\left\{\text { singular } n \text {-simplice } \sigma: \Delta^{n} \rightarrow X\right\} \longrightarrow \mathbb{Z}
$$

The $(n+1)$－cochain $d^{n}(\varphi)$ sends $\tau: \Delta^{n+1} \rightarrow x$ to $\varphi\left(d_{n+1}(\tau)\right)$ ．
So φ is an n－cocycle $\Leftrightarrow \varphi$ is zero on n－boundaries $\in B_{n}$ ．
φ is an n－coboundary $\Rightarrow \varphi(\sigma)$ is determined by $d_{n}(\sigma)$ ．
$\Rightarrow \varphi$ is zero on $n-c y$ ales $\in Z_{m}$
Correction 22 April The implication＂\models＂does not generally hold：there may be cochains φ that are zero on n－cycles，but that are not coboundaries．Indeed，this happens if φ is a cocycle，$[\varphi] \neq 0 \in H^{n}(X ; M)$ ，and $\operatorname{ev}([\varphi])=0$ ．

Thus：An n－cocycle φ induce，a homom．$C_{n}(x) / B_{n} \rightarrow M$ ， by restriction it also induces a homom．

$$
Z_{n} / B_{n}=H_{n}(x) \rightarrow M
$$

For n－coboundaris φ ，this homom，is zero．Thus we have a homom．called the evaluation homomorphism Cv：$H^{n}(X ; M) \longrightarrow \operatorname{Hom}\left(H_{n}(X), M\right)$ which may be seen to be natural in both X and M ．

Universal Coefficient Them for Cohomology
Let C be a chain complex of free abelian groups and A an abelian group
(1) There is a split SES

$$
0 \rightarrow \operatorname{Ext}\left(H_{n-1}(C), A\right) \rightarrow H^{n}(C ; M) \underset{\mathrm{ev}}{\rightarrow} \operatorname{Hom}\left(H_{n}(C), A\right) \rightarrow 0
$$个 to be defined!

(2) Thase SES are natural in C and A.
(3) The splittings cannot be chosen naturally

Def Let M, N be R-modules, and F a free res. of M. Then let

$$
E x t_{R}^{n}(M, N):=H^{n}\left(\operatorname{Hom}\left(F^{M}, N\right)\right)
$$

F^{M} unique up to homs. equiv. \Rightarrow Def of Ext independent of choice of F.
As with Tor, we have:

* $E \times t_{R}^{0}(M, N) \cong \operatorname{Hom}(M, N)$.
* $E \times t_{R}^{n}(A, B)=0$ for all $n \geqslant 2$, so we write $\operatorname{Ext}(A, B)$ for $E x \hat{R}_{\mathbb{R}}^{1}(A, B)$.

For the proof of the first point, one needs:
Lemma 6 M,N,P R-modules, $f: M \rightarrow N \quad R$-linear

$$
\Rightarrow \operatorname{Hom}(\operatorname{coker} f, P) \cong \operatorname{ker}(\operatorname{Hom}(f, P))
$$

Proof $M \rightarrow N \rightarrow$ cover $f \rightarrow 0$ exact
$\Rightarrow O \rightarrow \operatorname{Hom}($ colter $f, P) \rightarrow \operatorname{Hom}(N, P) \rightarrow \operatorname{Hom}(M, P)$ is exact (same argument as in Ex Sheet 1, 2b)
$\operatorname{Rmh} 7$ * Ext is not symmetric: $E_{x} t(\mathbb{Z} / \mathrm{m}, \mathbb{Z} 1 \cong \mathbb{Z} / \mathrm{m}$ $E x \in(\mathbb{Z}, \mathbb{R} / m) \cong 0$
(as we shall see from Prop 8)

* Ext can behave unexpectedly:
$\operatorname{Ext}(\mathbb{Q}, \mathbb{Z}) \cong$ uncountably-dimensional \mathbb{Q} - vector space

Prop 8 For all ab groups A, B, C, the following hold:
(1) $\operatorname{Ext}(A \oplus B, C) \cong E x t(A, C) \oplus \operatorname{Ext}(B, C)$
(2) $\operatorname{Ext}(A, B \oplus C) \cong \operatorname{Ext}(A, B) \oplus \operatorname{Ext}(A, C)$
(3) A free $\Rightarrow \operatorname{Ext}(A, B) \cong 0$.
(4) $\operatorname{Ext}(\pi / n, A) \cong A / n A$

Note this suffice to compute Ext $(f . g$ group, $A)$.

$$
\text { (5) } E \times t(A, B) \cong T(A) \otimes B \text { is } A, B f \cdot g \text {. }
$$

Compare (4), (5) to Tor: $\operatorname{Tor}(\lambda / n, A) \cong\{x \in A \mid n x=0\}$

$$
\operatorname{Tov}(A, B) \cong T(A) \otimes T(B) \text { for } A, B f, g \text {. }
$$

Proof of $(4) 0 \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \longrightarrow \mathbb{Z} \rightarrow 0$ free res. F

$$
\operatorname{Hom}\left(F^{\pi / n}, A\right)=0 \longleftarrow \underset{\cong A}{\operatorname{Hom}(R, A)} \underset{\cong n}{\leftrightarrows} \operatorname{Hom}(R, A) \leftarrow 0
$$

$$
\Rightarrow E \times t=H^{1} \text { of this codhain complex } x \cong A / m A
$$

Rank 9 Let R-modules M, N be given. An extension of N by M is a SES $O \rightarrow N \rightarrow P \rightarrow M \rightarrow 0$. His equivalent to another extension $0 \rightarrow N \rightarrow P^{\prime} \rightarrow M \rightarrow 0$ if $\exists f: P \rightarrow \rho^{\prime}$ st

commutes, Five-Lemma $\Rightarrow f$ is iso. So equivalences an equiv. rel. One finds $\{$ Extensions of N by $M\} /$ equiv $\xrightarrow{1: 1} E x t_{R}^{1}(M, N)$.

Prop 10 Assume $H_{n}(x, A)$ is f.g. for all m. Then

$$
H^{n}(x, A ; \lambda) \cong \underbrace{\mp\left(H_{n}(X, A)\right) \oplus T\left(H_{m-1}(X, A)\right)}
$$

free part $F(B):=B / T(B)$
Proof UCT $\Rightarrow H^{n}(x, A ; \mathbb{R}) \cong \operatorname{Hom}\left(H_{n}(x, A), \mathbb{Z}\right)$

$$
\begin{array}{ll}
\left.\cong \operatorname{Hom}\left(F\left(H_{n}(x, A)\right)\right), \mathbb{R}\right) & \cong F\left(H_{n}(x, A)\right) \\
\oplus \operatorname{Hom}\left(T\left(H_{n}(x, A)\right), \mathbb{R}\right) & \cong 0
\end{array}
$$

$$
\begin{aligned}
& \oplus \operatorname{Ext}\left(F\left(H_{n-1}(x, A)\right), \mathbb{Z}\right) \cong 0 \\
& \oplus \operatorname{Ext}\left(T\left(H_{n-1}(x, A)\right), \mathbb{R}\right) \cong T\left(H_{n-1}(x, A)\right)
\end{aligned}
$$

Def The cellular cochain complex $C_{c w}^{\bullet}(x)$ of a $C W$-complex X is How $\left(C_{C \omega}^{\bullet}(X), M\right)$. Its cohomology $H_{c w}^{n}(X ; M)$ is the n-the cellular cohomology group.

Them $11 \quad H_{C \omega}^{n}(X ; M) \cong H^{n}(X ; M)$.
Example $12 C_{0}^{c W}\left(\mathbb{R} P^{2}\right)=0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{O} \xrightarrow{0}$

$$
H_{0}^{c w} \cong \lambda, H_{2}^{c w} \cong R / 2, \quad H_{2}^{c w}=0
$$

Hauds-on Trick: C a chain complex of fig. free ab. groups with a chosen basis, then

$$
\left(\text { Matrix of } d_{n}\right)^{\top}=\text { Matrix of } \operatorname{Hom}\left(d_{n}, \mathbb{R}\right)
$$

wat to the basis wot the dual basis

$$
\Rightarrow C_{C W}^{\bullet}\left(\mathbb{R}^{2}-\mathbb{R}\right)=0 \leftarrow \mathbb{R} \leftarrow \mathbb{2} \leftarrow \mathbb{R}
$$

and $H_{C W}^{0} \cong \mathbb{R}, H_{C W}^{1} \cong 0, H_{c w}^{2} \cong \mathbb{R} / 2$

Proof of UCT (1)
There is a SES of chain complexes:

$$
\begin{aligned}
& 0 \rightarrow Z_{m+1} \xrightarrow{\text { ind }} C_{m+1}^{d_{m+1}} B_{m} \longrightarrow 0 \\
& 0 \rightarrow 0 \downarrow \\
& 0 \longrightarrow Z_{n} \xrightarrow{\text { ind }}{d_{n+1}}^{d_{n}} \xrightarrow{d_{n}} B_{m-1} \longrightarrow 0
\end{aligned}
$$

Bn free by Thu $4.7 \Rightarrow$ each row splits \Rightarrow SES of cochin complexes

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}\left(B_{n-1}, M\right) \xrightarrow{d^{n-1}} \operatorname{Hom}\left(C_{n}, M\right) \xrightarrow{\text { ind }^{*}} \operatorname{Hom}\left(Z_{m}, M\right) \rightarrow 0 \\
& 0 \rightarrow \operatorname{Ham}\left(B_{n}, M\right) \xrightarrow{d^{n}} \operatorname{Ham}\left(C_{m+1}, M\right) \xrightarrow{\text { incl }} \operatorname{Hom}\left(Z_{m+1}, M\right) \rightarrow 0
\end{aligned}
$$

This induces a LES

$$
\begin{aligned}
& \cdots \cdots \rightarrow \operatorname{Hom}^{\left(Z_{n-1}, M\right)} \\
& \xrightarrow{\partial^{n-1}} \operatorname{Hom}\left(B_{n-1}, M\right) \rightarrow H^{n}(C ; M) \rightarrow \operatorname{Hom}\left(Z_{m}, M\right) \\
& \xrightarrow{\partial^{n}} \operatorname{Hom}\left(B_{n}, M\right) \rightarrow \ldots
\end{aligned}
$$

Check that $\partial^{i}=\operatorname{Hom}\left(B_{n} \hookrightarrow Z_{m}, M\right)$
\Rightarrow SIS

$$
\begin{aligned}
& 0 \rightarrow \underbrace{\text { cover } \partial^{n-1}} \rightarrow H^{n}(C ; M) \rightarrow \underbrace{\text { key } \partial^{n}} \rightarrow 0 \\
& \cong \operatorname{Ext}\left(H_{m-1}(C), M\right) \\
& \cong \operatorname{Hom}\left(\text { cover } B_{n} \rightarrow Z_{m}, M\right) \\
& \text { (by Lemuna 6) } \\
& \cong \operatorname{Hom}\left(H_{n}(C), M\right)
\end{aligned}
$$

\rightarrow because: free res $0 \rightarrow B_{n-n} \rightarrow Z_{m-1} \rightarrow H_{n-1}(C) \rightarrow 0$
\leadsto co Chain complex $0 \leftarrow \operatorname{Ham}\left(B_{n-1}, M\right) \Longleftarrow \partial^{n-1} \operatorname{Ham}\left(Z_{n-1}, M\right)$ with $H^{1} \cong$ cover O^{n-1}, and $H^{\wedge} \cong$ Ext by def of Ext.

Prop 11 Singular cohomology satisfies axioms that are analogue to the Eitenbery-Steenrod axioms for homology (see (2):
Data
$H^{n}(— i M)$ are contravariant functor $\{$ Pairs of Spaces $\} \rightarrow \mathbb{R}$-Mod There are natural connecting homom. $\partial: H^{n}(A ; M) \rightarrow H^{n+1}(X, A ; M)$

Axioms
Homotopy (1) $f \simeq g \Rightarrow f^{*}=g^{*}$
Excision (2) $\bar{u} \subseteq A^{0} \Rightarrow \operatorname{incl}^{*}: H^{n}(X, A ; M) \rightarrow H^{n}(X \backslash U, A \backslash u ; M)$ is 0 Dimension (3) $H^{n}(\{*\} ; M) \cong M$ for $n=0$, trivial for $n \neq 0$.

Additivity (4) $H^{n}\left(\frac{1}{\alpha} X_{\alpha} ; M\right) \xrightarrow{i} \prod_{\alpha} H^{n}\left(X_{\alpha} ; M\right)$ is an iso, with i given by $i_{\alpha}=\left(\text { indusion } X_{\alpha} \rightarrow \frac{11}{\alpha} X_{\alpha}\right)^{*}$.
Exactness (5) There are LESs

$$
\ldots \rightarrow H^{n}(X, A ; M) \xrightarrow{i m c l^{*}} H^{m}(X ; M) \xrightarrow{i m l^{*}} H^{m}(A ; M) \xrightarrow{\partial} H^{m+1}(X, A ; M) \rightarrow \ldots
$$

Similarly as for Homology with coefficients, all axioms follow more or lens directly from homotopy equivalences of singular chain complexes being send to hov. equiv. of singular Cochin complexes by the additive tom (—, M) functor.

Proof of (4) Alg Top I: $\quad \sum_{\alpha}\left(\text { incl }\left.\right|_{\alpha}\right)_{c}: \underset{\alpha}{\oplus} C_{0}\left(x_{\alpha}\right) \longrightarrow C_{0}\left(\frac{11}{\alpha} x_{\alpha}\right)$
is a homotupy equivalence \Rightarrow so is

$$
\begin{aligned}
& \operatorname{Hom}\left(C_{0}\left(\frac{11}{\alpha} X_{\alpha}\right), M\right) \xrightarrow{\operatorname{Hom}\left(\sum_{\alpha}\left(\text { incl } l_{\alpha}\right)_{c}, M\right)} \operatorname{Hom}\left(\bigoplus_{\alpha} C_{0}\left(X_{\alpha}\right), M\right)
\end{aligned}
$$

(incl $)_{c}$
Further good properties of cohomology:
The 12 (Mayer-Vietoris) $A, B \subseteq X, A^{0} \cup B^{0}=X \Rightarrow L E S$

$$
\ldots \rightarrow H^{n}(X ; M) \rightarrow H^{n}(A ; M) \oplus H^{n}(B ; M) \rightarrow H^{m}(A \cap B ; M) \rightarrow H^{n+1}(X) \rightarrow \ldots
$$

Remark 13 Understanding the connection homomorphisms in the
Maye-Vietoris-sequence:
Homology $H_{n}(x) \longrightarrow H_{n-1}(A \cap B)$:
Represent a homology elan $[x] \in H_{M}(x)$ as $[y+z]$, where $y \in C_{n}(A)$ and $z \in C_{n}(B)$. (Here, we abuse notation and write y also for the image of y under $C_{M}(A) \longrightarrow C_{M}(X)$, similarly for z.$) Now sand [x] \longmapsto[d y]$. (since $0=d x=d(y+z) \Rightarrow d y=-d z$, so $d y \in C_{n-1}(A \cap B)$, again abusing notation).

A similar understanding for cohomology is more complicated. The following wasn't discussed in the lecture.

Colomology $H^{n}(A \cap B) \rightarrow H^{n+1}(X)$:

Extend a cohomology class $[\varphi] \in H^{n}(A \cap B)$, which is a map $C_{n}(A \cap B) \rightarrow R$, to a map $\psi: C_{m}(A) \rightarrow R$, ie a cochin $\psi \in C^{n}(A)$.

For eat $x \in C_{n+1}(x)$, choose $y \in C_{n+1}(A), z \in C_{m+1}(B)$ such that $x-(y+z)$ is a boundary. Then send $[\varphi]$ to the cohonologg class in $H^{n+1}(x)$ that sends each x to $\psi(d y)$.

