Solutions 15

Valuations, Absolute Values, Power series

*1. Let A be a Dedekind ring and π a prime element. Construct an isomorphism between the completion $A_{(\pi)}$ and the ring $A[[X]] /(X-\pi)$.
Solution: See Proposition 2.6 in Section 2 of Chapter 2 of Neukirch.
2. Let K_{p} denote the field of germs of meromorphic functions near a point $p \in \mathbb{C}$. For any $f \in K_{p}$ let $\operatorname{ord}_{p}(f)$ denote the vanishing order, respectively minus the pole order, of f at p, respectively ∞ if $f=0$. Show that this is a valuation and determine the valuation ring and its maximal ideal. Decide whether this valuation is complete and determine the completion.
(The elements of K_{p} can be identified with the Laurent series in $z-p$ with finite principal parts which have a positive radius of convergence.)
Solution: The function ord_{p} is well-defined on formal Laurent series with finite principal parts and satisfies all the conditions for a valuation on $\mathbb{C}((z-p))$. It therefore also induces a valuation on the subfield K_{p}. The associated valuation ring \mathcal{O}_{p} consists of all germs that are holomorphic at p, and the maximal ideal \mathfrak{m}_{p} consists of all germs that are holomorphic and vanish at p.
Also, for any integer $n \geqslant 0$ the ideal \mathfrak{m}_{p}^{n} consists of all power series whose first n coefficients vanish. Thus $\mathcal{O}_{p} / \mathfrak{m}_{p}^{n} \cong \mathbb{C}[z-p] /(z-p)^{n}$. Passing to the limit the completion is therefore

$$
\widehat{\mathcal{O}}_{p} \cong \lim _{\overleftarrow{n}} \mathbb{C}[z-p] /(z-p)^{n} \cong \mathbb{C}[[z-p]]
$$

As there are formal power series with radius of convergence zero, it follows that $\mathcal{O}_{p} \rightarrow \widehat{\mathcal{O}}_{p}$ is not an isomorphism. Thus the valuation ord_{p} is not complete on K_{p}.
3. Let $|\cdot|$ be an absolute value on a field K. Show that $|\cdot|^{\alpha}$ is also an absolute value for every $0<\alpha \leqslant 1$.
Solution: Let $x, y \in K$. Since $|\cdot|$ is an absolute value, we have $|x|^{\alpha} \geqslant 0$ with equality if and only if $x=0$. Furthermore $|x y|^{\alpha}=(|x||y|)^{\alpha}=|x|^{\alpha}|y|^{\alpha}$. Also there exists $z \in K$ with $|z| \notin\{0,1\}$ and hence $|z|^{\alpha} \notin\{0,1\}$. It remains to show the triangle inequality. For this note that $\left|\left.\right|^{\alpha}=h \circ\right| \mid$ for the function $h:[0, \infty) \rightarrow[0, \infty), a \mapsto a^{\alpha}$. Since the second derivative $h^{\prime \prime}(t)=\alpha(\alpha-1) t^{\alpha-2}$ is
$\leqslant 0$ on the interval $(0, \infty)$, this function is concave, i.e., for all $a, b \in[0, \infty)$ and $t \in[0,1]$ we have

$$
h(t a+(1-t) b) \geqslant t h(a)+(1-t) h(b) .
$$

Since also $h(0)=0$, using the following lemma from analysis we can conclude that $|x+y|^{\alpha} \leqslant(|x|+|y|)^{\alpha} \leqslant|x|^{\alpha}+|y|^{\alpha}$, as desired.
Lemma. Any concave function $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0) \geqslant 0$ is subadditive, that is, it satisfies $f(a+b) \leqslant f(a)+f(b)$ for all $a, b \in[0, \infty)$.

Proof. For all $x \in[0, \infty)$ and $t \in[0,1]$ we have

$$
f(t x)=f(t x+(1-t) 0) \geqslant t f(x)+(1-t) f(0) \geqslant t f(x) .
$$

For all $a, b \in[0, \infty)$ it follows that

$$
\begin{aligned}
f(a)+f(b) & =f\left(\frac{a}{a+b}(a+b)\right)+f\left(\frac{b}{a+b}(a+b)\right) \\
& \geqslant \frac{a}{a+b} f(a+b)+\frac{b}{a+b} f(a+b)=f(a+b) .
\end{aligned}
$$

4. Show that for any absolute value $|\mid$ on a field K, the maps,$+:: K \times K \rightarrow K$ and ()$^{-1}: K \backslash\{0\} \rightarrow K \backslash\{0\}$ are continuous for the induced topology.

