
D-MATH Number Theory I FS 2024
Prof. Richard Pink

Solutions 14

p-adic Numbers

1. Determine the p-adic expansions of ±1 and ±1
1−p for an arbitrary prime p.

Solution: The answers are

1 = 1 + 0 · p+ 0 · p2 + . . . ,

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + . . . ,
1

1−p = 1 + p+ p2 + p3 + . . . ,
−1
1−p = (p− 1) + (p− 2)p+ (p− 2)p2 + (p− 2)p3 + . . . .

The first case is obvious. In the second the partial sums of the right hand side
are −1 + pn ≡ −1 modulo pnZ for all n. The remaining two cases are proved by
multiplying by 1− p and computing modulo pnZ again.

2. Represent the rational numbers 2
3
and −2

3
as 5-adic numbers.

Solution: The answers are

2
3

= 4 + 1 · 5 + 3 · 52 + 1 · 53 + 3 · 54 + . . . = . . . 31314,

−2
3

= 1 + 3 · 5 + 1 · 52 + 3 · 53 + 1 · 54 + . . . = . . . 13131,

where the digit sequences become periodic with period 2. Both equations are
proved by multiplying with 1− 52 and expanding modulo 5nZ for all n.

3. (a) Show that a rational number x with ordp(x) = 0 has a purely periodic p-adic
expansion if and only if x ∈ [−1, 0).

(b) Show that in Qp the numbers with eventually periodic p-adic expansions are
precisely the rational numbers.

Solution: See Theorem 3.1 for (a) and Theorem 2.1 for (b) in this source:
https://kconrad.math.uconn.edu/blurbs/gradnumthy/rationalsinQp.pdf

4. Show that the equation x2 = 2 has a solution in Z7 and compute its first few
7-adic digits.

Solution: We have to find a sequence of integers a0, a1, a2, · · · ∈ {0, . . . , 6} such
that

(a0 + a17 + a27
2 + . . . )2 ≡ 2 mod (7n)
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for every n ⩾ 1. For n = 1, we obtain a20 ≡ 2 mod (7), which has the solutions
a0 = 3 and a0 = 4. We choose a0 = 3 (the other case is similar). Let n > 1 and
suppose that we found a0, . . . , an−1 that fit in the above equation mod 7n and
let bn−1 :=

∑n−1
i=0 ai7

i. Then b2n−1 + 2bn−1an7
n ≡ (bn−1 + an7

n)2 ≡ 2 mod (7n+1)
is equivalent to

b2n−1 − 2

2 · 7n · bn−1
+ an ≡ 0 mod (7),

as 7n|(b2n−1 − 2). This equation possesses a unique solution for an ∈ {0, . . . , 6}.
We calculate the first few values and obtain

x = 3+7+2·72+6·73+74+2·75+76+2·77+4·78+6·79+ . . . = . . . 6421216213.

Aliter: The equation is equivalent to (2x)2 = 8 = 1 + 7. Thus a solution is given
by the binomial series

2x =
∑
n⩾0

(
1
2

n

)
· 7k = 1 +

1

2
· 7− 1

8
· 72 + 1

16
· 73 − 5

128
74 + . . . .

Dividing by two, we obtain the second solution to the equation

x = 4 + 5 · 7 + 4 · 72 + 5 · 74 + 4 · 75 + . . . = . . . 0245450454.

This is really minus the first solution, as can be seen by adding their p-adic ex-
pansions in the usual way.

5. For which primes p is −1, resp. 2, resp. 3 a square in Qp?

Solution: If p is odd, we have the group decomposition

Q×p = pZ × µp−1 × (1 + pZp),

where the last factor is isomorphic to Zp. The assumption p > 2 also implies that
2 is invertible in Zp; hence every element of 1 + pZp is a square. The subgroup of
squares in Q×p is therefore

p2Z × µ p−1
2

× (1 + pZp).