Thu 14 (Good Pairs) $A \subseteq X$ nom-empty closed, A a deformation retract of an open neighbourhood of A is $X \Rightarrow$
the projection $(X, A) \rightarrow(X / A,\{x\})$ induces an iso

$$
\underbrace{H^{n}(X / A,\{*\})}_{\cong \tilde{H}^{n}(X / A)} \longrightarrow H^{n}(X, A)
$$

Def For $X \neq \phi$, the moth reduced cohomology group $\tilde{H}^{M}(X ; M)$ is the n-the cohomologry group of the augmented cochair complex

$$
0 \rightarrow M \xrightarrow{\varepsilon} C^{0}(x ; \Pi) \longrightarrow C^{1}(x ; M) \longrightarrow \ldots
$$

with $\varepsilon(m)(\sigma)=m$ for all $\sigma: \Delta^{0} \rightarrow X$.
Prop $15 H^{n}(x ; M) \cong \tilde{H}^{m}(x ; M)$ for $n \geq 1$,

$$
H^{0}(x ; M) \cong \tilde{H^{0}}(x ; M) \oplus M
$$

Ex $16 \tilde{H}^{m}\left(S^{k}\right) \cong \mathbb{R}^{\delta(n, k)}$
$k=0: \checkmark$. Assume now $k \geqslant 1$.
1st Proof $C_{c w}^{\bullet}\left(S^{k}\right) \cong \operatorname{Hom}\left(C_{0}^{c w}\left(S^{k}\right), \lambda\right) \cong C_{0}^{c w}\left(S^{k}\right)$
and Proof $H_{0}\left(S^{k}\right)$ free $\stackrel{u c T}{\Longrightarrow} H^{n}\left(S^{k}\right) \cong H_{m}\left(S^{k}\right)$
Bid Proof $A=S^{k} \backslash\left\{e_{1}\right\}, B=S^{k} \backslash\left\{-e_{1}\right\} \Rightarrow A_{1} B$ contractible
\Rightarrow Mayer-Vietoris gives iso $H^{i}(\underbrace{A \cap B}_{\simeq S^{k-1}}) \longrightarrow H^{i+1}\left(S^{k}\right)$
Proceed by induction.
th Proof $H^{i}\left(S^{k}\right)$
iso d LES of Pair $\left(D^{k+1}, S^{k}\right)$

$$
H^{i+1}\left(D^{k+1}, S^{k}\right)
$$

iso | due to good pair

$$
H^{i+1}\left(S^{k+1}\right)
$$

Prop 17 Let $n \geqslant 1$. If $f: S^{\mu} \rightarrow S^{\mu}$ has degree $k \in \mathbb{Z}$, then

$$
f^{*}: H^{n}\left(S^{n}\right) \longrightarrow H^{m}\left(S^{n}\right) \text { is multiplication by } k .
$$

Reminder " f has degree k " is by def equivalent to:
$f_{*}: H_{M}\left(S^{M}\right) \longrightarrow H_{M}\left(S^{M}\right)$ is multiplication by k
Mst Proof

$$
\begin{aligned}
& \cdots \stackrel{0}{\square} C_{n}^{c w}\left(S^{n}\right) \xrightarrow{0} \cdots \\
& \int_{c}=\text { malt by } k \quad \xrightarrow[\operatorname{Hom}_{\text {om }}(\cdot, \lambda)]{\substack{\text { apply } \\
\text { functor }}} \\
& \cdots\left(\therefore C_{C w}^{n}\left(S^{n}\right) \leftarrow^{0} \cdots\right. \\
& \ldots \stackrel{0}{\longrightarrow} C_{n}^{c w}\left(S^{m}\right) \xrightarrow{0} \ldots
\end{aligned}
$$

Ind Proof Use maturality of UCT. (Shipped in lecture)
$\operatorname{Ext}\left(H_{n-1}\left(S^{m}\right), \mathbb{Z}\right) \cong 0$ since $H_{m-1}\left(S^{m}\right)$ is free (namely, it is $O($ if $n \geqslant 2)$ or $\mathbb{Z}(i f n=1)$. So we have an iso

$$
\text { er: } H^{n}\left(S^{n}\right) \longrightarrow \operatorname{Hom}\left(H_{n}\left(S^{\mu}\right), \mathbb{Z}\right)
$$

It is natural, so the following commutes:

$$
\begin{aligned}
& H^{m}\left(S^{m}\right) \xrightarrow[\text { iso }]{\text { er }} \operatorname{Hom}\left(H_{m}\left(S^{m}\right), \mathbb{R}\right) \\
& \underset{H^{m}\left(S^{m}\right) \xrightarrow[\text { iso }]{\text { av }} f^{*} \underset{\sim}{\operatorname{Hom}\left(H_{m}\left(s^{M}\right), \mathbb{Z}\right)} \operatorname{Hom}\left(f_{*}, \mathbb{Z}\right)=\text { malt by } k}{\operatorname{Ha}}
\end{aligned}
$$

(6) The cup product

Reminder about simplexes If $v_{0}, \ldots, v_{n} \in \mathbb{R}^{l}$ s.t. $v_{1}-v_{0}, \ldots, v_{n}-v_{0}$ are lin indef., then the convex hull of $\left\{v_{0}, \ldots, v_{n}\right\}$, ie

$$
\left\{\sum_{i=0}^{n} \lambda_{i} v_{i} \mid \sum_{i=0}^{n} \lambda_{i}=1,\left(\lambda_{0}, \ldots, \lambda_{m}\right) \in[0,1]^{n+1}\right\} \subseteq \mathbb{R}^{\ell}
$$

together with the tuple $\left(v_{0}, \ldots, v_{n}\right)$, is called an n-simplex, denoted $\left[v_{0}, \ldots, v_{n}\right]$. Every pair of n-Simplexes $\left[v_{0}, \ldots, v_{n}\right],\left[v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right]$ is naturally homeomorphic via $\sum \lambda_{i} v_{i} \longmapsto \sum \lambda_{i} v_{i}$.
The standard n-simplex is $\Delta^{n}:=\left[e_{0}, \ldots, e_{n}\right] \subseteq \mathbb{R}^{n+1}$.
A singular n-simplex of a top. space X is a cont. map $\sigma: \Delta^{n} \rightarrow X$.
They form the basis of $C_{n}(x)$. The boundary operator $d: C_{n}(x) \rightarrow C_{n-1}(x)$ is given by $d(\sigma)=\sum_{i=0}^{n} \sigma \mid[\underbrace{\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right.}]$. means e_{i} is left out
(where we implicitly identify the nom-standard simplex $\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]$ with Δ^{n-1} via the natural homes).

Throughout, let R be a commutative unital ring.
Def x top space, $\varphi \in C^{n}(x ; R), \psi \in C^{k}(X ; R)$.
Let the cup-product $\varphi \underset{\sim}{\sim} \psi \in C^{n+k}(X ; R)$
\hat{L} (smile, not \cup, in LaTeX
be given sending singular simplexes $\sigma: \Delta^{n+k}=\left[e_{0}, \ldots, e_{n+k}\right] \rightarrow X$ to
6. THE CUP PRODUCT

Prop 1 (1) $: C^{n}(X ; R) \times C^{k}(X ; R) \longrightarrow C^{n+k}(X ; R)$
1 is R-bilinear. (Uses distributivity \& associativity of R)
$(2) \smile$ is associative: $(\varphi \cup \psi) \smile \eta=\varphi \smile(\psi \smile \eta)$ (uses associativity of R)
(3) Let $\varepsilon \in C^{0}(X ; R), \varepsilon(\sigma)=1 \in R$ for all σ. Then $\varphi \smile \varepsilon=\varepsilon \smile \varphi=\varphi$. (uses unit of R)

Proof Exercise.
Remark 2 makes $C^{0}(X ; R)=\bigoplus_{m=0}^{\infty} C^{n}(X ; R)$ into a
(generally nom-commutative) unital R-algebra (by $P_{\text {sop }} 1$).
Moreover, $C^{\bullet}(X ; R)$ is graded:
a grading on an R-algebra S is a decomposition
$S=\bigoplus_{n \in \mathbb{R}} S_{n}$ as an R-module, such that $S_{n} S_{k} \subseteq S_{n+k}$.
We write $\operatorname{deg} x=n$ for $x \in S_{n}, x \neq 0$. deg is not defined if $x \notin S_{n} \forall n$.
Example $3 C{ }^{\bullet}(\phi ; R)=$ the zero ring
$C^{\bullet}(\{*\} ; R):$ For all $n \geqslant 0, C_{n}(\{*\})$ is generated by the constant $\sigma_{n}: \Delta^{n} \rightarrow\{*\}$, and $C^{n}(\{*\} ; R)$ by $\varphi_{n}: \sigma_{n} \longmapsto 1$.
Check $\varphi_{n} \cup \varphi_{n}=\varphi_{n+k}$. So we have an iomomplism of graded R-algebras: $C^{\bullet}(\{*\} ; R) \longrightarrow R[x], \varphi_{\mu} \longmapsto x^{\mu}$.
Here, deg on $\mathbb{R}[x]$ is different from the usual deg of polynomials: $\operatorname{deg}\left(r x^{n}\right)=n$, deg not defined for non-monomials.
Prop 4 (Graded Leibniz rule). For $\varphi \in C^{n}(X ; R), \psi \in C^{k}(X ; R)$:

$$
d(\varphi \smile \psi)=(d \varphi) \cup \psi+(-1)^{n} \varphi \cup d \psi
$$

Koszul sign rule:
"when d jumps over something of degree \&e, $(-1)^{k}$ appears"

Proof
Calculate

$$
\begin{aligned}
((d \varphi) & \cup \psi)\left(\sigma:\left[e_{0}, \ldots, e_{n+k+1}\right] \rightarrow x\right) \\
& \left.=(d \varphi)\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n+1}\right]}\right)\right) \cdot \psi\left(\sigma\left(\left[e_{n+1}, \ldots, e_{n+k+1}\right]\right)\right. \\
& =\varphi\left(\left.d \sigma\right|_{\ldots}\right) \\
& =\varphi\left(\left.\sum_{i=0}^{n+1}(-1)^{i} \sigma\right|_{\left[e_{0}, \ldots, \widehat{e_{i}}, \ldots e_{m+1}\right]}\right) \cdot \psi(\ldots) \\
& =\sum_{i=0}^{n+1}(-1)^{i} \varphi\left(\left.\sigma\right|_{\left.\left[e_{0}, \ldots, e_{i}, \ldots e_{n+1}\right]\right)} \psi\left(\left.\sigma\right|_{\left[e_{n+1}, \ldots, e_{n+k+1}\right]}\right)\right.
\end{aligned}
$$

and:

$$
\begin{aligned}
& (\varphi \circlearrowright d \psi)(\sigma)= \\
& \left.=\sum_{j=0}^{k+1}(-1)^{j} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{n}\right]}\right)^{\psi\left(\left.\sigma\right|_{\left[e_{n}\right.}, \ldots, e_{n+j}, \ldots, e_{m+k+1}\right]}\right)
\end{aligned}
$$

Now plug this into:

$$
((d \varphi) \cup \psi)(\sigma)+(-1)^{n}(\varphi \vee d \psi)(\sigma)
$$

Notice the last summa and $(i=n+1)$ conch the first $(j=0)$!

$$
\begin{aligned}
& =\sum_{i=0}^{n}(-1)^{i} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]}\right) \psi\left(\left.\sigma\right|_{\left[e_{n+1}, \ldots, e_{n+n+1]}\right.}\right) \\
& +\sum_{m=n+1}^{n+h+1}(-1)^{m} \varphi\left(\left.\sigma\right|_{\left.\left[e_{0}, \ldots, e_{n}\right]\right)} \psi\left(\left.\sigma\right|_{\left[e_{n}, \ldots, e_{m}, \ldots, e_{n+h+1}\right]}\right)\right.
\end{aligned}
$$

F index shift $m=j+n$

$$
=(d(\varphi \vee \psi))(\sigma)
$$

Prop 5 (1) cocyde \checkmark cocycle $=$ cocycle
(2) coboundary - cocycle $=$ coboundary
and
Cocycle \checkmark coboundary $=$ - \cdot -
(3) For $[\varphi] \in H^{m}(x ; R), \quad[\psi] \in H^{k}(x ; R)$, $[\varphi] \cup[\psi]:=[\varphi \cup \psi] \in H^{n+k}(X, R)$ is welll-def
(4) \smile makes $H^{\bullet}(X ; R):=\bigoplus_{i=0}^{\infty} H^{i}(X ; R)$ into a graded R-algebra.

Proof (1) if $d \varphi=d \psi=0 \Rightarrow d(\varphi-\psi)=(d \varphi) \smile \psi \pm \varphi \smile d \psi=0$.
(2) if $\varphi=d \eta$ and $d \psi=0 \Rightarrow \varphi \smile \psi=(d \eta) \smile \psi=d(\eta \smile \psi)$.
(3) $\varphi \cup \psi$ is a cocycle by (1).

If $\varphi^{\prime}=\varphi+d \eta, \quad \psi^{\prime}=\psi+d \xi$, then

$$
\left[\varphi^{\prime} \smile \psi^{\prime}\right]=[\varphi \cup \psi]+\underbrace{[\varphi \smile d \xi]}_{=0}+\underbrace{\left[d \eta-\psi^{\prime}\right]}_{=0} \text { by }(2)
$$

(4) Follows from Prop 1

Example 6 if $l \geqslant 1$, then $H^{\bullet}\left(S^{l}, R\right) \cong R[x] /\left(x^{2}\right)$ with deg $x=l \quad\left(x^{2}=0\right.$ since since there is no nontrivial cohomology clan of deg $2 l$).
Def For a Δ-complex X, define \checkmark in the same way as before on the simplicial cochain complex $C_{\triangle}^{\bullet}(X ; R)=$ $\operatorname{Hom}\left(C_{0}^{\Delta}(X), R\right)$, and on in cohomology $H_{\Delta}^{\bullet}(X ; R)$.

Prop 7 The chain homotopy equivalence $C_{0}^{\Delta}(x) \longrightarrow C_{0}(x)$, sending simplex to simplex, induces a chain homotopy equivalence $C^{\bullet}(x) \rightarrow C_{\Delta}^{\bullet}(x)$ that preserves the cup product.

Proof Immediate from def
Example $8 \quad X=S^{1} x S^{1}$. Know $H^{0}(x) \cong R, H^{1}(x) \cong \pi^{2}$, $H^{2}(x) \cong \mathbb{R}$. So \smile may be interesting on $H^{1}(x)$.
Put a Δ-comple x-structure on X :

$$
\begin{aligned}
& a \in C_{0}^{\Delta}(x), \quad b_{1}, b_{2}, b_{3} \in C_{1}^{\Delta}(x) \\
& c_{1}, c_{2} \in C_{2}^{\Delta}(x) \Rightarrow \\
& d b_{1}=0, \\
& d c_{1}=d c_{2}=b_{1}-b_{3}+b_{2}
\end{aligned}
$$

One computes that:
$H_{0}^{\Delta}(X ; \mathbb{R})$ has basis $[a]$
$H_{1}^{\Delta}(X ; \lambda)-\cdots-\left[b_{1}\right],\left[b_{2}\right]$
$H_{2}^{\Delta}(X ; R)-\cdots-\left[c_{1}-c_{2}\right]$

Since $H_{0}^{\Delta}(X ; \lambda)$ is torion-free, the UCT implies $H_{\Delta}^{\bullet}(X ; \lambda) \cong \operatorname{Hom}\left(H_{0}^{\Delta}(X ; \lambda)\right)$. So the dual basis of the basis $[a],\left[b_{1}\right],\left[b_{2}\right],\left[c_{1}-c_{2}\right]$ is a basis for $H_{\Delta}^{\bullet}(X ; \lambda)$:

$$
[4],\left[\psi_{1}^{1}\right],\left[\psi^{2}\right],[\eta]
$$

with $\varphi(a)=1, \psi^{i}\left(b_{j}\right)=\delta_{i j}, \eta\left(c_{1}-c_{2}\right)=1$.
Let's calculate $\left[\psi^{1}\right] \cup\left[\psi^{2}\right]$! Since $\left[\psi^{2}\right] \cup\left[\psi^{2}\right] \in H^{2}(x ; \pi)$

$$
\Rightarrow \quad\left[\psi^{1}\right]-\left[\psi^{2}\right]=\lambda[\eta] \text { for some } \lambda \in \mathbb{Z} \text {. }
$$

Evaluate both sides on $\left[c_{1}-c_{2}\right]$:

$$
\begin{array}{rlrl}
\lambda & =e v\left(\left[\psi^{1}\right] \cup\left[\psi^{2}\right]\right)\left(\left[c_{1}-c_{2}\right]\right) \\
& =e v\left(\left[\psi^{1} \cup \psi^{2}\right]\right)\left(\left[c_{1}-c_{2}\right]\right) & & \text { by def of } \cup \text { on cohonology } \\
& =\left(\psi^{1} \cup \psi^{2}\right)\left(c_{1}-c_{2}\right) & \text { by def of ev } \\
& =\left(\psi^{1} \cup \psi^{2}\right)\left(c_{1}\right)-\left(\psi^{1}-\psi^{2}\right)\left(c_{2}\right) & \text { by linearity } \\
& =\psi^{1}\left(\left.c_{1}\right|_{\left[e_{0}, e_{1}\right]}\right) \psi^{2}\left(\left.c_{1}\right|_{\left[e_{1}, e_{2}\right]}\right)-\psi^{1}\left(\left.c_{2}\right|_{\left[e_{0,}, e_{1}\right]}\right) \psi^{2}\left(\left.c_{2}\right|_{\left[e_{1}, e_{2}\right]}\right) \\
& =\psi^{1}\left(b_{2}\right) \psi^{2}\left(b_{1}\right)-\psi^{1}\left(b_{1}\right) \psi^{2}\left(b_{2}\right) \\
& =-1 & \text { on cochains of } \\
\Rightarrow & {\left[\psi^{1}\right] \smile\left[\psi^{2}\right]=-[\eta] .}
\end{array}
$$

Similarly, one computes $\left[\psi^{2}\right] \cup\left[\psi^{1}\right]=[\eta]$ and $\left[\psi^{i}\right] \cup\left[\psi^{i}\right]=0$.

