Number Theory I

Exercise sheet 14

p-ADIC NUMBERS, ABSOLUTE VALUES

- 1. Determine the *p*-adic expansions of ± 1 and $\frac{\pm 1}{1-p}$ for an arbitrary prime *p*.
- 2. Represent the rational numbers $\frac{2}{3}$ and $-\frac{2}{3}$ as 5-adic numbers.
- 3. (a) Show that a rational number x with $\operatorname{ord}_p(x) = 0$ has a purely periodic p-adic expansion if and only if $x \in [-1, 0)$.
 - (b) Show that in \mathbb{Q}_p the numbers with eventually periodic *p*-adic expansions are precisely the rational numbers.
- 4. Show that the equation $x^2 = 2$ has a solution in \mathbb{Z}_7 and compute its first few 7-adic digits.
- 5. For which primes p is -1, resp. 2, resp. 3 a square in \mathbb{Q}_p ?
- *6. For any integer $b \ge 2$ consider the map

$$\pi \colon \prod_{i \ge 1} \{0, 1, \dots, b-1\} \longrightarrow [0, 1], \quad (a_i)_i \mapsto \sum_{i \ge 1} a_i b^{-i}.$$

Show that π is surjective and determine its fibers. Prove that the natural topology on the interval [0, 1] is the quotient topology via π from the product topology on $\prod_{i \ge 1} \{0, 1, \ldots, b - 1\}$, where each factor is endowed with the discrete topology. Interpret this fact by comparing the topologies on the source and the target.

7. Prove that for any prime p the ring of endomorphisms of the additive group $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ is canonically isomorphic to \mathbb{Z}_p .