Exercise sheet 14

p-adic Numbers, Absolute Values

1. Determine the p-adic expansions of ± 1 and $\frac{ \pm 1}{1-p}$ for an arbitrary prime p.
2. Represent the rational numbers $\frac{2}{3}$ and $-\frac{2}{3}$ as 5 -adic numbers.
3. (a) Show that a rational number x with $\operatorname{ord}_{p}(x)=0$ has a purely periodic p-adic expansion if and only if $x \in[-1,0)$.
(b) Show that in \mathbb{Q}_{p} the numbers with eventually periodic p-adic expansions are precisely the rational numbers.
4. Show that the equation $x^{2}=2$ has a solution in \mathbb{Z}_{7} and compute its first few 7 -adic digits.
5. For which primes p is -1 , resp. 2, resp. 3 a square in \mathbb{Q}_{p} ?
*6. For any integer $b \geqslant 2$ consider the map

$$
\pi: \prod_{i \geqslant 1}\{0,1, \ldots, b-1\} \longrightarrow[0,1], \quad\left(a_{i}\right)_{i} \mapsto \sum_{i \geqslant 1} a_{i} b^{-i} .
$$

Show that π is surjective and determine its fibers. Prove that the natural topology on the interval $[0,1]$ is the quotient topology via π from the product topology on $\prod_{i \geqslant 1}\{0,1, \ldots, b-1\}$, where each factor is endowed with the discrete topology. Interpret this fact by comparing the topologies on the source and the target.
7. Prove that for any prime p the ring of endomorphisms of the additive group $\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}$ is canonically isomorphic to \mathbb{Z}_{p}.