So $H^{0}\left(S^{1} \times S^{1} ; \mathbb{R}\right) \cong \underbrace{\mathbb{Z}\langle x, y\rangle} /\left(x y=-y x, x^{2}=y^{2}=0\right)$
6. The cup product

Prop 9 (Naturality of \checkmark)
$f: X \rightarrow Y$ cont. map of top. spaces, $[\varphi] \in H^{n}(Y ; R),[\Psi] \in H^{k}(Y ; R)$

$$
\Rightarrow f^{*}([\varphi]-[\psi])=\left(f^{*}[\varphi]\right)-\left(f^{*}[\psi]\right)
$$

Proof (skipped in the lecture)
For all $(n+k)$-simplexes $\sigma:\left(f^{c}(\varphi \smile \psi)\right)(\sigma)=\varphi \smile \psi(f \circ \sigma)$

$$
\begin{aligned}
& =\varphi\left(\left.f \circ \sigma\right|_{\left[e_{0}, \ldots, e_{m}\right]}\right) \psi\left(\left.f \circ \sigma\right|_{\left[e_{m}, \ldots, e_{n+k}\right]}\right) \\
& =f^{c} \varphi(\sigma \mid \ldots) \cdot f^{c} \psi(\sigma / \ldots)=\left(\left(f^{c} \varphi\right) \cup\left(f^{c} \psi\right)\right)(\sigma) .
\end{aligned}
$$

Now $f^{*}([\varphi] \smile[\psi])=f^{*}([\varphi \smile \psi])=\left[f^{c}(\varphi \smile \psi)\right]$

$$
=\left[\left(f^{c} \varphi\right) \smile\left(f^{c} \psi\right)\right]=\left[f^{c} \varphi\right] \smile\left[f^{c} \psi\right]=
$$

$$
f^{*}([\varphi]) \smile f^{*}([\psi])
$$

In other words: f^{*} is a homomompliam of graded R-algebras!
Prop $10 X, Y$ top space \Rightarrow We have graded R-algebra is os
(1) $H^{*}(X, Y ; R) \xrightarrow[\binom{\text { incl* }}{\text { incl* }}]{ } H^{\bullet}(X ; R) \times H^{\bullet}(Y ; R)$

wedge product $X_{L}, T /\left\{x_{0}\right\} \sim\left\{y_{0}\right\}$ for some $x_{0} \in X, y_{0} \in Y$ that are deformation retracts of neighbourhoods N_{X}, N_{Y}.
Proof (1) We know ($\begin{aligned} & \text { incl* } \\ & \text { incl }\end{aligned}$) is an R-module isom. (eg use MV). It's ans algebra houram by Prop 9 .
(2) Mayer-Vietoris gives iss for $n \geqslant 1$, and a SES
the learned is
the desired Subalgebtra

Example $11 H^{\bullet}\left(S^{1} \vee S^{1} \vee S^{2}\right) \cong$

$$
\begin{aligned}
& \mathbb{R}\left\langle x_{1}, x_{2}, x_{3}\right\rangle /\left(x_{i} x_{j}=0 \text { for all } i, j\right) \\
& \operatorname{deg} x_{1}=\operatorname{deg} x_{2}=1, \operatorname{deg} x_{3}=2
\end{aligned}
$$

This is not isomouplic to the ring $H^{0}\left(S^{1} \times S^{1}\right)$, which contains elements of degree 1 with non-zero product.

$$
\Rightarrow S^{1} \sim S^{1} \sim S^{2} \nsim S^{1} \times S^{1}
$$

Theorem $13 X$ top. space, $A \subseteq X, \varphi \in H^{n}(X, A, R)$, $\psi \in H^{k}(X, A: R)$. Then

$$
\varphi \smile \psi=(-1)^{n k} \psi \smile \varphi
$$

Proof: next lecture.
This property of the grated R-alg. $H^{\bullet}(X, A, R)$ is called graded commutative.

Theorem $13 X$ sop. space, $[\varphi] \in H^{n}(X ; R)$,
$[\Psi] \in H^{k}(X: R)$. Then

$$
[\varphi] \smile[\psi]=(-1)^{n k}[\psi] \smile[\varphi] .
$$

Proof For $\sigma: \Delta^{\mu} \rightarrow x$, let $\bar{\sigma}: \Delta^{\mu} \rightarrow x$
be $\bar{\sigma}=\sigma \circ\left(\right.$ natural homer $\left.\left[e_{0}, \ldots, e_{m}\right] \rightarrow\left[e_{m}, e_{m-1}, \ldots, e_{1}, e_{0}\right]\right)$, ie. $\bar{\sigma}\left(e_{i}\right)=\sigma\left(e_{m-i}\right)$. Let $p: C_{0}(x) \longrightarrow C_{0}(x), \sigma \mapsto(-1)^{\varepsilon_{n}} \bar{\sigma}$, where $\varepsilon_{n}=\frac{(n+1) n}{2}$.
Claim 1: ρ is a chain map.
Claim 2: $\rho \simeq{ }^{i d} C_{.}(x)$
Pf that Claim 18-2 \Rightarrow Thu:

$$
\begin{align*}
& \left(\rho^{*}(\varphi \smile \psi)\right)(\sigma)=(-1)^{\varepsilon_{n+k}} \varphi\left(\left.\sigma\right|_{\left[e_{n+k}, \ldots, e_{k}\right]}\right) \psi\left(\left.\sigma\right|_{\left[e_{k}, \ldots, e_{0}\right]}\right) \\
& \left(\left(\rho^{*} \psi \mid \smile\left(e^{*} \varphi\right)\right)(\sigma)=(-1)^{\varepsilon_{n}+\varepsilon_{k}} \psi\left(\left.\sigma\right|_{\left[e_{k}, \ldots, e_{0}\right]}\right) \psi\left(\left.\varphi\right|_{\left[e_{n+k}, \ldots, e_{k}\right]}\right)\right. \\
& \Rightarrow[\varphi] \smile[\psi]=[\varphi \smile \psi]=\left[e^{*}(\varphi \smile \psi)\right] \\
& =(-1)^{\varepsilon_{n+k}+\varepsilon_{n}+\varepsilon_{k}}\left[\left(e^{*} \psi\right) \smile\left(e^{*} \varphi\right)\right]=(-1)^{n k}\left[\rho^{*} \psi\right] \cup\left[e^{*} \varphi\right] \\
& =(-1)^{n k}[\psi] \smile[\varphi] . \quad \text { Check that } \varepsilon_{n+k}+\varepsilon_{n}+\varepsilon_{k} \equiv n k \quad(2) . \tag{2}
\end{align*}
$$

Pf of Claim 1: $\quad \rho d \sigma=\rho\left(\left.\sum_{i=0}^{n}(-1)^{i} \sigma\right|_{\left.\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]\right)}\right.$

$$
\begin{aligned}
& \left.=\left.\sum_{i=0}^{n}(-1)^{i+\varepsilon_{n-1}} \sigma\right|_{\left[e_{n}, \ldots, e_{i}\right.}, \ldots, e_{0}\right] \\
d \rho \sigma & =\sum_{j=0}^{n}(-1)^{j+\varepsilon_{n}} \quad \sigma \mid\left[e_{m}, \ldots, \widehat{e_{n-j}}, \ldots, e_{0}\right] \quad n-j=i \\
& =\left.\sum_{i=0}^{n}(-1)^{n-i+\varepsilon_{n}} \quad \sigma\right|_{\left[e_{m}, \ldots, e_{i}, \ldots e_{0}\right]} \quad
\end{aligned}
$$

Check: $\varepsilon_{n-1} \equiv n+\varepsilon_{n}(2) \Leftrightarrow n+\frac{n(n-1)}{2} \equiv \frac{n(n+1)}{2}$

Pf of Claim 2: Need homstopy $s: C_{n}(x) \rightarrow C_{n+1}(x)$ with

$$
\begin{equation*}
d_{n+1} s_{n}+s_{n-1} d_{m}=\rho_{n}-i d_{C_{n}} \tag{*}
\end{equation*}
$$

Construction of s is inspired by the prism operator:
out the prism $\Delta^{n} \times[0, i] \subseteq \mathbb{R}^{n+1} \times \mathbb{R}=\mathbb{R}^{n+2}$ into $n+1$ many $(n+1)$-simplices.
Let $v_{i}=\left(e_{i}, 0\right)$ and $\omega_{i}=\left(e_{i}, 1\right)$ for $i=0, \ldots, n$.

Let $\pi: \Delta^{m} \times[0,1]$ be the projection, so that $\pi\left(\omega_{i}\right)=\pi\left(v_{i}\right)=e_{i}$.
Define

$$
S_{n}(\sigma):=\sum_{i=0}^{n}(-1)^{i+\varepsilon_{n-i}} \sigma \circ \pi\left(\left[V_{0}, \ldots, V_{i}, \omega_{n}, \ldots, \omega_{i}\right]\right)
$$

Let us check by calculation that ($*$) holds.

$$
\begin{aligned}
& +\sum_{0 \leq i \leq j \leq n}^{(2)}(-1)^{\varepsilon_{m-i+n j+1}} \sigma_{0} \pi\left(\left[v_{0}, \ldots, v_{i}, \omega_{n}, \ldots, \hat{\omega}_{j}, \ldots \omega_{i}\right]\right)
\end{aligned}
$$

Comider the summand with $i=j$:

$$
\begin{align*}
& (-1)^{\varepsilon_{n}} \sigma_{0} \pi\left(\left[\omega_{n}, \ldots, \omega_{0}\right]\right)+ \\
& +\sum_{i=1}^{n+1}(-1)^{\varepsilon_{n-i}} \sigma_{0} \pi\left(\left[v_{0}, \ldots, v_{i-1}, \omega_{n}, \ldots, \omega_{i}\right]\right) \\
& \left.+\sum_{k=0}^{n}(-1)^{\varepsilon_{m-k}+n+k+1} \sigma_{0} \pi\left(\left[v_{0}, \ldots, v_{k}, \omega_{n}, \ldots, \omega_{k+1}\right]\right)_{V}\right) \\
& +(-1)^{\varepsilon_{0}} \sigma_{0} \pi\left(\left[v_{0}, \ldots, v_{n}\right]\right) \\
& =(-1)^{\varepsilon_{m}} \bar{\sigma}+\sigma=\rho \sigma-\sigma \\
& \text { these cancel: } \\
& \text { index shift } k=i-1 \text {, check } \\
& \varepsilon_{m-i} \neq \varepsilon_{m-i+1}+n+i \tag{2}
\end{align*}
$$

So, to prove (*), one has to check that the summands with $i \neq j$ equal $-S_{m-1}\left(d_{m}(\sigma)\right)$

$$
\begin{aligned}
& \left.=-S_{n-1}\left(\sum_{j=0}^{n}(-1)^{j} \sigma l_{\left[v_{0}, \ldots, \hat{v}_{j}\right.}, \ldots, v_{n}\right]\right) \\
& =\sum_{0 \leqslant j \leqslant k \leqslant n}(-1)^{1+j+k+\varepsilon_{n-k-1}} \sigma_{0} \pi\left(\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, v_{k+1}, \omega_{n}, \ldots, \omega_{k+1}\right]\right)
\end{aligned}
$$

index shift: $k=i-1$. Check $i+\varepsilon_{n-i}+j \equiv 1+j+i-1+\varepsilon_{n-i}$ \Rightarrow equals summands of (1) with $j<i$

$$
+\sum_{0 \leqslant i<j \leqslant n}(-1)^{1+j+i+\varepsilon_{n-i-1}} \sigma_{0} \pi\left(\left[\dot{v}_{0}, \ldots, v_{i}, \omega_{n}, \ldots \hat{\omega}_{j}, \ldots \omega_{i}\right]\right)
$$

check: $\quad \varepsilon_{n-i}+n+j+1 \equiv 1+j+i+\varepsilon_{n-i-1}$ \Rightarrow equals summands of (2) with $i<j$
6. The cup product

Remark 14 Well prove later that:
$H^{\bullet}\left(\mathbb{C} P^{n}\right) \cong \mathbb{Z}[x] /\left(x^{n+1}\right)$ with $\operatorname{deg} x=2$
(commentative since $H^{k}\left(\mathbb{C} P^{n}\right)=0$ for odd k)
$H^{\bullet}\left(\mathbb{R} p^{n} ; \mathbb{R} / 2\right) \cong \mathbb{R} / 2[x] /\left(x^{n+1}\right)$ with $\operatorname{deg} x=1$ (commutative because of $2 / 2$ coefficients)

$$
H^{\bullet}\left(\left(S^{1}\right)^{\times n}\right) \cong \mathbb{Z}\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left(x_{i} x_{j}+x_{j} x_{i}, x_{i}^{2}\right)
$$

with $\operatorname{deg} x_{i}=1$
(not commutative, but graded commentative)
Reminder from $A l g$ Top $1 \quad X$ top. space, $A, B \subseteq X$.
$C_{n}(A+B) \subseteq C_{n}(A \cup B)$ is generated by $C_{n}(A) \cup C_{n}(B) \subseteq C_{n}(A \cup B)$.
$C_{M}(A+B)$ is a chain complex, and $C_{0}(A+B) \stackrel{i}{\hookrightarrow} C_{0}(A \cup B)$ is a homotopy equivalence (proved by barycentric subdivision).

Lemma 14 There is a (natural) iso $H^{n}(X, A \cup B ; R) \xrightarrow{j} H^{n}(X, A+B ; R)$ induced by i.
Proof (shipped in lecture)

$$
\left.\begin{array}{rl}
0 & \rightarrow C_{n}(A+B) \\
\rightarrow C_{n}(x) & \rightarrow C_{n}(x, A+B) \\
\downarrow^{i} & \rightarrow 0 \\
0 & \rightarrow C_{n}(A \cup B)
\end{array}\right) C_{n}(x) \rightarrow C_{n}(x, A \cup B) \rightarrow 0 .
$$

Commutes, has split exact rows. Apply $\operatorname{Hom}(-, R)$ and take the natural LESs in cohomology:

$$
\begin{aligned}
& \cdots \leftarrow H^{n}(A+B ; R) \leftarrow H^{m}(X ; R) \leftarrow H^{n}(X, A+B ; R) \leftarrow \cdots \\
& \text { iso } \prod_{i}{ }^{*} \text { id } \hat{j}_{j} \\
& \cdots \Longleftarrow H^{n}(A \cup B ; R) \longleftarrow H^{n}(X ; R) \longleftarrow H^{n}(X, A \cup B) ; R \longleftarrow \cdots
\end{aligned}
$$

j is an iso by the five lemma.

Def Let X be a top. space and $A, B \subseteq X$. Let the relative app p induct

$$
H^{n}(x, A ; R) \times H^{k}(x, B ; R) \rightarrow H^{n+k}(x, A \cup B ; R)
$$

be the portcomporition with j^{-1} of the bilinear map on cohomology indued by

$$
\begin{aligned}
& \text { U: } C^{n}(X, A, R) \times C^{k}(X, B ; R) \longrightarrow C^{n+k}(X, A+B ; R)
\end{aligned}
$$

Chapter 7: Manifolds and Orientations
(I)Motivation
Def (Poincare algebra) A connected $\left(\Leftrightarrow A^{0}=k\right)$ gca $A_{0}^{0}=\oplus_{0}^{\infty} A^{j}$ over a field $l k$ is called a Poincare algebra of formal dimension n if.
(i) $A^{j}=0$ for $j>n$.
(ii) $A^{n} \cong \mathbb{k}_{k}$
(iii) the bilinear pairing $A^{j} \otimes A^{n-j} \longrightarrow A^{n} \cong \mathbb{K}$ is non-degenerate
\Longleftrightarrow the map $A^{j} \longrightarrow \operatorname{Hom}_{k}\left(A^{n-j}, \mathbb{k}\right)$ is an isomorphism.
Claim Let M^{n} be a closed connected orientable manifold
Then $H^{\prime}(M,(D)$ is a Paincasé algor of formal dimension n.
(II) Manifolds

Def (Topological manifold) A Hausdorff second countable topological space M is called a topological manifold (resp. top. muff with boundary) of dimension n if each paint $x \in M$ has a neighborhood homeomorphic to an open subset of \mathbb{R}^{n} (resp of $\mathbb{R}_{\geq 0} \times \mathbb{R}^{n-1}$).

Def (Boundary) Let M be a manifold with boundary. The subset ∂M of points $x \in M$ that do not have a neighborhood homeomorphic to an open subset of \mathbb{R}^{n} is called the boundary of M.

Def (Closed manifold) A compact manifold without boundary is called closed.
Examples: (i) \mathbb{R}^{n} any any open subset of \mathbb{R}^{n}.
(ii) $S^{n}:=\left\{\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n}\left(x^{i}\right)^{2}=1\right\}$

Two charts: $\varphi_{n}: S^{n^{i=0}} \backslash\{n\} \longrightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
&\left(x^{0}, \ldots, x^{n}\right) \longmapsto\left(\frac{x^{0}}{1-x^{n}} ; \ldots ; \frac{x^{n-1}}{1-x^{n}}\right) \\
& \varphi_{s}: S^{n} \backslash\{s\} \longrightarrow \mathbb{R}^{n} \\
&\left(x^{0}, \ldots, x^{n}\right) \longmapsto\left(\frac{x^{0}}{1+x^{n}} ; \ldots ; \frac{x^{n-1}}{1+x^{n}}\right)
\end{aligned}
$$

with transition maps: $\varphi_{s} \circ \varphi_{n}^{-1}, \varphi_{n} \circ \varphi_{s}^{-1}: \mathbb{R}^{n} \backslash 100 \longrightarrow \mathbb{R}^{n} \backslash\{0\}$.

$$
\left(t^{\prime}, \ldots, t^{\prime}\right) \longmapsto\left(\frac{t^{\prime}}{\|t\|^{2}} ; \ldots ; \frac{t^{n}}{\|t\|^{2}}\right)
$$

(iii) n-dimensional torus T^{n};
(iv) real and complex projective spaces $\mathbb{R P}^{n} \& \mathbb{P P}^{n}$.
with boundary: (i) D^{n};
(ii) solid torus $S^{1} \times D^{2}$.

Non -examples:
(i) λ
(ii) $R P^{\infty}:=\bigcup_{n=0}^{\infty} \mathbb{R} P^{n}$ \& $\mathbb{C} P^{\infty}=\bigcup_{n=0}^{\infty} \mathbb{C} P^{n}$.

Proposition 1. Let M^{n} be a topological manifold. Then for any $x \in M: H_{i}(M, M \backslash\{x\} ; R) \cong \begin{cases}0 & \text { if } i \neq n \text {; } \\ R & \text { if } i=n \text {. }\end{cases}$
D Let B be an open boll around x (sits inside of a neighborhood of x homeorphic to a subset of \mathbb{R}^{n}).
$\Longrightarrow Z:=M I B$ is closed.