In the case p = 2 we similarly have

Q×2 = 2Z × µ2 × (1 + 4Z2),

where the last factor is isomorphic to Z2. Here the subgroup of squares of 1+ 4Z2

corresponds to the subgroup 2Z2 ⊂ Z2 of index 2 and is therefore equal to 1+8Z2.
The subgroup of squares in Q×2 is therefore

22Z × (1 + 8Z2).
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Now observe that the given integer a is never divisible by p2. For it to be a square
in Qp it must therefore be prime to p. For p = 2 the above description of squares
shows that none of the given integers is a square in Q2. For p odd the description
of squares shows that a is a square if and only if its residue class modulo p is a
square, that is, if

(
a
p

)
= 1.

In the case a = −1 the first supplement of the quadratic reciprocity law yields(−1
p

)
= (−1)

p−1
2 . Thus −1 is a square in Qp if and only if p ≡ 1 mod (4).

In the case a = 2 the second supplement of the quadratic reciprocity law yields(
2
p

)
= (−1)

p2−1
8 . Thus 2 is a square in Qp if and only if p ≡ ±1 mod (8).

Finally, for a = 3 we computed in exercise 6 (b) of sheet 5 that

(
3
p

)
=


0 if p = 3,
1 if p ≡ ±1 mod 12,

−1 if p ≡ ±5 mod 12.

Thus 3 is a square in Qp if and only if p ≡ ±1 mod 12.

*6. For any integer b ⩾ 2 consider the map

π :
∏
i⩾1

{0, 1, . . . , b− 1} −→ [0, 1], (ai)i 7→
∑
i⩾1

aib
−i.

Show that π is surjective and determine its fibers. Prove that the natural topology
on the interval [0, 1] is the quotient topology via π from the product topology on∏

i⩾1{0, 1, . . . , b − 1}, where each factor is endowed with the discrete topology.
Interpret this fact by comparing the topologies on the source and the target.

Solution: It is well-known that the map is well-defined and surjective, and that
the only distinct sequences representing the same number are those of the form
(a1, . . . , an, b − 1, b − 1, . . .) and (a1, . . . , an−1, an + 1, 0, 0, . . .) for arbitrary n ⩾ 1
and a1, . . . , an with an < b− 1.

A standard computation from first year calculus shows that π is continuous. Thus
for any closed subset X ⊂ [0, 1] the inverse image π−1(X) is closed. On the
other hand, since the source is compact and the target is Hausdorff, the map
is also closed. Thus for any subset X ⊂ [0, 1], if π−1(X) is closed, then so is
X = π(π−1(X)) by surjectivity. Therefore [0, 1] carries the quotient topology
via π.

This may be somewhat surprising, because the space
∏

i⩾1{0, 1, . . . , b − 1} is to-
tally disconnected, whereas [0, 1] is connected. But π is only bijective outside a
countable subset, and countably many pairs of distinct points are glued with each
other. Roughly speaking π therefore pulls different pieces of the totally discon-
nected space

∏
i⩾1{0, 1, . . . , b − 1} together to form the nice smooth connected

interval [0, 1].
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7. Prove that for any prime p the ring of endomorphisms of the additive group Z[1
p
]/Z

is canonically isomorphic to Zp.

Solution: The group G := Z[1
p
]/Z is the union of the groups Gn := p−nZ/Z for

all n ⩾ 0, and Gn is the kernel of the homomorphism G → G, g 7→ png. Thus any
endomorphism of G maps Gn to itself. For the same reason, any endomorphism of
Gn+1 induces an endomorphism of Gn. Giving an endomorphism of G is therefore
equivalent to giving a system of endomorphisms φn ∈ End(Gn) for all n ⩾ 0 that
satisfy φn = φn+1|Gn.

For each n ⩾ 0, the group Gn is cyclic of order pn; hence any endomorphism is
determined by the image of a generator. This generator is mapped to a times itself
for an integer a that is unique modulo (pn). Since the endomorphism then maps
every element of Gn to a times itself, the residue class a+ pnZ ∈ Z/pnZ is in fact
independent of the choice of generator. Together this yields a canonical bijection

κn : Z/pnZ
∼−→ End(Gn), a+ pnZ 7→ (g 7→ ag).

Direct computation shows that this is a ring isomorphism and that κn(a+ pnZ) =
κn+1(a+ pn+1Z)|Gn for all n ⩾ 0. Altogether we therefore obtain a canonical ring
isomorphism

Zp := lim
←−
n

Z/pnZ ∼−→ End(G).
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