Solution: By definition K is a metric space and therefore first countable; hence so is $K \times K$ with the product topology. Thus it suffices to verify the sequential criterion for continuity in all cases. Also, a sequence $\left(x_{n}, y_{n}\right)_{n \geqslant 0}$ in $K \times K$ converges to (x, y) if and only if the sequences $\left(x_{n}\right)_{n \geqslant 0}$ and $\left(y_{n}\right)_{n \geqslant 0}$ in K converge to x and y, respectively.
So consider such sequences. Then by the triangle inequality we have

$$
\left|\left(x_{n}+y_{n}\right)-(x+y)\right| \leqslant\left|x_{n}-x\right|+\left|y_{n}-y\right| \xrightarrow{n \rightarrow \infty} 0,
$$

hence the sequence $\left(x_{n}+y_{n}\right)_{n \geqslant 0}$ converges to $x+y$. Thus addition is continuous. Furthermore

$$
\begin{aligned}
\left|x_{n} y_{n}-x y\right| & =\left|\left(x_{n}-x\right)\left(y_{n}-y\right)+\left(x_{n}-x\right) y+x\left(y_{n}-y\right)\right| \\
& \leqslant\left|\left(x_{n}-x\right)\left(y_{n}-y\right)\right|+\left|\left(x_{n}-x\right) y\right|+\left|x\left(y_{n}-y\right)\right| \\
& =\left|x_{n}-x\right|\left|y_{n}-y\right|+|y|\left|x_{n}-x\right|+|x|\left|y_{n}-y\right| \xrightarrow{n \rightarrow \infty} 0,
\end{aligned}
$$

hence the sequence $\left(x_{n} y_{n}\right)_{n \geqslant 0}$ converges to $x y$. Thus multiplication is continuous. Finally suppose that $x \neq 0$. Then $\left|x_{n}\right| \rightarrow|x|>0$ because $|\mid: K \rightarrow \mathbb{R}$ is continuous, so $x_{n} \neq 0$ for all $n \gg 0$ and $\left|x_{n}\right|^{-1}$ remains bounded for $n \rightarrow \infty$. Thus

$$
\left|x_{n}^{-1}-x^{-1}\right|=\left|x_{n}^{-1} x^{-1}\right|\left|x-x_{n}\right|=\left|x_{n}\right|^{-1}|x|^{-1}\left|x-x_{n}\right| \xrightarrow{n \rightarrow \infty} 0,
$$

hence the sequence $\left(x_{n}^{-1}\right)_{n \geqslant 0}$ converges to x^{-1}. Thus the inverse is continuous.
5. Find all primes numbers p such that the sequence $\frac{1}{10}, \frac{1}{10^{2}}, \frac{1}{10^{3}}, \ldots$ converges in \mathbb{Q}_{p}.

Solution: The difference of any two adjacent terms is $10^{-n}-10^{-n-1}=9 \cdot 10^{-n-1}$, and regardless of the choice of p we always have $\operatorname{ord}_{p}\left(9 \cdot 10^{-n-1}\right) \leqslant 2$. Thus these differences do not converge to 0 in \mathbb{Q}_{p} for $n \rightarrow \infty$. Therefore the original sequence is not a Cauchy sequence in \mathbb{Q}_{p} and thus does not converge. So the answer is the empty set.
6. According to exercise 5 of sheet 3 the ring $A:=\mathbb{Z}[\sqrt{-5}]$ is a Dedekind ring with the maximal ideal $\mathfrak{p}:=(3,1+\sqrt{-5})$ and $A / \mathfrak{p} \cong \mathbb{F}_{3}$. Since $2 \in A \backslash \mathfrak{p}$ it follows that 2 becomes a unit in $A_{\mathfrak{p}}$. Determine its reciprocal $\frac{1}{2} \in A_{\mathfrak{p}}$ explicitly.
Solution: We formally compute

$$
\frac{1}{2}=\frac{2}{4}=\frac{2}{1-(-3)}=\sum_{n \geqslant 0} 2 \cdot(-3)^{n}
$$

which makes sense and is correct within $A_{\mathfrak{p}}$, because -3 lies in \mathfrak{p} and therefore also in the maximal ideal of $A_{\mathfrak{p}}$. Moreover we have $(-3)^{n} \in \mathfrak{p}^{k}$ for all $n \geqslant k \geqslant 0$; hence the finite geometric sum

$$
a_{k}:=\sum_{n=0}^{k-1} 2 \cdot(-3)^{n}=2 \cdot \frac{1-(-3)^{k}}{1-(-3)}=\frac{1-(-3)^{k}}{2}
$$

represents the reciprocal of 2 in A / \mathfrak{p}^{k}. Thus $\frac{1}{2}=\left(a_{k}+\mathfrak{p}^{k}\right)_{k} \in \underset{\overleftarrow{ }}{\lim _{n}} A / \mathfrak{p}^{n}=A_{\mathfrak{p}}$.
Fun Fact: This has nothing to do with the special situation and holds for any maximal ideal \mathfrak{p} of any ring A with residue field of characteristic 3 . Doing mathematics successfully sometimes involves distinguishing relevant information from irrelevant one.