By excision theoreom, $H_{i}(M, M \backslash x \mid ; R) \cong H_{i}\left(M \backslash Z ;(M \mid\{x \mid) \backslash Z ; R) \cong H_{i}(B, B \backslash\{x\} ; R)\right.$

$$
\begin{aligned}
\Longrightarrow \cdots \longrightarrow{\underset{H}{n}}^{n}(B ; R) \longrightarrow \\
0
\end{aligned}
$$

Def (Homology manifold) A Hausdorff second co mutable space is a ho mology R-manifold of dimension n

$$
\text { if for any } x \in M \quad H .\left(M, M \backslash\{x ; R) \cong \tilde{H}_{.}\left(S^{n} ; R\right)\right.
$$

(ii) Orientations

Def (local orientations) A local orientation μ_{x} in $x \in M$ is a generator of the local homology group $H_{n}(M, M \backslash|x| ; Z) \cong$.

Note that there are two choices of a generator in 2 .
\Rightarrow At each point there are two possible orientations.
Def (()rientation) An orientation of an n-dimesusional manifold
is a choice of a local orientation $\mu_{x} \in H_{1}(M, M, M \times x ; 2)$ at every $x \in M$, st. it is locally consistent, ie. if $x, y \in M$ can be covered by a ball B within one chart. then μ_{x} and μ_{y} map one to each other under the isomorphisms:

$$
H_{n}(M, M \mid\{x) ; \mathbb{Z}) \cong H_{0}(M, M \mid B ; \mathbb{Z}) \cong H_{n}(M, M \mid \operatorname{ly} ; \mathbb{Z})
$$

Def (non-) Orientable maurifld) A manifold is orientate if there exists an orientation on M A manifold is non-orientable if it is not orientable.

Examples: (i) S^{n} is orientable
(ii) The Mobius band is non-orientable.

Proposition 2 Let M be a closed connected manifold of dimension n.
(i) The homomorphism $H_{n}\left(M_{j} \mathbb{F}_{2}\right) \rightarrow H_{n}\left(M, M \backslash\right.$ adj; $\left.\mathbb{F}_{2}\right)$ is an isomorphism for any $x \in M$.
(ii) If M is orieutable, then $H_{n}(M, Z) \rightarrow H_{n}(M, M 1 n x ; z)$ is an isomorphism for any $x \in M$ If M is non-crientable, then $H_{n}(M, Z)=0$.
(iii) $H_{i}(M ; z)=0$ for $i>n$.

Main Lemma 3 Let $A \subseteq M$ be a compact subset of a manifold M of dimension n. (not necessary compact),
(i) $H_{i}(M, M \backslash A ; R)=0$ if ion. $\alpha \in H_{n}(M, M \backslash A ; R)$ is zero of its image in $H_{n}(M, M \backslash\{x\}, R)$ is zero for every $x \in A$.
(ii) For wary locally consistent choice of orientations $\mu_{x}, x \in A$, exists a mique $\mu_{A} \in H_{n}(M, M \mid A ; R)$ s.t. is μ_{x} for all $x \in A$.
$\triangle S_{T E P ~ 1 . ~ I f ~ t h e ~ a s s e r t i o n ~ h o l d s ~ f o r ~ c o m p a c t ~}^{A, B}$ and $A \cap B$, then it holds for $A \cup B$.

Relative Mayer-Vietoris sequence:

$$
H_{n+1}(M, M \backslash(A, B)) \longrightarrow H_{n}(M, M \backslash(A \cup B)) \xrightarrow{\Phi} H_{n}(M, M \backslash A) \oplus H_{n}(M, M \backslash B) \xrightarrow{\Psi} H_{n}(M, M \backslash(A \cap B))
$$

For $i>n$ we have $H_{i}(M, M \backslash(A \cap B))=H_{i}(M, M \backslash A)=H_{i}(M, M \backslash B)=0 \quad \Longrightarrow H_{i}(M, M \backslash(A \cup B))$ is locked between two zeros \Rightarrow zero itself.
If $\mu \in H_{n}\left(M, M_{1}(A \cup B)\right)$ is st. $\mu_{x} \in H_{n}(M, M \backslash\{x\})$ is zero for all $x \in A \cup B \Rightarrow$ its images in $H_{n}(M, M \backslash A)$ and $H_{n}(M, M \mid B)$ are zero by the assumption. \Rightarrow Since Φ is injective, $\mu=0$. (Proves (i)).

Let $\mu_{x}, x \in A \cup B$ be a locally consistent choice of orientations $\Longrightarrow \exists!\mu_{A} \in H_{n}(M, M \backslash A), \mu_{B} \in H_{n}(M, M \backslash B)$
$\Psi\left(\mu_{A}, \mu_{B}\right)=\left.\mu_{A}\right|_{A \cap B}-\left.\mu_{B}\right|_{A \cap B} \in H_{n}(M, M \backslash(A \cap B))$. its image is zero in $H_{n}(M, M, n \times 3)$ since Φ is injectiv for any $x \in A \cap B$
\Longrightarrow it is zero itself by assumption on $A \cap B \Rightarrow B_{y}$ exactness, $\left(\mu_{A}, \mu_{B}\right)$ is the image of a unique element $\mu_{A \cup B} \in H_{n}(M, M \backslash(A \cup B))$.
$S_{T E P} 2$. It is enough to prove the assertion for a compact subset of a single chart. (i.e. in \mathbb{R}^{n})
Any compact subset $A \subseteq M$ is a union of a finite number of compact subsets, sit. each belongs to a chart \Rightarrow We can apply induction and STEP 1.
If L is a chart, then $H_{i}(M, M \backslash A) \cong H_{i}(L, L \backslash A)$ by excision.
\Longrightarrow From now on wo assume $M=\mathbb{R}^{n}$.
$S_{T E P} 3$ If $A \subseteq \mathbb{R}^{n}$ is a finite simplicial complex, sit. its simplices are linearly embedded, then the assertion follows by induction, and it is enough to prove for one simplex. The latter follows from the definition of local consistency.
$S_{T \in P}$ 4. $A \subseteq \mathbb{R}^{n}$ compact
$\alpha \in H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash A\right)$ is represented by a relative cycle z and let $C \subseteq \mathbb{R}^{n} \backslash A$ be a union of the images of the singular simplices of ∂z.
A and C are compact \Rightarrow they have positive distance $\delta>0$ between them.
Cover A with a finite piecewise linear simplicial complex K with $K \cap C=\phi$: (i) cover A by one big enough simplex; from STEP 3
(ii) take barycentric subdivision sit. the diameter of a piece is less than J I
(iii) take simplices that intersect A.

The same chain z represents a class $\alpha_{k} \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{\prime \prime} \backslash k\right)$ that maps to $\alpha \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash A\right)$.
$B_{y} \underline{S_{\text {SEP } 3},} \alpha_{k}=0$ for $i>n \Rightarrow \alpha=0$ and $H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n}, A\right)=0$ for $i>n$.
Finally, assume $i=n$. If $\alpha_{k, x}=0 \in H_{n}\left(\mathbb{R}^{\prime \prime}, \mathbb{R}^{\prime \prime}(\{x\})\right.$ for all $x \in A$, then it also holds for all $x \in K$.
Indeed, for any simplex $\Delta \in K$ and any $x \in \Delta$ the map $H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} i \Delta\right) \rightarrow H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}, i \times 1\right)$ is an iso.
$S_{T \in P 3}$ now implies that $\alpha_{k}=0 \Rightarrow \alpha=0$, which concludes the proof of (i) and uniqueness part in (ii).
Existence: let $\alpha_{A} \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash A\right)$ be the image of $\alpha_{\uparrow} \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} i B\right)$, where B is a big ball containing A

Last time: Proof of
Lemma $3 M^{n}$ without boundary, $A \subseteq M$ compact, R commutative unital ring.
(i) $H_{i}(M, M \backslash A ; R)=0$ for $i>n$.
$\alpha \in H_{M}(M, M \backslash A ; R)$ is zero \Leftrightarrow
image of α in $H_{M}(M, M \backslash\{x\} ; R)$ is zero for all $x \in A$.
(ii) μ_{x} locally consistent choice of orientation for $x \in A$
\Rightarrow exist unique $\mu_{A} \in H_{M}(M, M \backslash A ; R)$ mapping to μ_{x} for all $x \in A$
Today:
Prop $2 M^{n}$ closed (\Leftrightarrow compact, noboundary) connected.
(i) $H_{n}\left(M ; \mathbb{F}_{2}\right) \rightarrow H_{n}\left(M, M \backslash\{x\} ; \mathbb{F}_{2}\right)$ iso for all $x \in M$.
(ii) M orientable $\Rightarrow H_{n}(M ; \mathbb{Z}) \rightarrow H_{n}(M, M \backslash\{x\} ; \mathbb{R})$ iso $\forall x \in M$.
M non-orientable $\Rightarrow H_{n}(M ; \mathbb{R})=0$.
(iii) $H_{i}(M i \mathbb{R})=0$ for $i>n$.

Note that (i, i) follows from Lemma 3 (i) with $A=M$. For (i) \& ($i i$), we'll also use Lemma 3, but need some move tools.

For M^{M} without boundary, let
Hatcher P. 235
$\tilde{M}:=\left\{\mu_{x} \mid x \in M\right.$ and $\mu_{x} \in H_{M}(M, M \backslash\{x\})$ a local orientation\}
Note $p: \tilde{M} \rightarrow M, \mu_{x} \mapsto x$ is a $2: 1$ surjection. For $B \subseteq$ chart $\subseteq M$ an open ball and a generator $\mu_{B} \in H_{m}(M, M \backslash B)$, let

$$
\left.\left.\begin{array}{rl}
U_{\left(\mu_{B}\right)}:=\left\{\mu_{x} \in \tilde{M} \mid x \in B, \mu_{x} \text { image of } \mu_{B}\right. \text { under } \\
& H_{\mu}(M, M \backslash B)
\end{array}\right) H_{\mu}(M, \mu \backslash\{x\})\right\}
$$

Exercise The $U_{\left(\mu_{B}\right)}$ form the base of a topology on \tilde{M}, st P is a $2: 1$ covering.
Def $p: \tilde{M} \rightarrow M$ is called the Orientation covering of M.
7. Manifolds and orientations

Each $\mu_{x} \in \widetilde{\tilde{r}}$ has a canonical orientation $\tilde{\mu}_{x} \in H_{\mu}\left(\tilde{\mu}, \tilde{\mu} \backslash \mu_{x}\right)$
corresponding to μ_{x} under the iss

$$
\begin{aligned}
H_{n}\left(\tilde{M}, \tilde{M} \backslash \mu_{x}\right) & \left.\underset{\text { excision }}{\rightleftarrows} H_{n}\left(U_{\left(\mu_{B}\right)}, U_{\left(\mu_{B}\right)}\right) \mu_{x}\right) \\
& \left.\longrightarrow H_{n}(B, B\rangle x\right) \underset{\text { excision }}{ } H_{n}(r, r>x)
\end{aligned}
$$

These are locally consistent, so \tilde{M} has a canonical orientation.
Prop 4 If M is connected, then: \tilde{M} nom-cormected $\Leftrightarrow M$ orientable Proof M has orientation $\mu_{x} \Rightarrow \tilde{M}=\underbrace{\left\{\mu_{x} \mid x \in M\right\}}_{\text {open }}, \underbrace{\left\{-\mu_{x} \mid x \in M\right\}}_{\text {open }}$

If \tilde{M} has two components N_{1}, N_{2}, then they inherit an orientation from \tilde{M}. Check that $p l_{N_{i}}: N_{i} \rightarrow M$ are coverings. Then, they must be one-Sheeted coverings, i.e. hormeomornhisuns.
Example $\widetilde{S}^{2} \cong S^{2} \backsim S^{2}, \quad \widetilde{\mathbb{R} p^{2}} \cong S^{2}, \quad$ Klein Bottle $\cong S^{1} \times S^{1}$ Note that $S^{3} \rightarrow \mathbb{R} P^{3}$ is an orientable double covering, but not the orientation covering, which is $\mathbb{R} P^{3} \simeq \mathbb{R} P^{3} \rightarrow \mathbb{R} P^{3}$ (since $\mathbb{R} P^{3}$ is orientable). Def A section of p is a cont. map $s: M \rightarrow M_{R}$ with $p s=i d M$. Note that a section of a covering map has a component of M as image Prop $5 \mu_{x}$ is an orientation $\Leftrightarrow x \longmapsto \mu_{x}$ is a section of P Pf Exercise

Def R commentative unital ring, M^{n} without boundary.
Local R-orientation: μ_{x} is a generator of $H_{M}(M, M \backslash x ; R)$ R-orientation: locally consistent choice of local R-orientations.
M R-orientable: \Leftrightarrow There exits an R-orientation
Example Every M is \mathbb{F}_{2}-orientabte, since there is precisely one local \mathbb{F}_{2}-orientation at every point.

Def Let $M_{R}:=\left\{\alpha_{x} \mid x \in M, \alpha_{x} \in H_{m}(M, M \backslash\{x\} ; R)\right\}$, with similar topology as \tilde{M}.
Note $P_{R}^{:} M_{R} \rightarrow M$ is am $|R|$-sheeted covering.
Prop 6 Let $M_{r}=\left\{\alpha_{x} \mid \alpha_{x} \text { is the image of } \mu_{x} \otimes\right)_{r}$ under the iso

$$
H_{m}(M, M \backslash x) \otimes R \longrightarrow H_{m}(M, M \backslash x ; R)
$$

for μ_{x} a generator of $\left.H_{m}(M, M \backslash x)\right\}$
Then: $M_{r} \subseteq M_{R}$ is open ; $M_{r}=M_{-r}$;

$$
M_{r} \cap M_{s}=\phi \text { for } r \neq \pm s ;
$$

$M_{r} \cong M$ if $\tau=-r$, and $M_{r} \cong \tilde{M}$ if $r \neq-r$.
Pf: Exercise
Prop $7 \quad \mu_{x}$ is an R-orientation \Leftrightarrow
$x \mapsto \mu_{x}$ is a section of P_{R} with each μ_{x} a generator of $H_{M}(M, M \backslash x ; R)$ Pf Exercise, similar to Prop 5 .
$\operatorname{Prop} 8$ If $0=2$ in $R \Rightarrow$ all M^{n} are R-orientable
If $O \neq 2$ in $R \Rightarrow M^{\mu}$ is R-orientuble iff it is \mathbb{R}-arientuble

Proof $0=2 \Rightarrow M_{1} \cong M \Rightarrow p_{R}$ has a section to $M_{1} \Rightarrow M$ is R-orientable Assume $O \neq 2$. Generators of $H_{n}(M, M \backslash x ; R)$ are of the form $\mu_{x} \otimes u$ for μ_{x} a gen. of $H_{n}(M, M(x)$ and $u \in R$ a unit. Then $u \neq-u$ $\Rightarrow M_{u} \tilde{=} \tilde{M} \Rightarrow P_{R}$ has a section to M_{u} iff $\tilde{M} \rightarrow M$ has a section. \square

Proof of Prop $2(i)$ and $(i j)$ Pointurise sum and pointurise R-multiplication turn $\Gamma\left(M, M_{R}\right)$ into an R-module.

$$
\begin{aligned}
H_{M}(M ; R) & \longrightarrow \Gamma\left(M, M_{R}\right), \\
\alpha & \longmapsto\left(x \longmapsto \text { image of } \alpha \text { in } H_{n}(M, M \backslash x ; R)\right)
\end{aligned}
$$

is a homomorphisur. By Lemma 3, applied to $A=M$, it is an isomorphism! Indeed, Lemma 3 (i) yields injectivity. And Lemma 3 (ii) yields surjectivity (here, we need a slightly move general version of Lemma $3(i i i)$: namely, for every locally consistent choice $\alpha_{x} \in H_{n}(M, M \backslash x ; R), \exists!\mu_{A} \in H_{M}(M, M \backslash A ; R)$ that maps to α_{x} for all x. The proof is the same - we never use that α_{x} generates).
$M R$-orientable $\Rightarrow\left\{\begin{array}{ll}M_{M}=M_{\omega} & \text { if } 0 \neq 2 \\ M_{v}=M \text { forall } r \in R & \text { if } 0=2\end{array}\right\} \Rightarrow M_{R} \cong \bigsqcup_{r \in R} M$ $\Rightarrow \Gamma\left(M, M_{R}\right) \cong R$ (using connectedness of $\left.M\right)=H_{M}(M=R) \cong R$. So $H_{m}\left(M ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$ for all M (since all M are \mathbb{F}_{2}-arientable), and $H_{M}(M) \cong \mathbb{R}$ for all orientable M.
$M \mathrm{Mom}$ - orientable $\Rightarrow \tilde{M}$ is connected \Rightarrow

$$
M_{R} \cong \underbrace{M_{0}}_{\cong M} w \underbrace{M_{1}}_{\cong \tilde{M}} w \underbrace{M_{2}}_{\cong} \ldots
$$

So the only section of P_{R} goes to $M_{0} \Rightarrow \Gamma\left(M_{\mathbb{R}}\right) \cong 0$ $\Rightarrow H_{n}(M) \cong 0$.

Corollary 9 (i) Let M be a closed R-oriented n-manifold. Then there exists a unique class $\mu \in H_{M}(M ; R)$ st for all $x \in M$, the isom $H_{n}(M, M \backslash\{x\} ; R)$ sends μ to the given local orientation.
(ii) If M is connected, then μ generates $H_{n}(M ; R) \cong R$.

Proof (i) directly from Lemma 3, (ii) similar to Prop 2.
Def The clans from Corollary g is called the fundamental class of M, written $[M]_{R} \in H_{n}(M ; R)$. drop R from notation for $R=72$.

Remark 10 If M^{n} is closed and has a Δ-complex structure, then:
(1) Every simplex of M is a subsimplex of an n-simplex.
(2) Every $(n-1)$-simplex is a face of precisely two n-simplexes.
(3) M has only finitely many n-simplexes $\sigma_{1}, \ldots, \sigma_{k}$.

