Exercise sheet 15

Valuations, Absolute Values

*1. Let A be a Dedekind ring and π a prime element. Construct an isomorphism between the completion $A_{(\pi)}$ and the ring $A[[X]] /(X-\pi)$.
2. Let K_{p} denote the field of germs of meromorphic functions near a point $p \in \mathbb{C}$. For any $f \in K_{p}$ let $\operatorname{ord}_{p}(f)$ denote the vanishing order, respectively minus the pole order, of f at p, respectively ∞ if $f=0$. Show that this is a valuation and determine the valuation ring and its maximal ideal. Decide whether this valuation is complete and determine the completion.
(The elements of K_{p} can be identified with the Laurent series in $z-p$ with finite principal parts which have a positive radius of convergence.)
3. Let $|\cdot|$ be an absolute value on a field K. Show that $|\cdot|^{\alpha}$ is also an absolute value for every $0<\alpha \leqslant 1$.
4. Show that for any absolute value \| \mid on a field K, the maps $+, \cdot: K \times K \rightarrow K$ and ()$^{-1}: K \backslash\{0\} \rightarrow K \backslash\{0\}$ are continuous for the induced topology.
5. Find all primes numbers p such that the sequence $\frac{1}{10}, \frac{1}{10^{2}}, \frac{1}{10^{3}}, \ldots$ converges in \mathbb{Q}_{p}.
6. According to exercise 5 of sheet 3 the ring $A:=\mathbb{Z}[\sqrt{-5}]$ is a Dedekind ring with the maximal ideal $\mathfrak{p}:=(3,1+\sqrt{-5})$ and $A / \mathfrak{p} \cong \mathbb{F}_{3}$. Since $2 \in A \backslash \mathfrak{p}$ it follows that 2 becomes a unit in $A_{\mathfrak{p}}$. Determine its reciprocal $\frac{1}{2} \in A_{\mathfrak{p}}$ explicitly.

