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Solutions 14

p-ADIC NUMBERS

1. Determine the p-adic expansions of +1 and liTlp for an arbitrary prime p.

Solution: The answers are

1 =140-p+0-p>+...,

~1 = @-D+@@-Dp+{p-p*+...,
= = lhp+p? i+
= = @-D+@-2p+@-2"+@-2)P"+....

The first case is obvious. In the second the partial sums of the right hand side
are —1 + p" = —1 modulo p"Z for all n. The remaining two cases are proved by
multiplying by 1 — p and computing modulo p"Z again.
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5 and —% as b-adic numbers.

2. Represent the rational numbers
Solution: The answers are

= 4+1-5+3-52+1-55+3-51+... = ...31314,
= 1+4+3-54+1-524+3-53+1-5+... = ...13131,
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where the digit sequences become periodic with period 2. Both equations are
proved by multiplying with 1 — 52 and expanding modulo 5"Z for all n.

3. (a) Show that a rational number = with ord,(z) = 0 has a purely periodic p-adic
expansion if and only if x € [—1,0).
(b) Show that in @, the numbers with eventually periodic p-adic expansions are
precisely the rational numbers.

Solution: See Theorem 3.1 for (a) and Theorem 2.1 for (b) in this source:
https://kconrad.math.uconn.edu/blurbs/gradnumthy/rationalsinQp.pdf

4. Show that the equation z?> = 2 has a solution in Z; and compute its first few
T-adic digits.

Solution: We have to find a sequence of integers ag, aq,as,--- € {0,...,6} such
that
(ap +a17+ a7*+...)> =2 mod (7")



for every n > 1. For n = 1, we obtain a§ = 2 mod (7), which has the solutions
ap = 3 and ag = 4. We choose ag = 3 (the other case is similar). Let n > 1 and
suppose that we found ay,...,a,_; that fit in the above equation mod 7" and
let b, 1 = Z?;()l a;7". Then b2 | + 2b, 1a,7" = (bp_1 + @, 7")* = 2 mod (7"*1)
is equivalent to
b2, -2
2.7 bn—l

as 7"|(b2_, — 2). This equation possesses a unique solution for a, € {0,...,6}.
We calculate the first few values and obtain

+a, =0 mod (7),

T = 347427246 +7 4277 4+74+2.77+4.-7%4+6-7+... = ...6421216213.

Aliter: The equation is equivalent to (22)> = 8 = 1+ 7. Thus a solution is given
by the binomial series

1 11 1 5
2 = e R B R e G
’ ;O(r) T TR T TG s "

Dividing by two, we obtain the second solution to the equation
T=445-T+4-T+5-T' +4-7 +... = ...0245450454.

This is really minus the first solution, as can be seen by adding their p-adic ex-
pansions in the usual way.

. For which primes p is —1, resp. 2, resp. 3 a square in Q,?

Solution: If p is odd, we have the group decomposition

Qy = p” X pp-1 x (1+pZy),

where the last factor is isomorphic to Z,. The assumption p > 2 also implies that
2 is invertible in Z,; hence every element of 1 + pZ, is a square. The subgroup of
squares in Q is therefore

p?L x fozt X (1+ pZy,).
In the case p = 2 we similarly have
Q) =27 x py x (1 + 4Zs),

where the last factor is isomorphic to Z,. Here the subgroup of squares of 1+ 47,
corresponds to the subgroup 2Zs C Zs of index 2 and is therefore equal to 1+ 8Zs.
The subgroup of squares in Q5 is therefore

222 % (1 + 87Zs).
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Now observe that the given integer a is never divisible by p?. For it to be a square
in Q, it must therefore be prime to p. For p = 2 the above description of squares
shows that none of the given integers is a square in Q,. For p odd the description
of squares shows that a is a square if and only if its residue class modulo p is a
square, that is, if (%) =1

In the case a = —1 the first supplement of the quadratic reciprocity law yields
(%) = (—1)"z . Thus —1 is a square in Q, if and only if p = 1 mod (4).

In the case a = 2 the second supplement of the quadratic reciprocity law yields

(%) = (—1)%. Thus 2 is a square in Q, if and only if p = 1 mod (8).

Finally, for a = 3 we computed in exercise 6 (b) of sheet 5 that

0 if p=3,
(2) = 1 if p= 41 mod 12,
—1 if p =45 mod 12.

Thus 3 is a square in Q, if and only if p = £1 mod 12.

For any integer b > 2 consider the map

m [0, L. 0= 1} — [0,1], (@) > aib™.
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Show that 7 is surjective and determine its fibers. Prove that the natural topology
on the interval [0, 1] is the quotient topology via m from the product topology on
[1,5:10,1,...,b — 1}, where each factor is endowed with the discrete topology.
Interpret this fact by comparing the topologies on the source and the target.

Solution: It is well-known that the map is well-defined and surjective, and that
the only distinct sequences representing the same number are those of the form
(a1,...,an,b—1,b—1,...) and (ay,...,an_1,a, + 1,0,0,...) for arbitrary n > 1
and aq,...,a, with a, < b— 1.

A standard computation from first year calculus shows that 7 is continuous. Thus
for any closed subset X C [0,1] the inverse image 7~ *(X) is closed. On the
other hand, since the source is compact and the target is Hausdorff, the map
is also closed. Thus for any subset X C [0,1], if 77(X) is closed, then so is
X = w(77Y(X)) by surjectivity. Therefore [0,1] carries the quotient topology
via .

This may be somewhat surprising, because the space [],5,{0,1,...,b — 1} is to-
tally disconnected, whereas [0, 1] is connected. But 7 is only bijective outside a
countable subset, and countably many pairs of distinct points are glued with each
other. Roughly speaking 7 therefore pulls different pieces of the totally discon-
nected space [],.,{0,1,...,b — 1} together to form the nice smooth connected
interval [0, 1].



7. Prove that for any prime p the ring of endomorphisms of the additive group Z[i] /Z
is canonically isomorphic to Z,.

Solution: The group G := Z[%]/Z is the union of the groups G,, := p~"Z/Z for
all n > 0, and G, is the kernel of the homomorphism G — G, g — p™g. Thus any
endomorphism of G maps G, to itself. For the same reason, any endomorphism of
G 11 induces an endomorphism of G,,. Giving an endomorphism of G is therefore
equivalent to giving a system of endomorphisms ¢,, € End(G,,) for all n > 0 that
satisfy ¢, = ©n11|Gh.

For each n > 0, the group G, is cyclic of order p”; hence any endomorphism is
determined by the image of a generator. This generator is mapped to a times itself
for an integer a that is unique modulo (p™). Since the endomorphism then maps
every element of GG, to a times itself, the residue class a + p"Z € Z/p"Z is in fact
independent of the choice of generator. Together this yields a canonical bijection

Kn: Z/p"7 — End(G,), a+p"Z — (g+ ag).

Direct computation shows that this is a ring isomorphism and that k,(a +p"Z) =
Kny1(a+ p"TZ)|G, for all n > 0. Altogether we therefore obtain a canonical ring
isomorphism
Zy, = lImZ/p"Z — End(G).
—
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