If M is oriented, then $[M]=\left[\sum_{i=1}^{k} \varepsilon_{i} \sigma_{i}\right]$ with $\varepsilon_{i}= \pm 1$. such that in $\sum_{i=1}^{k} \varepsilon_{i} d \sigma_{i}$, each $(n-1)$-simplex appears once with + , once with -. If M is not orientable, no such choice of ε_{i} exists. Over $F_{2}, \quad[M]_{\mathbb{F}_{2}}=\left[\sum_{i=1}^{k} \sigma_{i}\right]$.

For example:

Torus T

$$
[T]= \pm\left[\sigma_{1}-\sigma_{2}\right]
$$

Klein bottle K

$$
[k]_{\mathbb{F}_{2}}=\left[\sigma_{1}+\sigma_{2}\right]
$$

Def M^{n}, N^{n} compact, oriented, connected, $f: M \longrightarrow N$ continuous.
Then the degree of f is the unique integer deg f st

$$
f_{*}([M])=\operatorname{deg} f \cdot[N] \in H_{M}(N) .
$$

For not necenarily orientable M, N, there is a unique $\operatorname{deg}_{F_{2}} f \in F_{2} \delta$

$$
f_{*}\left([M]_{\mathbb{F}_{2}}\right)=\operatorname{deg}_{\mathbb{F}_{2}} f \cdot[N]_{\mathbb{F}_{2}} \in H_{m}\left(N ; \mathbb{F}_{2}\right)
$$

This extends our previous def of dey for $f: S^{n} \longrightarrow S^{n}$.
Remark 11 deg $f \circ g=\operatorname{deg} f \cdot \operatorname{deg} g$ easily follows.
Theorem 12 (Hop 1927)
$f, g: M^{n} \rightarrow S^{n}$ for M compact, connected, oriented. Then:

$$
f \simeq g \Leftrightarrow \operatorname{deg} f=\operatorname{deg} g .
$$

Conjecture 13 (Hop 1931)
$f: M^{n} \rightarrow M^{n}$ for M compact, connected, oriented Then

$$
f \simeq i d_{M} \Leftrightarrow \operatorname{deg} f=1
$$

Proposition $14 M^{n}$ non-compact and connected
$\Rightarrow H_{i}(M ; R)=0$ for all $i \geqslant n$.
Proof Let $[z] \in H_{i}\left(M_{\uparrow}\right)$. To show: $[z]=0$. Pick $U \subseteq M^{n}$ open st $\operatorname{im}(z) \subseteq U$ and \bar{U} compact. Let $V=M \backslash \bar{U}$.
Consider the LES of $(M, U \cup V, V)$:

$$
\begin{array}{r}
H_{i+1}(M, U \cup V) \stackrel{\partial}{\rightarrow} H_{i}(U \cup V, V) \xrightarrow{\text { incl* }} H_{i}(M, V) \\
\text { excision } \uparrow \cong \\
H_{i}(U) \xrightarrow[\text { ind }_{*}]{\cong} H_{i}(M)
\end{array}
$$

$i \geqslant n+1 \Rightarrow$ top left \& night term zero by Lemma $3 \Rightarrow$ top middle zero \Rightarrow

$$
H_{i}(u)=0 \Rightarrow[z]=0 \in H_{i}(u) \Rightarrow[z]=0 \in H_{i}(M)
$$

$i=n \quad[z]$ defines a section $M \rightarrow M_{R}$ by
$x \longmapsto\left(x\right.$, image of $[z]$ under $\left.H_{m}(M) \rightarrow H_{m}(M \backslash x)\right)$
Pick $x_{0} \in V$. Then $x_{0} \longmapsto\left(x_{0}, 0\right)$. M connected \Rightarrow \exists unique section $M \rightarrow M_{R}$ with $x_{0} \mapsto\left(x_{0}, 0\right) \Rightarrow$ the section defined by $[z]$ sends $x \mapsto(x, 0)$ for all x.
Lemma $3 \Rightarrow[z]=0 \in H_{i}(M, V)$. Top left term zero \Rightarrow

$$
[z]=0 \in H_{i}(u \cup v, V) \Rightarrow[z]=0 \in H_{i}(u) \Rightarrow[z]=0 \in H_{i}(M) \square
$$

(8) Poincare Duality

Sneak preview
Theorem 4 (Pomcaré duality)
Let M be a closed R-oriented n-dim manifold. Then for all $k \in R$,

$$
H^{k}(M ; R) \cong H_{n-k}(M ; R)
$$

Theorem $7 M^{n}$ compact (potentially with ∂) $H_{0}(M ; R)$ is a finitely generated R-module.
Proof idea Use that $M \simeq$ some finite Δ - complex (Hatcher A.8, A. 9 p. 527)
Corollary $8 M^{n}$ closed, \mathbb{K}-orientable for a field \mathbb{K}

$$
H_{k}(M ; \mathbb{K}) \underset{u C T}{\cong} H^{k}(M ; \mathbb{K}) \cong H_{n-k}(M ; \mathbb{K})
$$

Corollary $9 M^{n}$ closed, n odd $\Rightarrow x(M)=0$.

Def Let X be a top. space, R a commutative unital ring, $\sigma \in C_{n}(x ; R), \quad \varphi \in C^{k}(x ; R)$ with $k \leqslant n$.
Then the cap product is

$$
\sigma \frown \varphi=\left.\varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{k}\right]}\right) \sigma\right|_{\left[e_{k}, \ldots, e_{n}\right]} \in C_{n-k}(x ; R)
$$

Proposition 1
(1) Linear extension gives an R-bilinear map

$$
C_{n}(x ; R) \times C^{k}(x ; R) \longrightarrow C_{n-k}(x ; R)
$$

(2) $\sigma \frown \varepsilon=\sigma$ for $\varepsilon \in C^{\circ}(X ; R), \varepsilon(\tau)=1 \forall \tau$.
(3) $(\sigma \frown \varphi) \frown \psi=\sigma \frown(\varphi \frown \psi)$.

Pf Exercise
Proposition $2(-1)^{k} d(\sigma \frown \varphi)=(d \sigma) \frown \varphi-\sigma \frown d \varphi$
Pf $d(\sigma \cap \varphi)=\left.\sum_{i=k}^{n} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{k}\right]}\right)(-1)^{i+k} \sigma\right|_{\left[e_{k}, \ldots, e_{i}, \ldots e_{m}\right]}$

$$
\begin{aligned}
(d \sigma) \frown \varphi & =\left.\sum_{j=0}^{n}(-1)^{j} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{j}, \ldots, e_{k+1}\right]}\right) \sigma\right|_{\left[e_{k+1}, \ldots, e_{m}\right]} \\
& +\left.\sum_{l=h+1}^{n}(-1)^{l} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{k}\right]}\right) \sigma\right|_{\left[e_{k}, \ldots, e_{l}, \ldots, e_{m}\right]} \\
\sigma \frown(d \varphi)= & \left.\sum_{m=0}^{k+1}(-1)^{m} \varphi\left(\left.\sigma\right|_{\left[e_{0}, \ldots, e_{m}, \ldots, e_{k+1}\right]}\right) \sigma\right|_{\left[e_{k+1}, \ldots, e_{n}\right]}
\end{aligned}
$$

Proposition 3 (1) cycle \sim cocycle $=$ cycle
(2) boundary \sim cocycle $=$ boundary
(3) Cycle \sim coboundury $=$ boundary
(4) For $[c] \in H_{n}(X ; R),[\varphi] \in H^{k}(X ; R)$,

$$
[c] \curvearrowleft[\varphi]:=[c \curvearrowleft \varphi] \in H_{n-k}(x ; R)
$$

is a well-defined R-bilinear map.
(5) X path-comnected, $\delta: H_{0}(x ; R) \rightarrow R$ the iso $[\sigma] \longmapsto 1$, $[c] \in H_{n}(X: R),[\varphi] \in H^{n}(X ; R)$, then

$$
\delta([c] \frown[\varphi])=\varphi(c)=\operatorname{ev}([\varphi])([c])
$$

Proof: Exercise.
Theorem 4 (Poincare duality)
Let M be a closed R-oriented n-dim manifold. Then for all $k \in R$,

$$
\begin{aligned}
& P D: H^{k}(M ; R) \longrightarrow H_{n-k}(M ; R) \\
& P D([\varphi])=[M] \frown[\varphi]
\end{aligned}
$$

is an isomorphism.

Before we dive into the consequences of $P D$, here are two more properties of the cap product.
Prop 5 (Naturally of cap) $f: X \rightarrow Y$ cont., $a \in C_{m}(X), \varphi \in C^{k}(Y)$

$$
f_{c}\left(a \frown f^{c} \varphi\right)=\left(f_{c} a\right) \frown \varphi
$$

Proof Exercise.

Remark 6 Similarly as for the cup, one may define a relative cap

$$
\frown H_{n}(X, A \cup B ; R) \times H^{k}(X, A ; R) \rightarrow H_{n-k}(X, B ; R)
$$

using that $C_{0}(A+B) \longrightarrow C_{0}(A \cup B)$ induces isos

$$
H_{0}(x, A+B) \rightarrow H_{0}(x, A \cup B) .
$$

We'll prove PD, but first, let us harvest some implications. Let us take the following for granted.

Theorem $7 M^{n}$ compact (potentially with ∂) \Rightarrow $H_{0}(M ; R)$ is a finitely generated R-module.
Proof idea Use that $M \simeq$ some finite Δ - complex (Hatcher A.8, A.9 P.527)

Corollary $8 M^{n}$ closed, \mathbb{K}-orientable for a field \mathbb{K}

$$
H_{k}(M ; \mathbb{K}) \cong H^{k}(M ; \mathbb{K}) \cong H_{n-k}(M ; \mathbb{K}) \cong H^{n-k}(M ; \mathbb{K})
$$

Proof Since $H_{0}(M)$ fog. by $\gamma \operatorname{hm} 7$:

$$
\begin{aligned}
& \operatorname{dim} H_{k}(M ; \mathbb{K}) \stackrel{\substack{\text { UT } \\
\text { に. }}}{=} \# \mathbb{R} \text {-summand of } H_{k}(M)+ \\
& p=\text { clark } \quad \text { ut } \# \mathbb{R}_{p^{r}} \text {-summand of } H_{k}(M) \text { and } H_{k-1}(M) \\
& \stackrel{\text { cohen }}{=} \operatorname{dim} H^{k}(M ; \mathbb{K})
\end{aligned}
$$

This proves the first iso. The second is PD.
Corollary $9 M^{n}$ closed, n odd $\Rightarrow x(M)=0$.
Proof $X(M)=\sum_{k=0}^{n}(-1)^{k} \operatorname{dim} H_{k}\left(M ; \mathbb{F}_{2}\right) \quad n=2 m+1$

$$
=\sum_{k=0}^{m}(-1)^{k} \operatorname{dim} H_{k}\left(M ; F_{2}\right)+(-1)^{2 m+1-k} \operatorname{dim} H_{2 m+1-k}\left(M ; \mathbb{F}_{2}\right)=0
$$

Proposition 10 M^{μ} connected, closed, oriented st $H_{0}(M)$ is free. Then $\smile: ~ H^{k}(M) \times H^{n-k}(M) \longrightarrow H^{n}(M) \underset{P D}{\cong} H_{0}(M) \cong \mathbb{O}:[\sigma] \mapsto 1$ is mon-singular, ie

$$
\begin{aligned}
& H^{k}(M) \rightarrow H_{\text {om }}\left(H^{n-k}(M), \mathbb{Z}\right) \\
& {[\varphi] \longmapsto([\psi] \longmapsto \delta(P D([\psi] \smile[\varphi]))) }
\end{aligned}
$$

is an iso.
Proof H. (M) free by assumption $\Rightarrow \operatorname{Ext}\left(H_{k-1}(M), \pi\right)$ is trivial $\Rightarrow e^{2}$ is iso. So we have iss

$$
\begin{aligned}
H^{k}(M) & \xrightarrow{e v} \operatorname{Hom}\left(H_{k}(M), \pi\right) \\
& \xrightarrow{P D^{*}} \operatorname{Hom}\left(H^{n-k}(M), \pi\right)
\end{aligned}
$$

Just need to check that their composition equal the desired homomorphism $[\varphi] \longmapsto([\psi] \mapsto \delta(P D([\varphi] \smile[\psi])))$. Let $[\varphi] \in H^{k}(M),[4] \in H^{n-k}(M)$. Then

$$
\begin{aligned}
P^{*}(\operatorname{ev}([\varphi]))([\psi]) & =\operatorname{ev}([\varphi])(P D([\psi])) \\
& =\operatorname{ev}([\varphi])([M] \frown[\psi]) \\
& =\delta(([M] \frown[\psi]) \frown[\varphi]) \\
& =\delta([M] \frown([\psi] \smile[\varphi])) \\
& =\delta(P D([\psi] \smile[\varphi]))
\end{aligned}
$$

Remake 11 (1) M^{n} closed, orientabte, H. (M) free

$$
\Rightarrow H^{k}(M) \cong H_{k}(M) \cong H^{n-k}(M) \cong H_{n-k}(M)
$$

(2) A bilinear form $b: \mathbb{Z}^{m} \times \mathbb{Z}^{m} \rightarrow \mathbb{Z}$ is nom-singular $\Leftrightarrow \mathbb{R}^{m} \longrightarrow \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}\right), x \mapsto(y \mapsto b(x, y))$
$\Leftrightarrow \forall$ primitive $x \in \mathbb{R}^{m}$ (i.e. x not divisible by integers ≥ 2, or equivalently: x can be extended to a basis) $\exists y \in \pi^{m} \quad$ st $\quad b(x, y)=1$.

Theorem $12 H^{*}\left(\mathbb{C} P^{m}\right) \cong \mathbb{R}[x] /\left(x^{m+1}\right)$ with $\operatorname{deg} x=2$.
10 May 74
Proof \quad By induction over n. For $n=0, \mathbb{C} P^{0} \cong\{*\}, H^{0}(\{*\}) \cong \mathbb{R}$
For $n=1, \mathbb{C} P^{1} \cong S^{2}$ and $H^{*}\left(S^{2}\right) \cong 2[x] /\left(x^{2}\right)$. Assume $n \geqslant 2$ and $H^{*}\left(\mathbb{C} P^{n-1}\right) \cong \mathbb{R}[x] /\left(x^{n}\right)$. The embedding $\mathbb{C} P^{n-1} \hookrightarrow \mathbb{C} P^{n}$ induces isos on H^{k} for $k<2 n$ (evident from $C W$-structure)
Let x be a generator of $H^{2}\left(\mathbb{C} P^{n}\right)$. By naturality of C and the induction hypothesis, x^{k} generates $H^{2 k}\left(\mathbb{C} P^{n}\right)$ for $k<2 n$.
It just remains to show that x^{n} generates $H^{2 n}\left(\mathbb{C} \mathbb{P}^{n}\right)$.
Since - is nou-singular ($\operatorname{Prop} 10$) and x^{k} is primitive (since it is a generator), by $\operatorname{Ramk} 11(2) \Rightarrow \exists y \in H^{2 n-2}\left(\mathbb{C} P^{n}\right)$ st $x-y$ generates $H^{2 n}\left(\mathbb{C} \mathbb{P}^{n}\right) \cong \mathbb{R}$. Since $H^{2 n-2}\left(\mathbb{C} \mathbb{P}^{m}\right)=\mathbb{Z} x^{n-1} \Rightarrow$ $\exists m \in \mathbb{R}$ with $y=m x^{n-1}$. Since $x \smile y=m x^{n}$ generate $H^{2 m}\left(\mathbb{C} P^{n}\right)$ $\Rightarrow m= \pm 1 \Rightarrow y= \pm x^{m-1} \Rightarrow x^{m}$ generates $H^{2 m}\left(\mathbb{C} \mathbb{P}^{m}\right)$.

Remark 13 Note that $[\varphi] \in T H^{k}(x)$
\Rightarrow for all $[\psi] \in H^{l}(x)$ we have $[\varphi]-[\psi] \in T H^{k+l}(x)$.
So \smile indues $\underbrace{} \mp H^{k}(x) \times \mp H^{\ell}(x) \longrightarrow \mp H^{k+\ell}(x)$.
recall: $F A=A / T A$ is the "free part" of an ab.goup A.
For M closed, corrected, oriented,

$$
\smile: \mp H^{k}(x) \times \mp H^{n-k}(x) \longrightarrow \mp H^{n}(x) \cong \mathbb{R}
$$

is non-singular (similar proof as for Prop 10).

Proposition 14 (Ev for other rings)
Let C. be a chain complex, R a commutative unital ring, and M an R-module.
(1) There is an isomorphism of cochain complexes over R

$$
i: \operatorname{Hom}_{R}\left(C_{0}, M\right) \longrightarrow \operatorname{Hom}_{R}\left(C_{0} \otimes_{R} R, M\right)
$$

$$
\varphi \longmapsto(c \otimes r \longmapsto \varphi(c) r)
$$

with inverse i^{-1} :

$$
(c \longmapsto \psi(c \otimes 1)) \longleftarrow \psi
$$

(2) $e v_{R}: H^{n}(C ; M) \rightarrow \operatorname{Hom}_{R}\left(H_{m}(C ; R), M\right)$

$$
[\varphi] \longmapsto([\alpha] \longmapsto i(\varphi)(\alpha))
$$

is a well-defined R-linear map.
(3)

$$
\begin{aligned}
& H^{n}(C ; M) C v \\
&\left.e v_{R}\right)^{-} \operatorname{Hom}_{R}\left(H_{\mu}(C), M\right) \\
& \operatorname{Hom}_{R}\left(H_{m}(C: R), M\right) f \longmapsto\left([\alpha] \longmapsto f\left(\left[\alpha \otimes 1_{R}\right]\right)\right)
\end{aligned}
$$

Commutes.
(4) If R is a field, then $e v_{R}$ is an isomorphism.

