D-MATH
Prof. Richard Pink

Number Theory I
FS 2024

Solutions 14

p-ADIC Numbers

1. Determine the p-adic expansions of ± 1 and $\frac{ \pm 1}{1-p}$ for an arbitrary prime p.

Solution: The answers are

$$
\begin{aligned}
1 & =1+0 \cdot p+0 \cdot p^{2}+\ldots \\
-1 & =(p-1)+(p-1) p+(p-1) p^{2}+\ldots \\
\frac{1}{1-p} & =1+p+p^{2}+p^{3}+\ldots \\
\frac{-1}{1-p} & =(p-1)+(p-2) p+(p-2) p^{2}+(p-2) p^{3}+\ldots
\end{aligned}
$$

The first case is obvious. In the second the partial sums of the right hand side are $-1+p^{n} \equiv-1$ modulo $p^{n} \mathbb{Z}$ for all n. The remaining two cases are proved by multiplying by $1-p$ and computing modulo $p^{n} \mathbb{Z}$ again.
2. Represent the rational numbers $\frac{2}{3}$ and $-\frac{2}{3}$ as 5 -adic numbers.

Solution: The answers are

$$
\begin{aligned}
\frac{2}{3} & =4+1 \cdot 5+3 \cdot 5^{2}+1 \cdot 5^{3}+3 \cdot 5^{4}+\ldots \\
-\frac{2}{3} & =1+3 \cdot 5+1 \cdot 5^{2}+3 \cdot 5^{3}+1 \cdot 5^{4}+\ldots
\end{aligned}=\ldots 1314141,
$$

where the digit sequences become periodic with period 2. Both equations are proved by multiplying with $1-5^{2}$ and expanding modulo $5^{n} \mathbb{Z}$ for all n.
3. (a) Show that a rational number x with $\operatorname{ord}_{p}(x)=0$ has a purely periodic p-adic expansion if and only if $x \in[-1,0)$.
(b) Show that in \mathbb{Q}_{p} the numbers with eventually periodic p-adic expansions are precisely the rational numbers.
Solution: See Theorem 3.1 for (a) and Theorem 2.1 for (b) in this source: https://kconrad.math.uconn.edu/blurbs/gradnumthy/rationalsinQp.pdf
4. Show that the equation $x^{2}=2$ has a solution in \mathbb{Z}_{7} and compute its first few 7 -adic digits.
Solution: We have to find a sequence of integers $a_{0}, a_{1}, a_{2}, \cdots \in\{0, \ldots, 6\}$ such that

$$
\left(a_{0}+a_{1} 7+a_{2} 7^{2}+\ldots\right)^{2} \equiv 2 \quad \bmod \left(7^{n}\right)
$$

for every $n \geqslant 1$. For $n=1$, we obtain $a_{0}^{2} \equiv 2 \bmod (7)$, which has the solutions $a_{0}=3$ and $a_{0}=4$. We choose $a_{0}=3$ (the other case is similar). Let $n>1$ and suppose that we found a_{0}, \ldots, a_{n-1} that fit in the above equation $\bmod 7^{n}$ and let $b_{n-1}:=\sum_{i=0}^{n-1} a_{i} 7^{i}$. Then $b_{n-1}^{2}+2 b_{n-1} a_{n} 7^{n} \equiv\left(b_{n-1}+a_{n} 7^{n}\right)^{2} \equiv 2 \bmod \left(7^{n+1}\right)$ is equivalent to

$$
\frac{b_{n-1}^{2}-2}{2 \cdot 7^{n} \cdot b_{n-1}}+a_{n} \equiv 0 \quad \bmod (7)
$$

as $7^{n} \mid\left(b_{n-1}^{2}-2\right)$. This equation possesses a unique solution for $a_{n} \in\{0, \ldots, 6\}$. We calculate the first few values and obtain
$x=3+7+2 \cdot 7^{2}+6 \cdot 7^{3}+7^{4}+2 \cdot 7^{5}+7^{6}+2 \cdot 7^{7}+4 \cdot 7^{8}+6 \cdot 7^{9}+\ldots=\ldots 6421216213$.
Aliter: The equation is equivalent to $(2 x)^{2}=8=1+7$. Thus a solution is given by the binomial series