Proof (1) To check: $* i_{m}(\varphi)$ is an R-homos. $C_{m} \otimes R \rightarrow M$

* i_{n} is an R-homom. at each homological degree
* i is a cochain map
$* i_{n}^{-1}$ is an \mathbb{R}-homom. $C_{n} \rightarrow M$
k io $i^{-1}, i^{-1} 0 i$ are identity maps.
(2) To check:

$$
i(\varphi)(\alpha)=0 \text { if }\left\{\begin{array}{l}
\alpha \text { boundary, } \varphi \text { is cocycle or } \\
\alpha \text { is cycle, } \varphi \text { is coboundary }
\end{array}\right.
$$

(3) By def of er and $e v_{R}$.
(4) Same proof as UCT, using $E x t_{R}^{1}$ is always 0 since all R-modules are free.

Prop $15 M^{n}$ closed, connected, lk-oriented for a field It
Then $H^{\bullet}(M ; \mathbb{K})$ is a Poincare algebra of formal dim. n.
Proof $(i) H^{j}(M ; \mathbb{K})=0$ for $j>m$
since $H^{j}(M, \mathbb{k}) \cong H_{n-j}(M, k) \cong 0$ sine $n-j<0$
$(i i) H^{n}(M ; \mathbb{K}) \cong \mathbb{K}$ since $H^{m}(M ; \mathbb{k}) \xrightarrow[\cong]{\stackrel{P D}{\cong}} H_{0}(M ; \mathbb{k}) \xrightarrow[\cong]{\delta} \mathbb{K}$.
(iii) The \mathbb{K}-bilinear pairing

$$
H^{j}(M ; \mathbb{K}) \times H^{n-j}(M ; \mathbb{K}) \rightarrow H^{n}(M ; \mathbb{K}) \cong \mathbb{K}
$$

is nom-singular \Leftrightarrow the adjoint homom.

$$
\begin{aligned}
H^{j}(M ; \mathbb{K}) & \longrightarrow \operatorname{Hom}_{\mathbb{k}}\left(H^{n-j}(M ; \mathbb{K}), \mathbb{K}\right) \\
{[\varphi] } & \longmapsto([\psi] \longmapsto \delta(P D([\varphi] \smile[\psi])))
\end{aligned}
$$

is an iso. Show (similarly as is Prop 10) that the adjoint equals the composition of

$$
\begin{aligned}
H^{j}(M ; \mathbb{K}) & \xrightarrow{e v_{K k}} \operatorname{Hom}_{\mathbb{K}}\left(H_{j}(M ; \mathbb{K}), \mathbb{K}\right) \\
& \xrightarrow{P D^{*}} \operatorname{Hom}_{k}\left(H^{n-j}(M ;(K), \mathbb{K})\right.
\end{aligned}
$$

Corollary $16 H^{*}\left(\mathbb{R} P^{n} ; F_{2}\right) \cong \mathbb{F}_{2}[x] /\left(x^{n}\right)$ with $\operatorname{deg} x=1$.
Proof Same as The 12, using Prop 15.

Long Example $17 M^{4}$ closed, simply connected.
What do we know about H. (M), H ${ }^{\circ}$ (MI)?
Simply connected \Rightarrow connected $\Rightarrow H_{0} \cong H^{0} \cong R$
\qquad \Rightarrow orientable $\Rightarrow H_{4} \cong H^{4} \cong R$ and PD holds
-"- $\Rightarrow H_{1}=0$ by Hurearicz T hum $\Rightarrow H^{3}=0$ by $P D$
$u c T \Rightarrow H^{\wedge} \cong F H_{1} \oplus T H_{0} \cong 0 . P D \Rightarrow H_{3} \cong 0$.
$u \subset T \Rightarrow H^{2} \cong \mp H_{2} \oplus T H_{1} \cong \mp H_{2}$, so H^{2} is torsion free and thus
fee e (because H. fig. by The 7). PD $\Rightarrow H_{2} \cong H^{2}$.
So $H_{0}(M), H^{\bullet}(M)$ are determined except for ak $H_{2}(M) \in\{0,1,2, \ldots\}$
What about the colonology ming? $\checkmark H^{2}(M) \times H^{2}(M) \longrightarrow H^{4}(M)$
is non-singular (Prop 10) and symmetric (since
$\left.\left[c_{1}\right] \cup\left[c_{1}\right]=(-1)^{2 \cdot 2}\left[c_{2}\right]-\left[c_{1}\right]\right)$. Pick an orientation of M :
that yields an isomorphism $H^{4}(M) \rightarrow \mathbb{Z} \quad\left(\right.$ via $\left.H^{4} \xrightarrow{P D} H_{0} \xrightarrow{\&} \mathbb{R}\right)$
Pick a basis for $H^{2}(M)$, ie an iso $H^{2}(M) \cong \mathbb{Z}^{m}$. Then - becomes a non-singular symmetric bilinear form $\mathbb{R}^{m} \times \mathbb{Z}^{m} \rightarrow \mathbb{Z}$.
Such a form may be written as a matrix $A \in \mathbb{R}^{m \times m}$ with

$$
v \smile w=v^{t} A w \text { for } v, w \in \mathbb{R}^{m}
$$

Eg for $M=\mathbb{C} P^{2}$, we find $A=(1)$ or $A=(-1)$. depending on the orientation on $E P$?

Nou-singular $\Rightarrow \operatorname{det} A= \pm 1$.
Symmetric $\Rightarrow A^{t}=A$. Picking a different basis for $H^{2}(M)$ transforms A into $T^{t} A T$ for $T \in \mathbb{T}^{m \times m}$ with et $T= \pm 1$. Picking the opposite orientation for M transforms A into $-A$.

Long Example 17 (comt.'d) M^{4} closed, simply connected.
Shown last time: $H_{0} \cong H_{4} \cong R, H_{1} \cong H_{3}=0, H_{2}=\mathbb{R}^{m}$ for some $m \geqslant 0$.
What about the cohomology ming? $\checkmark H^{2}(M) \times H^{2}(M) \longrightarrow H^{4}(M)$
is mon-singular ($P_{r o p} 10$) and symmetric (since
$\left.\left[c_{1}\right] \cup\left[c_{1}\right]=(-1)^{2 \cdot 2}\left[c_{2}\right]-\left[c_{1}\right]\right)$. Pick an orientation of M :
that yields an isomorphism $H^{4}(M) \rightarrow \mathbb{Z} \quad\left(\right.$ via $\left.H^{4} \xrightarrow{P D} H_{0} \xrightarrow{\mathcal{S}} \mathbb{R}\right)$
Pick a basis for $H^{2}(\pi)$, ie an iso $H^{2}(M) \cong \mathbb{Z}^{m}$. Then - becomes
a nom-singular symmetric bilinear form $\mathbb{R}^{m} \times \mathbb{R}^{m} \longrightarrow \mathbb{Z}$.
Such a form may be written as a matrix $A \in \mathbb{R}^{m \times m}$ with

$$
v \smile w=v^{t} A w \text { for } v, \omega \in \mathbb{R}^{m} \text {. }
$$

Eg for $M=\mathbb{C} P^{2}$, we find $A=(1)$ or $A=(-1)$. depending on the orientation on $E P$?

Non-singular $\Rightarrow \operatorname{det} A= \pm 1$.
Symmetric $\Rightarrow A^{t}=A$. Picking a different basis for $H^{2}(M)$ transforms A into $T^{t} A T$ for $T \in T^{m \times m}$ with et $T= \pm 1$.
Picking the opposite orientation for M transforms A into $-A$.
If $M \simeq N$ via a map $f: M \rightarrow N$

$$
\text { call } f\left\{\begin{aligned}
\text { omientation-preserring (op) } & \text { is } \operatorname{deg} f=1 \\
- \text { revering } & \text { if } \operatorname{deg} f=-1
\end{aligned}\right\}
$$

then $A_{M}=(\operatorname{deg} f) \cdot T^{t} A_{N} T$ for some T.
Ex $\mathbb{C} P^{2}$ and $\overline{\mathbb{C} P^{2}}$ are not O.P. home. equiv.
since $(1) \neq T^{t}(-1) T$ for $T=(\pm \imath)$.
Thin (Whitehead) The converse holds:

$$
M \underset{\text { op. }}{\sim} N \text { if } A_{M}=T^{t} A_{N} T \text {. }
$$

(9) Cohomology with compact support \& Proof of PD

Proof ide a for PD: induction over number of charts, using Mayer-Vietoris to glue charts together. Problem: Union of chart may be nom-compact.
Solution: Define a new cohomology theory H_{c}^{k} st $H_{c}^{k} \simeq H^{k}$ if M compact, and extend $P D$:
Theorem 1 (PD without compactness assumption) R commentative ring with 1, M^{n} be oriented. Then we have an isom (to be defined later)

$$
P D: H_{c}^{k}(M ; R) \longrightarrow H_{n-k}(M ; R)
$$

Motivation for $H_{c}^{k} \quad X$ a locally finite Δ-complex, ie every k-simplex is face of only finitely many $(k+1)$-simplexes.
Let the simplicial cochain complex with compact support be $C_{c \Delta}^{k}(X):=\left\{\varphi \in C_{\Delta}^{i}(X) \mid \varphi(\sigma)=0\right.$ except for finitely many Note $C_{c \Delta}^{\bullet} \subseteq C_{\Delta}^{\bullet}$ is a subcomplex. k-simplexes $\sigma \in X\}$

Eg $\quad X=$

Since $x \cong \mathbb{R} \Rightarrow H_{0}^{\Delta}(x) \cong H_{\Delta}^{0}(x) \cong \mathbb{R}, H_{k}^{\Delta}(x) \cong H_{\Delta}^{k}(x) \cong 0 \quad \forall k \geqslant 1$, so $P D$ doesn't hold for \mathbb{R}. Let us check that it does when using $H_{c \Delta}^{k}$!

$$
\begin{gathered}
V^{i}\left(v_{j}\right)=e^{i}\left(e_{j}\right)=\delta_{i j} \\
C_{c \Delta}^{0}(x)=\bigoplus_{i \in \mathbb{R}} V^{i} \xrightarrow{V^{i}} \xrightarrow{ }{ }^{0} C_{c \Delta}^{1}(x)=\bigoplus_{i \in \mathbb{R}} e^{i} \\
V^{i} \longmapsto e^{i-1}-e^{i}
\end{gathered}
$$

Since $d^{0}\left(v^{i}\right)\left(e_{j}\right)=V^{i}\left(d_{i}\left(e_{j}\right)\right)=V^{i}\left(v_{j+1}-v_{j}\right)=S_{i, j+1}-\delta_{i j j}$
So her $d^{0}=0$ and cover $d^{0} \cong \mathbb{2}$ generated by $\left[e^{i}\right]$ for any i. $\Rightarrow H_{\Delta}^{0}(x) \cong 0, H_{\Delta}^{1}(x) \cong \mathbb{R}$ and PD holds.

Def X top. space., A ab. group. Let the singular cochain Complex with compact support of X with coefficients $i \cdot A$ be $C_{c}^{k}(X ; A):=\left\{\varphi \in C^{k}(X ; A) \mid \exists\right.$ compact $K \subseteq X$ st $\varphi(\sigma)=0$ for all $\sigma: \Delta^{k} \rightarrow X$ with in $\left.(\sigma) \cap k=\phi\right\}$

Note $C_{c}^{k} \subseteq C^{k}$ is a subcomplex, be cause $\varphi \in C_{c}^{k}(x ; A) \Rightarrow$ $d^{k} \varphi(\sigma)=\varphi\left(d_{k+1} \sigma\right)=0$ for $\sigma: \Delta^{k+1} \rightarrow x$ with in $(\sigma) \cap K=\varnothing$, Since $\operatorname{im}(d \sigma) \subseteq i m(\sigma) \Rightarrow \operatorname{in}(d \sigma) \cap K=\varnothing$. $H_{c}^{k}(X ; A):=$ cohomology of $C_{c}^{\bullet}(X ; A)$ is called singular colomology with compact support of X with coefficients in A.
Remark $2 C_{c}^{k}(X ; A)=C^{k}(X ; A)$ if X is compact (take $\left.K=X\right)$
Def Let I be a set partially ordered by \leq (ie \leq is reflexive, antisymmetric and transitive). If $\forall \alpha_{1} \beta \in I \quad \exists \gamma \in I$ with $\alpha \leq \gamma, \beta \leq \gamma$ then (I, \leq) is called a directed set.
eg subsets of a fixed set x ordered by inclusion, or open subsets of X, or compact subset of X.

Def Let I be a directed set.
Let A_{α} be an R-module for each $\alpha \in I$, and $f_{\alpha \beta}: A_{\alpha} \longrightarrow A_{\beta}$ a homom. For each pair $\alpha_{1} \beta \in I$ with $\alpha \leqslant \beta$, such that

$$
f_{\alpha \alpha}=i d_{A_{\alpha}} \text { and } f_{\beta \gamma} \cdot f_{\alpha \beta}=f_{\alpha \gamma} \text {. }
$$

A module B with homoms. $g_{\alpha}: A_{\alpha} \rightarrow B$ for all $\alpha \in I$ st $g_{\beta} \circ f_{\beta_{\alpha}}=g_{\alpha} \forall \alpha \leqslant \beta$ is called direct limit of the A_{α}, denoted $B=\lim _{\alpha \in I} A_{\infty}$, if it satisfies the following urivensal property: if C is a module with lomoms $h_{\alpha}: A_{\alpha} \rightarrow C$ and $h_{\beta} \circ f_{\beta \alpha}=h_{\alpha}$, then $3!i: B \rightarrow C$ st $i \circ g_{\alpha}=h_{\alpha}$.

Prop $2 \xrightarrow{\lim } A_{\alpha}$ exist, and is unique up to unique isomorphism.
Pg Existence: $B:=\bigoplus_{\alpha \in I} A_{\alpha} /\left\langle x-f_{\alpha \beta}(x) \mid x \in A_{\alpha}, \alpha s \beta\right\rangle$ and $g_{\alpha}: A_{\alpha} \longrightarrow B$ is composition of $A_{\alpha} \xrightarrow{\text { incl }} \oplus A_{\alpha} \xrightarrow{\text { prop }} B$. Given C and h_{α}, let $i: B \rightarrow C$ send $[x] \in B, x \in A_{\alpha}$ to $h_{\alpha}(x)$. Uniqueness: the usual proof.

Ex 3* Every module is the direct limit of its fig. Submodules

* The direct limit of
is Q, with maps:

$$
\mathbb{Z} \xrightarrow{2} \mathbb{l} \mathbb{\rightarrow} \mathbb{H} \mathbb{4} \mathbb{\rightarrow} \cdots
$$

9. H_{c}^{\bullet} AND PROOF OF PD DUALITY

Prop $4 \times$ top. space, $I=\{K \subset \times 1 K$ compact $\}$. Then

$$
H_{c}^{\ell}(X ; A) \cong \lim _{k \in I} H^{\ell}(X, X \backslash k ; A) .
$$

Proof Suppress A coefficients from notation in this proof. Write $L:=\lim _{\rightarrow} \ldots$

$$
C^{l}(x, x \backslash k)=\{\varphi \in C^{\ell}(x) \mid \varphi(\sigma)=0 \text { if } \underbrace{\operatorname{im} \sigma \subseteq x \backslash k}_{\Leftrightarrow \operatorname{im} \sigma \cap k=\phi}\}
$$

So we have an inclusion of cochin complexes

$$
j: c^{\ell}(x, x \backslash k) \longrightarrow c_{c}^{\ell}(x)
$$

By univ. property, \exists ! i: $L \longrightarrow H^{e}(X, A)$ st

$$
H^{l}(x, x \backslash k) \underbrace{\xrightarrow{g_{k}} L \xrightarrow{i} H_{c}^{l}(x) \text { commutes. }}_{j^{*}}
$$

i surjective $[\varphi] \in H_{c}^{l}(x) \Rightarrow \exists$ compact $k \in I$ st $\varphi(\sigma)=0$ for in $\sigma \cap k=\phi \Rightarrow[4]$ in image of $j^{*}: H^{l}(x, x \backslash k) \rightarrow H_{c}^{l}(x)$ $\Rightarrow[\varphi] \in \mathrm{im} i$.
i infective $x \in L$ with $i(x)=0 \Rightarrow$ Pick $K \in I$ st $x=g_{k}([\varphi])$ for $[\varphi] \in H^{l}(x, x \backslash k)$. \quad Then $j^{*}([\varphi])=i(x)=0$ $\Rightarrow \exists \psi \in C_{c}^{l-1}(X)$ with $d^{l^{-1}} \psi=j(\varphi)$. Pick K^{\prime} compact with $\psi(\sigma)=0$ for in $(\sigma) \cap K^{\prime}=\phi$. Then $\psi \in C^{l-1}\left(x, X \backslash\left(K \cup K^{\prime}\right)\right)$

$$
\Rightarrow[\varphi]=0 \in H^{l}\left(x, x \backslash\left(k \cup K^{\prime}\right)\right) \Rightarrow x=g_{K \cup k^{\prime}}([\varphi])=0
$$

Prop 5 Shipped in lecture
X top. space, $I \subseteq$ Power set of X, partially ordered by inclusion.
Suppose I is directed, $X=\bigcup_{u \in I} u$, and $\forall K \subseteq X$ compact $\exists u \in I$ with $k \subseteq u$ (the last property follows eg if all $U \in I$ are open). Then $H_{k}(U ; A)$ with inclusion-induced maps has direct limit

$$
\lim _{\longrightarrow} H_{k}(U ; A) \cong H_{k}(X ; A)
$$

Proof Exercise, similar to proof of Prop 3.

Prop $6 J \subseteq I$ directed sets st $\forall \alpha \in I \exists \beta \in J: \alpha \leqslant \beta$. Them

$$
\lim _{\beta \in \mathcal{F}} A_{\beta} \cong \lim _{\alpha \in I} A_{\alpha}
$$

Proof (Shipped in lecture)
Each A_{β} has a map $g_{\beta}: A_{\beta} \rightarrow \lim _{\alpha \in I} A_{\alpha}$. These are compatible with the $f_{\beta \beta^{\prime}}$. So the universal property for $\underset{\beta \in \mathcal{l}}{\lim } A_{\beta}$ yields

$$
\varphi: \lim _{\beta \in 7} A_{\beta} \longrightarrow \lim _{\alpha \in I} A_{\alpha} .
$$

Conversely, for each $A_{\alpha} \exists \tilde{\beta}$ with $\alpha \leq \tilde{\beta}$, and thus a map

$$
A_{\alpha} \xrightarrow{f_{\alpha} \widetilde{\beta}} A_{\tilde{\beta}} \xrightarrow{g_{\tilde{\beta}}} \lim _{\beta \in \gamma} A_{\beta}
$$

These are compatible with the $f_{\alpha \alpha^{\prime}}$. So the univ. property for $\lim _{\alpha \in I} A_{\alpha}$ yields $\psi: \lim _{\alpha \in I} A_{\alpha} \longrightarrow \lim _{\beta \in \gamma} A_{\beta}$.
By the uniqueness part of the universal propsthes, $\varphi \circ \psi$ and $\psi \circ \varphi$ are the identities.
Ex 7 To calculate $H_{c}^{*}\left(\mathbb{R}^{n} ; A\right)$, use

$$
J=\left\{B_{T}(0) \mid r \in\{1,2,3, \ldots\}\right\} \subseteq I .
$$

We have $H^{l}\left(\mathbb{R}^{n}, \mathbb{R}^{m} \backslash B_{r}(0) ; A\right) \cong\left\{\begin{array}{ll}A & k=n \\ 0 & \text { else }\end{array}\right.$ by LES of pair. Inclusions induce iss $\quad H^{l}\left(\mathbb{R}^{m}, \mathbb{R}^{m} \backslash B_{r}(0) ; A\right) \rightarrow H^{l}\left(\mathbb{R}^{m}, \mathbb{R}^{m} \backslash B_{s}(0) ; A\right)$ for $r \leqslant s$. So

$$
H_{c}^{\ell}\left(\mathbb{R}^{n} ; A\right) \cong \lim _{k \in 7} H^{\ell}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash k ; A\right) \cong H^{l}\left(\mathbb{R}^{m}, \mathbb{R}^{m} \backslash B_{\tau}(0) ; A\right)
$$

for any r. Thus $H_{c}^{l}\left(\mathbb{R}^{n} ; t\right) \cong \begin{cases}A & k=m \\ 0 & \text { else }\end{cases}$ So $P D$ as in Then 1 holds for \mathbb{R}^{n} !

Theorem 1 with def of map PD Let M^{M} be R-oriented. Then the map $P D: H_{c}^{l}(H ; R) \longrightarrow H_{m-l}(M ; R)$ defined as follows is an iso: For $K \leqslant M$ compact, there is a unique $\mu_{k} \in H_{n}(M, M \backslash K ; R)$ st μ_{k} maps to the generator of $H_{\mu}(M, M \backslash x ; R)$ given by the orientation for all $x \in K$ (Lemma 7.3). The relative cap product yields a map

$$
\begin{aligned}
H^{\ell}(M, M \backslash K=R) & \stackrel{h_{k}}{ } H_{m-l}(M ; R), \\
{[\varphi] } & \longmapsto \mu_{k} \simeq[\varphi]
\end{aligned}
$$

If $L \subseteq M$ compact, $K \subseteq L$, then ind $l_{*}\left(\mu_{L}\right)=\mu_{k}$. Using that and maturality of relative cap product, the following commutes:

$$
\begin{aligned}
& H^{\ell}(\pi, M \backslash K ; R) \xrightarrow{h_{k}} H_{n-\ell}(M ; R) \\
& H^{\ell}\left(M, \sim_{M \backslash L ; R)}^{\downarrow \text { incl }} \rightarrow h_{L}\right.
\end{aligned}
$$

So the univ. property yields a map

$$
\lim _{k} H^{l}(M, M \backslash k ; R) \longrightarrow H_{n-l}(M ; R)
$$

Precomposing with the isom. $H_{c}^{l}(M ; R) \longrightarrow \underset{k}{\lim _{k}} H^{l}(M, M \backslash k ; R)$ gives our map PD!

Remark $8 \times$ Hausdorff, $U \subset X$ open, $K \subset U$ compact.

$$
\text { Excise } x \backslash u \Rightarrow H^{e}(x, x \backslash k ; A) \xrightarrow{\text { incl* }} H^{e}(u, u \backslash k ; A)
$$

(using that X Hausdorff $\Rightarrow K$ is closed $\Rightarrow \times \backslash K$ open,
So $\left.\quad x \backslash u=\overline{x \backslash u} \leqslant(x \backslash k)^{0}=x>k\right)$
is an iso. Its inverse composed with g_{k} is a map

$$
H^{l}(u, u \backslash k ; A) \rightarrow H_{c}^{l}(X ; A)
$$

By univ, property, these maps incluce

$$
H_{c}^{l}(U ; A) \rightarrow H_{c}^{l}(X ; A)
$$

So H_{c}^{l} is Covariantly (!) functorial with respect to inclusions of open subsets of a Hausdorff space.

Lemma $9 M^{n} R$-oriented, $U, V \subseteq M^{n}$ open, $M=U \cup V$.
Then the following diagram has exact rows and commutes up to sign (R coefficients suppressed from notation):

$$
\begin{aligned}
& P D_{u_{n} v} \downarrow \downarrow\left(\begin{array}{cc}
P D_{u} & 0 \\
0 & P D_{v}
\end{array}\right) \quad \downarrow P D_{M} \downarrow P D_{u_{n} v} \\
& \cdots \rightarrow H_{n-l}(u \cap v) \rightarrow H_{n-l}(u) \oplus H_{n-l}(v) \rightarrow H_{n-l}(M) \longrightarrow H_{n-l-\Omega}(u n v) \rightarrow \ldots \\
& \binom{\text { incl }\left.\right|_{k}}{- \text { incl }_{*}} \quad\left(\text { incl }_{*} \quad \text { incl }_{*}\right)
\end{aligned}
$$

(1) Commutativity of (A), (B) follows from naturality of the relative cap product, and incl ${ }_{*}\left(\mu_{k}\right)=\mu_{k \cap L}$.
(2) To show: Commutativity of

$$
\begin{aligned}
& H^{e}(M, M \backslash(K \cup L)) \stackrel{\delta}{\longrightarrow} H^{l+1}(M, M \backslash(K \cap L)) \\
& \cong \text { incl* } \\
& \mu_{k u L} \simeq \int \begin{aligned}
& \\
& H^{l+1}\left(u \cap v,(u n V) \backslash\left(k_{n} L\right)\right) \\
& \mu_{k n L} \frown
\end{aligned} \\
& H_{n-l}(M) \longrightarrow H_{n-l-1}\left(U_{n} V\right)
\end{aligned}
$$

dropping incl
By barycentric subdivision, $\mu_{k U L}=\left[\alpha_{u_{n L}}+\alpha_{u_{n v}}+\alpha_{v \backslash k}\right]$

$$
c_{n}(U \backslash L) \quad c_{n}\left(u_{n} V\right) \quad c_{n}^{\infty}(V \backslash k)
$$

$$
\begin{aligned}
\Rightarrow \mu_{k \cap L} & =\operatorname{incl}_{*}\left(\mu_{k u L}\right)=\left[\alpha_{u \backslash L}+\alpha_{u n v}+\alpha_{v \backslash k}\right] \\
& =\left[\alpha_{u_{n v}}\right] \in H_{m}(M, M \backslash(k \cap L))
\end{aligned}
$$

since $\quad u \backslash L \subseteq M \backslash(K \cap L)$, so $\alpha_{u \backslash L}=0 \in C_{m}(M, M \backslash(K \cap L))$, and similarly for $\alpha_{v \backslash k}$

Similarly, $\mu_{k}=\operatorname{incl}_{*}\left(\mu_{k V L}\right)=\left[\alpha_{u L L}+\alpha_{u n v}\right]$.

Let $[\varphi] \in H^{l}(M, M \backslash(K \cup L))$. We need to check that in (C), $\mu_{k \cap L} \curvearrowright \operatorname{incl}^{*}(\delta([\varphi]))=\partial\left(\mu_{k u L} \curvearrowright[\varphi]\right)$.

Coclurise image of $[\varphi]$
How to calculate $\delta([\varphi])$?
Write $\varphi=\psi_{k}-\psi_{L}$ st $\psi_{k} \in C^{l}(M, M \backslash K), \psi_{L} \in C^{l}(M, M \backslash L)$.
Then $\delta[\varphi]=\left[d^{l} \Psi_{k}\right]=\left[d^{l} \Psi_{L}\right]$ (relative cohom. MV connecting ham.)
So $\mu_{k n L} \curvearrowleft \operatorname{incl}^{*}(\delta([\varphi]))=\left[\alpha_{u_{n v}} \curvearrowleft d^{l} \Psi_{k}\right]$

$$
=\left[d_{n}\left(\alpha_{u n v}\right) \frown \psi_{k}\right]
$$

since $\underbrace{\alpha_{m-l}\left(\alpha_{u n v} \sim \psi_{k}\right)}_{=0 \in H_{n-l-1}(u n v)}=(-1)^{l}\left(d_{m} \alpha_{u_{n v}} \sim \psi_{k}-\alpha_{u n v} \sim d^{l} \psi_{k}\right)$

$$
\begin{aligned}
& \text { Counterclockwise image of }[\Psi] \\
& \partial\left(\mu_{k V L} \curvearrowright[\varphi]\right)=\partial([\underbrace{\alpha_{u L L} \frown \varphi}+\overbrace{u_{n V} \sim \varphi+\alpha_{v \backslash k n} \varphi}]) \\
& \text { chain in } U \\
& =\left[d_{n-l}\left(\alpha_{U L L}-\varphi\right)\right] \text { by def of MV connecting } \\
& \text { homo. I (cracking the egg) }
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{l}\left[d_{n}\left(\alpha_{u \backslash L}\right) \frown \psi_{k}\right] \text { since } d_{n}\left(\alpha_{u I L}\right) \frown \psi_{L}=0 \\
& =(-1)^{l+1}\left[\alpha_{m}\left(\alpha_{u_{n v}}\right) \frown \Psi_{k}\right] \\
& \text { Chaining }
\end{aligned}
$$

since: $\left[\alpha_{u I L}+\alpha_{u_{n v}}\right]=\mu_{k} \Rightarrow d_{n}\left(\alpha_{u v L}+\alpha_{u_{n v}}\right) \in C_{n-1}(M \backslash K)$

$$
\Rightarrow d_{n}\left(\alpha_{u v L}+\alpha_{u n v}\right) \frown \Psi_{k}=0
$$

Previously
Theorem $1 M^{M} R$-oriented $\Rightarrow H_{c}^{l}(M ; R) \xrightarrow{P D_{M}} H_{m-l}(M ; R)$ is an iso.
Lemma $9 M^{n} R$-oriented, $U, V \subseteq M^{n}$ open, $M=U \cup V$.
has exact rows \& commutes up to sign.
Now Fixing the sign in Lemma 9
In all squares that anticommute (ie $\downarrow \rightarrow=-\rightarrow$), simp (y switch the sign of one of the horizontal maps. This preserves exactness and yields commutativity.

Proof of Theorem 1
(A) If $M=U \cup V$ for U, V open and $P D_{u}, P D_{v,} P D u \cap v$ are ios, then so is PDM. Proof: Five-lemma \& Lemma 9
(B) If $M=\bigcup_{i=1}^{\infty} u_{i}$ with $u_{1} \subseteq u_{2} \subseteq \ldots$ open, and all $P D u_{i}$ are isos, then so is $P D_{M}$. Proof: Reek 8 yields a commentative diagram

$$
\ldots \rightarrow H_{c}^{l}\left(u_{i}\right) \xrightarrow{\text { incl }} H_{c}^{l}\left(u_{i+1}\right) \rightarrow \ldots
$$

$$
\text { incl* }_{H_{c}^{\ell}(\Pi)^{\ell}} / \text { incl }_{*}
$$

The induced map $\lim _{i} H_{c}^{l}\left(U_{i}\right) \rightarrow H_{c}^{l}(M)$ is an iso, since $K \subseteq M$ compact $\Rightarrow \exists i: K \subseteq U_{i}$.
Moreover, $\underset{i}{\lim _{i m-l}} H_{m}\left(U_{i}\right) \cong H_{n-l}(M)$ (Prop 5 / Ex. on Sheet 6). By assumption, all $P D_{u_{i}}: H_{c}^{l}\left(U_{i}\right) \longrightarrow H_{m-l}\left(U_{i}\right)$ are iss. So the induced map $\underset{i}{\lim _{i}} H_{c}^{l}\left(U_{i}\right) \longrightarrow \underset{i}{\lim _{i}} H_{n-e}\left(U_{i}\right)$ is also an iso. It equals $P D_{M}$.

$$
\begin{aligned}
& \rightarrow H_{c}^{l}(u \cap V) \rightarrow H_{c}^{l}(u) \oplus H_{c}^{l}(v) \longrightarrow H_{c}^{l}(M) \longrightarrow H_{c}^{l+1}(u \cap v) \rightarrow \\
& P D_{u n v} \downarrow \\
& \downarrow\left(\begin{array}{cc}
P D_{u} & 0 \\
0 & P D_{v}
\end{array}\right) \\
& \rightarrow H_{n-l}(u \cap v) \rightarrow H_{n-l}(u) \oplus H_{n-l}(v) \rightarrow H_{n-l}(M) \longrightarrow H_{n-l-1}(u n v) \rightarrow
\end{aligned}
$$

(1) $M=\mathbb{R}^{n}$ We already know $H_{c}^{l}\left(\mathbb{R}^{n}\right)=R^{\delta_{\ell, m}} \cong H_{m-l}\left(\mathbb{R}^{n}\right)\left(E_{\times 7}\right)$, but still need to check that $P D_{M}$ is an iso.
Let $f:\left(\mathbb{R}^{m}, \mathbb{R}^{m}\left(B_{1}(0)\right) \rightarrow\left(\Delta^{m}, \partial \Delta^{n}\right)\right.$ be a homs. equiv. Then the following commutes (left triangle by def of $P D_{M}$, right square by uaturality of rel. Cap (roduct):

$$
\begin{aligned}
& H_{c}^{n}\left(\mathbb{R}^{n}\right) \stackrel{\text { iso by } E_{x} 7}{\leftarrow} H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash B_{1}(0)\right) \stackrel{f^{*}}{\cong} H^{n}\left(\Delta^{n}, \partial \Delta^{n}\right)
\end{aligned}
$$

So it suffices to check that $f_{*}\left(\mu_{B_{1}(0)}\right) \sim$ is an iso, which can be Seen using simpticial (co-) homology.
(2) $M \subseteq \mathbb{R}^{n}, \quad M=V_{1} \cup \cdots \cup V_{k}$ for V_{i} open and convex

By induction over k. For $k=1$, follows from (1) since $V_{i} \cong \mathbb{R}^{n}$. If true up to k : $M=U \cup V_{k+1}$ for $U=V_{1} \cup \cdots \cup V_{k}$. $P D_{V_{k+1}}$ iso by (1), $P D_{u}$ iso by induction hypothesis, and $P D U_{n} V_{k+1}$ iso also by induction hypothesis, since $\quad U_{\cap} V_{k+1}=\left(U \cap V_{1}\right) \cup \cdots \cup\left(U \cap V_{k}\right)$ with $U_{\cap} V_{i}$ open and convex. So $P D_{M}$ iso by (A).
(3) $M \subseteq \mathbb{R}^{m}$ open Write $M=\bigcup_{i=1}^{\infty} V_{i}$ with V_{i} open and convex. (eg take as U_{i} all open balls $\subseteq M$ with rational radius and rational coordinates) Let $U_{k}=V_{1} \cup \ldots \cup V_{k}$. Then $P D u_{k}$ iso for all k by (2). Done by (B).
(4) M with finite atlas, ie $M=V_{1} \cup \ldots \cup V_{k}$ with V_{i} open and $\cong \mathbb{R}^{n}$. Proceed as in (2), using (3) on $U_{\cap} V_{k+1}$, which is homed to an open set $\subseteq \mathbb{R}^{n}$
(5) General M has a countable atlas (using 2nd countability), ie $M=\bigcup_{i=1}^{\infty} V_{i}$ with V_{i} open and $\cong \mathbb{R}^{n}$. Proceed as in (4).

Logical structure of Ch.5-9 (ie Cohomology)

Gluing local orientations (7) $\mu_{k}, H_{n}\left(M^{n}\right)$ and [M]

Cap product (8)

(10) Alexander Duality

Theorem 1 (Alexander Duality) Let $n \geqslant 0$ and $K \subseteq S^{n}$ be a locally contractible, compact subspace, $k \neq \phi, k \neq S^{n}$.
Then for all i

$$
\tilde{H}_{i}\left(S^{n} \backslash k ; \mathbb{R}\right) \cong \tilde{H}^{n-i-1}(k ; \nless)
$$

Remark 2 This means: if a compact top. space K is locally "tame" (ie locally contractible, eg a manifolded), and you embed K into a sphere S^{n}, then the homology of the complement $S^{m} \backslash K$ does not depend on the choice of embedding!