$$
2 x=\sum_{n \geqslant 0}\binom{\frac{1}{2}}{n} \cdot 7^{k}=1+\frac{1}{2} \cdot 7-\frac{1}{8} \cdot 7^{2}+\frac{1}{16} \cdot 7^{3}-\frac{5}{128} 7^{4}+\ldots
$$

Dividing by two, we obtain the second solution to the equation

$$
x=4+5 \cdot 7+4 \cdot 7^{2}+5 \cdot 7^{4}+4 \cdot 7^{5}+\ldots=\ldots 0245450454
$$

This is really minus the first solution, as can be seen by adding their p-adic expansions in the usual way.
5. For which primes p is -1 , resp. 2, resp. 3 a square in \mathbb{Q}_{p} ?

Solution: If p is odd, we have the group decomposition

$$
\mathbb{Q}_{p}^{\times}=p^{\mathbb{Z}} \times \mu_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)
$$

where the last factor is isomorphic to \mathbb{Z}_{p}. The assumption $p>2$ also implies that 2 is invertible in \mathbb{Z}_{p}; hence every element of $1+p \mathbb{Z}_{p}$ is a square. The subgroup of squares in \mathbb{Q}_{p}^{\times}is therefore

$$
p^{2 \mathbb{Z}} \times \mu_{\frac{p-1}{2}} \times\left(1+p \mathbb{Z}_{p}\right)
$$

In the case $p=2$ we similarly have

$$
\mathbb{Q}_{2}^{\times}=2^{\mathbb{Z}} \times \mu_{2} \times\left(1+4 \mathbb{Z}_{2}\right),
$$

where the last factor is isomorphic to \mathbb{Z}_{2}. Here the subgroup of squares of $1+4 \mathbb{Z}_{2}$ corresponds to the subgroup $2 \mathbb{Z}_{2} \subset \mathbb{Z}_{2}$ of index 2 and is therefore equal to $1+8 \mathbb{Z}_{2}$. The subgroup of squares in \mathbb{Q}_{2}^{\times}is therefore

$$
2^{2 \mathbb{Z}} \times\left(1+8 \mathbb{Z}_{2}\right)
$$

Now observe that the given integer a is never divisible by p^{2}. For it to be a square in \mathbb{Q}_{p} it must therefore be prime to p. For $p=2$ the above description of squares shows that none of the given integers is a square in \mathbb{Q}_{2}. For p odd the description of squares shows that a is a square if and only if its residue class modulo p is a square, that is, if $\left(\frac{a}{p}\right)=1$.
In the case $a=-1$ the first supplement of the quadratic reciprocity law yields $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$. Thus -1 is a square in \mathbb{Q}_{p} if and only if $p \equiv 1 \bmod (4)$.
In the case $a=2$ the second supplement of the quadratic reciprocity law yields $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$. Thus 2 is a square in \mathbb{Q}_{p} if and only if $p \equiv \pm 1 \bmod (8)$.
Finally, for $a=3$ we computed in exercise 6 (b) of sheet 5 that

$$
\left(\frac{3}{p}\right)=\left\{\begin{aligned}
0 & \text { if } p=3 \\
1 & \text { if } p \equiv \pm 1 \bmod 12 \\
-1 & \text { if } p \equiv \pm 5 \bmod 12
\end{aligned}\right.
$$

Thus 3 is a square in \mathbb{Q}_{p} if and only if $p \equiv \pm 1 \bmod 12$.
*6. For any integer $b \geqslant 2$ consider the map

$$
\pi: \prod_{i \geqslant 1}\{0,1, \ldots, b-1\} \longrightarrow[0,1], \quad\left(a_{i}\right)_{i} \mapsto \sum_{i \geqslant 1} a_{i} b^{-i}
$$