Example $3 K \subseteq S^{3}$ with $K \cong S^{1}$ is called a knot. By Alexander Duality, $\tilde{H}_{i}\left(S^{n} \backslash K\right) \cong \tilde{H}^{2-i}\left(S^{1} ; 72\right)$
$H_{0}\left(S^{n} \backslash k\right) \cong H_{1}\left(S^{n} \backslash K\right) \cong \mathbb{Z}$, and all other homology groups are trivial This is easy to see geometrically for an "unlmolted" K, since then $S^{3} \backslash K \simeq S^{1}$.

Corollary $4 M^{n-1}$ non-orientable, compact. Then M does not embed into S^{n}.
Proof Assume $M \neq \varnothing$, $M \subseteq S^{n}$. By Alexander duality:

$$
H^{n-1}(M) \cong \widetilde{H}^{n-1}(M) \cong \tilde{H}_{0}\left(S^{n} \backslash M\right)
$$

So $H^{n-1}(M)$ is free. By $U C T$ we also know:

$$
\begin{aligned}
& \begin{aligned}
H^{n-1}(M) & \cong H_{m m}(\underbrace{H_{n-1}(M)}_{\text {because }}, \mathbb{2}) \oplus \underbrace{}_{\cong T\left(H_{n-2}(M)\right)} \begin{array}{rl}
& \operatorname{Ext}_{\mathbb{R}}^{1}\left(H_{n-2}(M), \mathbb{R}\right)
\end{array})
\end{aligned} \\
& \text { M mon-orientable since } H_{n-2}(M) \text { fig. } \\
& \text { (Prop } 7.2 \text { (ii)) }
\end{aligned}
$$

$H^{m-1}(M)$ free \Rightarrow Ext-Serm zero $\Rightarrow H_{m-2}(M)$ free and $H^{m-1}(M) \cong 0$.
Again by UCT:

$$
\begin{aligned}
& H^{n-1}\left(M ; \mathbb{F}_{2}\right) \cong \underbrace{\operatorname{Hom}_{n-1}\left(H_{1}(M), \mathbb{F}_{2}\right)}_{\cong 0 \text { as above }} \oplus \underbrace{E_{n}^{1}\left(H_{n-2}(M), \mathbb{F}_{2}\right)}_{0 \text { because } H_{m-2}(M) \text { free }} \\
\Rightarrow & H^{n-1}\left(M ; \mathbb{F}_{2}\right) \cong 0 \text {. But PD } \Rightarrow H^{n-1}\left(M ; \mathbb{F}_{2}\right) \cong H_{0}\left(M ; \mathbb{F}_{2}\right),
\end{aligned}
$$

which is non-trivial since $M \neq \phi$. Contradiction.

Lemma $4 K \subseteq \mathbb{R}^{M}$ with K compact and locally contractible.
(1) There is $u_{0} \subseteq \mathbb{R}^{n}$ open with $k \subseteq u_{0}$ and a refraction $r: u_{0} \rightarrow K$.
(2) For all open $U \subseteq U_{0}$ with $K \leq U$, there exist an open $V \subseteq U$ with $K \subseteq V$ st incl $v a \rightarrow u$ is homotopic to incl $k \leftrightarrow u \quad \circ r l v$.

Proof (1) Hatcher Them A. 7
(2) Slipped in Lecture

Because we're in \mathbb{R}^{μ}, one may simply define a "linear" homotopy

$$
h: U \times I \rightarrow \mathbb{R}^{\mu}, \quad h(x, t)=(1-t) x+t r(x)
$$

between ids and r. However, this is a homotopy through maps to \mathbb{R}^{μ}, not maps to U. $h^{-1}(U)$ is open in $U \times I$. By def. of the product topology, for every $t \in I$ there is $V_{t} \leq U$ open, $\varepsilon_{t}>0$ such that

$$
V_{t} \times\left(\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \cap[0,1]\right) \subseteq h^{-1}(u)
$$

We have $[0,1]=\bigcup_{t \in[0,1]}\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \cap[0,1]$, and since $[0,1]$
is compact, there is a finite subcovernig. The interaction of the consespondis
V_{t} is an open set V such that $V \times I \subseteq h^{-1}(u) \Rightarrow$
h yields a homotopy from $V \hookrightarrow u$ to $r I_{V}$ through maps to U. M

Proof of Theorem 1 Treat the case $i \neq 0$ first. Then

$$
\begin{aligned}
& \tilde{H}_{i}\left(S^{n} \backslash k\right) \cong H_{i}\left(S^{n} \backslash k\right) \\
& \cong H_{c}^{n-i}\left(S^{\mu} \backslash K\right) \\
& P D^{-1} \\
& \cong \lim _{\substack{t \leq \rightarrow \\
\text { Komplith }}} H^{n-i}\left(S^{n} \backslash K, S^{n} \backslash(K \cup L)\right) \quad \text { by Prop } 9.4 \\
& \cong \lim _{L} H^{n-i}\left(S^{n}, S^{n} \backslash L\right) \\
& \text { incl }{ }^{*} \text { is iso } \\
& \text { by excision } \\
& \cong \lim _{L} \widetilde{H}^{n-i-1}\left(S^{n} \backslash L\right) \\
& \cong \tilde{H}^{n-i-1}(K)
\end{aligned}
$$

Proof of the last iso: Let us prove iso for unreduced cohomology. This implies iso for reduced. Pick $p \in S^{n} \backslash K$. Then $K \subseteq S^{n} \backslash p \cong \mathbb{R}^{n}$. So one may pick U_{0} as in Lemma $4(1)$ and retraction $r: U_{0} \rightarrow K$.
By Prop 9.6, $\underset{L}{\lim } \cong \underset{s^{m} \backslash \mathrm{~m}_{.} \leq L}{\lim }$. Then, the universal property yields a map s :

Let us show that s is an iso.
Surjectivity of $s:\left.\quad \pi\right|_{S^{m} \backslash L} \circ$ incl $=i d_{k} \Rightarrow$

$$
i n c l^{*} \circ\left(\left.r\right|_{S^{\mu}, L}\right)^{*}=\left.i d_{H^{n-i-1}(k)} \Rightarrow i n c\right|^{*} \text { surgective. }
$$

Injechivity of S :
Let $x \in \lim _{\rightarrow}$ with $s(x)=0$ be given. Pick L such that $x=g_{2}(y)$ $\Rightarrow S(x)=$ incl ${ }^{*}(y)=0$. By Lamina $4(2)$, pick L^{\prime} with $L \subseteq L^{\prime}$ sk St $S^{n} \backslash L^{\prime} \hookrightarrow S^{\mu} \backslash L$ is homotipic to $\pi l_{S^{\mu} \backslash L^{\prime}}$.

$$
\begin{aligned}
& \Rightarrow f_{L, L^{\prime}}=\left(\left.r\right|_{\left.S^{u} \backslash L^{\prime}\right)^{*}} \circ \operatorname{inc} 1^{*} \Rightarrow f_{L, L^{\prime}}(y)=\left(\left.r\right|_{S^{n} \mid L^{\prime}}\right)^{*}\left(\left.\dot{m c}\right|^{*}(y)\right)=0\right. \\
& \Rightarrow x=g_{L}(y)=g_{L^{\prime}}\left(f_{L, L^{\prime}}(y)\right)=0 .
\end{aligned}
$$

Case $i=0$: As before, we have $H_{0}\left(S^{n} \backslash K\right) \cong \frac{\lim _{L}}{} H^{n}\left(S^{n}, S^{n} \backslash L\right)$. LES of pair:

$$
\begin{aligned}
& \widetilde{H}^{n-1}\left(S^{n}\right) \rightarrow H^{n-1}\left(S^{n} \backslash L\right) \longrightarrow H^{n}\left(S^{n}, S^{n} \backslash L\right) \rightarrow \underbrace{H^{n}\left(S^{n}\right)}_{=\pi} \rightarrow \overbrace{}^{m}\left(S^{n} \backslash L\right) \\
& \Rightarrow H^{n}\left(S^{n}, S^{n} \backslash L\right) \cong H^{n-1}\left(S^{n} \backslash L\right) \oplus \mathbb{R} . \\
& \Rightarrow H_{0}\left(S^{n} \backslash K\right) \cong H^{n-1}(K) \oplus \mathbb{R} \\
& \Rightarrow \widetilde{H}_{0}\left(S^{n} \backslash K\right) \cong H^{n-1}(K) .
\end{aligned}
$$

(12) Künneth Theorem (not in exam)

If A and B are R-algebras, then $A \otimes B$ is too, via

$$
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime} .
$$

If A and B are graded, then $A \not Q_{R}$ is too, via

$$
\operatorname{deg}(a \otimes b)=\operatorname{deg} a+\operatorname{deg} b .
$$

Theorem. $1 \quad X, Y$ spaces, $H^{i}(X ; R)$ free of finite rank for all i.
Then there is an isomorphism of graded R-modules

$$
H^{\bullet}(X \times Y ; R) \cong H^{\bullet}(X ; R) \otimes_{R} H^{\bullet}(Y ; R)
$$

The ring structure is respected up to sign.
Example $2 H^{\bullet}\left(S^{1} \times S^{1}\right) \cong H^{\bullet}\left(S^{1}\right) \otimes_{\pi}^{\otimes} H^{\bullet}\left(S^{1}\right)$
as graded rings, with multiplication only respected up to sign.

$$
\begin{aligned}
& \cong \mathbb{R}[x] /\left(x^{2}\right) \otimes \mathbb{Q}[y] /\left(y^{2}\right) \\
& \cong \mathbb{R}[x, y] /\left(x^{2}, y^{2}\right)
\end{aligned}
$$

This is the result we obtained in Example 6.8, up to sign
Example $3 H^{0}\left(S^{2} x S^{4}\right) \cong \mathbb{Z}[x, y] /\left(x^{2}, y^{2}\right)$
with $\operatorname{deg} x=2, \operatorname{deg} y=4$. This iso respect multiplication including the sign, since all degrees are even. More explicitly:

$$
\begin{aligned}
& H^{2}\left(S^{2} \times S^{4}\right) \cong \lambda \text { gen. by } x \\
& H^{4}\left(S^{5} \times S^{4}\right) \cong \mathbb{Z} \text { gen. by } y \\
& H^{6}\left(S^{2} \times S^{4}\right) \cong \mathbb{2} \text { gan. by } x y
\end{aligned}
$$

$$
x^{2}=0
$$

$$
y^{2}=0
$$

tensor product of chain complexes,
Proof ide a for Theorem 1
(1) Eilenberg-Zilber Thu: $C_{.}(X X Y) \simeq C_{0}(X) \otimes C_{0}(Y)$
(2) Compute $H_{i}\left(C_{0}(X) \otimes C_{0}(Y)\right)$ - similar to $H_{i}\left(C_{0}(X) \otimes A\right)$ for a \mathbb{R}-module A
(12) Twisted Homology (not in exam)

Motivation $K \subseteq S^{3}$ a knot, ie $K \cong S^{1}$. Comider the composition

By the classification of coverings, her $\rho \subseteq \pi_{1}\left(S^{3} \backslash K\right)$ corresponds to a two-sheeted connected covering $M_{k} \longrightarrow S^{3} \backslash k$. What is $H_{1}\left(M_{k}\right)$? It depends on K !

$H_{1}\left(M_{k}\right) \cong \mathbb{R}$

$$
H_{1}\left(M_{k}\right) \cong \mathbb{R} \oplus \mathbb{R} / 3
$$

$H_{1}\left(M_{k}\right) \cong \mathbb{R} \oplus \mathbb{R} / 5$

So these are three distinct knots!
Moreover, it illustrates that homology of coverings of X cam be a rich invariant.

Def For a (nom-abelian) group G, let the group ring $\mathbb{Z}[G]$ be the free \mathbb{Z}-module with basis G, and multiplication

$$
(\underbrace{\left.\sum_{g \in G} a_{g} g\right)}_{\text {finite } \mathbb{R} \text {-linear combinations }} \cdot \underbrace{\left(\sum_{g \in G} b_{g} g\right)}_{\text {for }}:=\underbrace{}_{\text {fin cG }^{\sum_{g}} a_{g} b_{h}(g h)}
$$

of elements of G
$\lambda[G]$ is a unital ring, and commutative if and only if G is abelian.

$$
\begin{aligned}
\text { Ex } & \mathbb{R}[\mathbb{R} \mid n] \cong \mathbb{R}[t] /\left(t^{n}-1\right), \quad \mathbb{R}[\mathbb{R}] \cong \mathbb{R}\left[t, t^{-1}\right] \\
& \mathbb{Z}\left[S_{3}\right] \cong \mathbb{Z}\langle x, y\rangle /\left(x^{2}-1, y^{3}-1, x y x y-1\right)
\end{aligned}
$$

$Y \xrightarrow{p} X$ a regular covering with deck transformation group G
(group of homos $g: Y \rightarrow Y$ with $p=p \circ g$)
G acth from the left on Y.
G also acts from the left on $C_{i}(Y)$ by $g \cdot \sigma:=g \circ \sigma$.
That makes $C_{i}(T)$ into a left $\mathbb{R}[G]$-module.
The differentials of $C .(Y)$ are $\mathbb{R}[G]$-linear!
Def We write $C_{0}^{+\omega}(X ; \mathbb{R}[G])$ for $C .(Y ; \mathbb{R})$ with the above left $\mathbb{Z}[G]$-module structure and $c_{\text {all }}$ this a twisted chain complex. Its n-th homology $H_{n}^{+\omega}(X ; \mathbb{2}[G])$ inherits the left $\mathbb{Z}[G]$-module structure!

In particular, if X admits a universal covering \tilde{x}, we may consider

$$
C_{0}^{+\infty}(x ; \mathbb{Z}[\pi, x])
$$

Remark $C_{i}^{t_{\omega}}(X, \pi[G])$ is a free $\mathbb{Z}[G]$-module! But $H_{i}^{+\omega}(x, \pi[G])$ need not be free.

Ex $C^{+\omega}(S^{1}, \underbrace{\left.\mathbb{R}\left[\pi, s^{1}\right]\right)}_{\cong \mathbb{R}\left[t, t^{-1}\right]}$ using cellular homology:

$C_{0}^{C W}\left(S^{1}\right): \underset{\underbrace{\otimes}_{0}\left[t^{*}\right]}{\infty} \pi\left[t^{* *}\right] /(t-1)$

$$
\pi \stackrel{0}{\rightarrow} \mathbb{R}
$$

$$
\begin{aligned}
& \mathbb{Z}\left[t^{ \pm 1}\right] \frac{t-1}{d_{1}} \mathbb{R}\left[t^{ \pm 1}\right] \\
\Rightarrow & H_{1}^{t \omega}\left(S^{1} ; \lambda\left[t^{ \pm 1}\right]\right) \cong \operatorname{ker} d_{1}=0 \\
& H_{0}^{t \omega}\left(S^{1} ; \pi\left[t^{ \pm 1}\right]\right) \cong \text { coles } d_{1} \cong \pi\left[t^{ \pm+1}\right] /(t-1)
\end{aligned}
$$

$$
\begin{gathered}
H_{1}\left(s^{3}<k ; 2\left\{t^{t+}\right\}\right) \\
\cong 0
\end{gathered}
$$

$$
H_{1}\left(S^{3} \backslash k ; \lambda\left[t^{t+}\right]\right)
$$

$$
\cong \mathbb{R}\left[t^{t 1}\right] /\left(t^{-1}-1+t\right)
$$

$$
\begin{aligned}
& \text { Hz }\left(s^{3}\left(k ; 2\left[t^{t+1}\right]\right)\right. \\
& \cong 2\left[t^{ \pm 1}\right] /\left(t^{-1}-3+t\right)
\end{aligned}
$$

Theorem (Twisted Poincare Duality)
If X is compact and Y orientable, then

$$
H_{t \infty}^{i}(M ; \lambda[G]) \cong H_{i}^{+\infty}(M ; \lambda[G])
$$

Ex $C_{0}^{+\omega}\left(\mathbb{R} P^{2} ; \mathbb{R}[\mathbb{R} 12]\right)$ again using cellular homology:

and a 2-all f

$$
\begin{gathered}
C_{0}^{C W}\left(\mathbb{R} P^{2}\right) \\
\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{R}
\end{gathered}
$$

$$
\stackrel{(\mathbb{R} R /(t-1)}{C_{0}^{t w_{1} c w}(\mathbb{R} p^{2} ; \overbrace{\mathbb{R}[t] /\left(t^{2}-1\right)}^{R})} \begin{aligned}
R & \xrightarrow{t+1} R \xrightarrow{t-1} R \\
H_{0}^{t \omega} & \cong R /(t-1) \\
H_{1}^{+\omega} & \cong 0 \\
H_{2}^{t \omega} & \cong(t-1)
\end{aligned}
$$

$C_{t \omega, C \omega}^{0}\left(\mathbb{R} P^{2} ; R\right)$ is the dual of $C_{0}^{t w, C \omega}: R \stackrel{t+1}{\leftarrow} R \Vdash^{t-1} R$
So $H_{t w}^{0} \cong(t+1), \quad H_{t w}^{1} \cong 0, \quad H_{t w}^{2} \cong R /(t+1)$
Indeed, we find $H_{0}^{t \omega} \cong H_{t w}^{2}, H_{2}^{t \omega} \cong H_{\text {Lw }}^{0}$, using the iso $R \rightarrow R, \quad t \mapsto-t$.