Show that π is surjective and determine its fibers. Prove that the natural topology on the interval $[0,1]$ is the quotient topology via π from the product topology on $\prod_{i \geqslant 1}\{0,1, \ldots, b-1\}$, where each factor is endowed with the discrete topology. Interpret this fact by comparing the topologies on the source and the target.
Solution: It is well-known that the map is well-defined and surjective, and that the only distinct sequences representing the same number are those of the form $\left(a_{1}, \ldots, a_{n}, b-1, b-1, \ldots\right)$ and $\left(a_{1}, \ldots, a_{n-1}, a_{n}+1,0,0, \ldots\right)$ for arbitrary $n \geqslant 1$ and a_{1}, \ldots, a_{n} with $a_{n}<b-1$.
A standard computation from first year calculus shows that π is continuous. Thus for any closed subset $X \subset[0,1]$ the inverse image $\pi^{-1}(X)$ is closed. On the other hand, since the source is compact and the target is Hausdorff, the map is also closed. Thus for any subset $X \subset[0,1]$, if $\pi^{-1}(X)$ is closed, then so is $X=\pi\left(\pi^{-1}(X)\right)$ by surjectivity. Therefore $[0,1]$ carries the quotient topology via π.
This may be somewhat surprising, because the space $\prod_{i \geqslant 1}\{0,1, \ldots, b-1\}$ is totally disconnected, whereas $[0,1]$ is connected. But π is only bijective outside a countable subset, and countably many pairs of distinct points are glued with each other. Roughly speaking π therefore pulls different pieces of the totally disconnected space $\prod_{i \geqslant 1}\{0,1, \ldots, b-1\}$ together to form the nice smooth connected interval $[0,1]$.
7. Prove that for any prime p the ring of endomorphisms of the additive group $\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}$ is canonically isomorphic to \mathbb{Z}_{p}.
Solution: The group $G:=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}$ is the union of the groups $G_{n}:=p^{-n} \mathbb{Z} / \mathbb{Z}$ for all $n \geqslant 0$, and G_{n} is the kernel of the homomorphism $G \rightarrow G, g \mapsto p^{n} g$. Thus any endomorphism of G maps G_{n} to itself. For the same reason, any endomorphism of G_{n+1} induces an endomorphism of G_{n}. Giving an endomorphism of G is therefore equivalent to giving a system of endomorphisms $\varphi_{n} \in \operatorname{End}\left(G_{n}\right)$ for all $n \geqslant 0$ that satisfy $\varphi_{n}=\varphi_{n+1} \mid G_{n}$.
For each $n \geqslant 0$, the group G_{n} is cyclic of order p^{n}; hence any endomorphism is determined by the image of a generator. This generator is mapped to a times itself for an integer a that is unique modulo (p^{n}). Since the endomorphism then maps every element of G_{n} to a times itself, the residue class $a+p^{n} \mathbb{Z} \in \mathbb{Z} / p^{n} \mathbb{Z}$ is in fact independent of the choice of generator. Together this yields a canonical bijection

$$
\kappa_{n}: \mathbb{Z} / p^{n} \mathbb{Z} \xrightarrow{\sim} \operatorname{End}\left(G_{n}\right), \quad a+p^{n} \mathbb{Z} \mapsto(g \mapsto a g) .
$$

Direct computation shows that this is a ring isomorphism and that $\kappa_{n}\left(a+p^{n} \mathbb{Z}\right)=$ $\kappa_{n+1}\left(a+p^{n+1} \mathbb{Z}\right) \mid G_{n}$ for all $n \geqslant 0$. Altogether we therefore obtain a canonical ring isomorphism

$$
\mathbb{Z}_{p}:=\underset{n}{\lim _{n}} \mathbb{Z} / p^{n} \mathbb{Z} \xrightarrow{\sim} \operatorname{End}(G) .
$$

