Number Theory II

Solutions 15

VALUATIONS, ABSOLUTE VALUES, POWER SERIES

*1. Let A be a Dedekind ring and π a prime element. Construct an isomorphism between the completion $A_{(\pi)}$ and the ring $A[[X]]/(X - \pi)$.

Solution: See Proposition 2.6 in Section 2 of Chapter 2 of Neukirch.

2. Let K_p denote the field of germs of meromorphic functions near a point $p \in \mathbb{C}$. For any $f \in K_p$ let $\operatorname{ord}_p(f)$ denote the vanishing order, respectively minus the pole order, of f at p, respectively ∞ if f = 0. Show that this is a valuation and determine the valuation ring and its maximal ideal. Decide whether this valuation is complete and determine the completion.

(The elements of K_p can be identified with the Laurent series in z - p with finite principal parts which have a positive radius of convergence.)

Solution: The function ord_p is well-defined on formal Laurent series with finite principal parts and satisfies all the conditions for a valuation on $\mathbb{C}((z-p))$. It therefore also induces a valuation on the subfield K_p . The associated valuation ring \mathcal{O}_p consists of all germs that are holomorphic at p, and the maximal ideal \mathfrak{m}_p consists of all germs that are holomorphic and vanish at p.

Also, for any integer $n \ge 0$ the ideal \mathfrak{m}_p^n consists of all power series whose first n coefficients vanish. Thus $\mathcal{O}_p/\mathfrak{m}_p^n \cong \mathbb{C}[z-p]/(z-p)^n$. Passing to the limit the completion is therefore

$$\widehat{\mathcal{O}}_p \cong \lim_{\stackrel{\leftarrow}{n}} \mathbb{C}[z-p]/(z-p)^n \cong \mathbb{C}[[z-p]].$$

As there are formal power series with radius of convergence zero, it follows that $\mathcal{O}_p \to \widehat{\mathcal{O}}_p$ is not an isomorphism. Thus the valuation ord_p is not complete on K_p .

3. Let $|\cdot|$ be an absolute value on a field K. Show that $|\cdot|^{\alpha}$ is also an absolute value for every $0 < \alpha \leq 1$.

Solution: Let $x, y \in K$. Since $|\cdot|$ is an absolute value, we have $|x|^{\alpha} \ge 0$ with equality if and only if x = 0. Furthermore $|xy|^{\alpha} = (|x||y|)^{\alpha} = |x|^{\alpha}|y|^{\alpha}$. Also there exists $z \in K$ with $|z| \notin \{0,1\}$ and hence $|z|^{\alpha} \notin \{0,1\}$. It remains to show the triangle inequality. For this note that $||^{\alpha} = h \circ ||$ for the function $h: [0, \infty) \to [0, \infty), a \mapsto a^{\alpha}$. Since the second derivative $h''(t) = \alpha(\alpha - 1)t^{\alpha-2}$ is

 ≤ 0 on the interval $(0, \infty)$, this function is *concave*, i.e., for all $a, b \in [0, \infty)$ and $t \in [0, 1]$ we have

$$h(ta + (1 - t)b) \ge th(a) + (1 - t)h(b)$$

Since also h(0) = 0, using the following lemma from analysis we can conclude that $|x + y|^{\alpha} \leq (|x| + |y|)^{\alpha} \leq |x|^{\alpha} + |y|^{\alpha}$, as desired.

Lemma. Any concave function $f: [0, \infty) \to \mathbb{R}$ with $f(0) \ge 0$ is subadditive, that is, it satisfies $f(a+b) \le f(a) + f(b)$ for all $a, b \in [0, \infty)$.

Proof. For all $x \in [0, \infty)$ and $t \in [0, 1]$ we have

$$f(tx) = f(tx + (1 - t)0) \ge tf(x) + (1 - t)f(0) \ge tf(x).$$

For all $a, b \in [0, \infty)$ it follows that

$$f(a) + f(b) = f\left(\frac{a}{a+b}(a+b)\right) + f\left(\frac{b}{a+b}(a+b)\right)$$
$$\geqslant \frac{a}{a+b}f(a+b) + \frac{b}{a+b}f(a+b) = f(a+b).$$

4. Show that for any absolute value | | on a field K, the maps $+, \cdot : K \times K \to K$ and $()^{-1}: K \smallsetminus \{0\} \to K \smallsetminus \{0\}$ are continuous for the induced topology.

Solution: By definition K is a metric space and therefore first countable; hence so is $K \times K$ with the product topology. Thus it suffices to verify the sequential criterion for continuity in all cases. Also, a sequence $(x_n, y_n)_{n \ge 0}$ in $K \times K$ converges to (x, y) if and only if the sequences $(x_n)_{n \ge 0}$ and $(y_n)_{n \ge 0}$ in K converge to x and y, respectively.

So consider such sequences. Then by the triangle inequality we have

$$|(x_n + y_n) - (x + y)| \leq |x_n - x| + |y_n - y| \xrightarrow{n \to \infty} 0$$

hence the sequence $(x_n + y_n)_{n \ge 0}$ converges to x + y. Thus addition is continuous. Furthermore

$$|x_n y_n - xy| = |(x_n - x)(y_n - y) + (x_n - x)y + x(y_n - y)|$$

$$\leq |(x_n - x)(y_n - y)| + |(x_n - x)y| + |x(y_n - y)|$$

$$= |x_n - x||y_n - y| + |y||x_n - x| + |x||y_n - y| \xrightarrow{n \to \infty} 0,$$

hence the sequence $(x_n y_n)_{n \ge 0}$ converges to xy. Thus multiplication is continuous. Finally suppose that $x \ne 0$. Then $|x_n| \rightarrow |x| > 0$ because $||: K \rightarrow \mathbb{R}$ is continuous, so $x_n \ne 0$ for all $n \gg 0$ and $|x_n|^{-1}$ remains bounded for $n \rightarrow \infty$. Thus

$$|x_n^{-1} - x^{-1}| = |x_n^{-1}x^{-1}| |x - x_n| = |x_n|^{-1} |x|^{-1} |x - x_n| \xrightarrow{n \to \infty} 0,$$

hence the sequence $(x_n^{-1})_{n\geq 0}$ converges to x^{-1} . Thus the inverse is continuous.

- 5. Find all primes numbers p such that the sequence $\frac{1}{10}, \frac{1}{10^2}, \frac{1}{10^3}, \ldots$ converges in \mathbb{Q}_p . **Solution**: The difference of any two adjacent terms is $10^{-n} - 10^{-n-1} = 9 \cdot 10^{-n-1}$, and regardless of the choice of p we always have $\operatorname{ord}_p(9 \cdot 10^{-n-1}) \leq 2$. Thus these differences do not converge to 0 in \mathbb{Q}_p for $n \to \infty$. Therefore the original sequence is not a Cauchy sequence in \mathbb{Q}_p and thus does not converge. So the answer is the empty set.
- 6. According to exercise 5 of sheet 3 the ring $A := \mathbb{Z}[\sqrt{-5}]$ is a Dedekind ring with the maximal ideal $\mathfrak{p} := (3, 1 + \sqrt{-5})$ and $A/\mathfrak{p} \cong \mathbb{F}_3$. Since $2 \in A \setminus \mathfrak{p}$ it follows that 2 becomes a unit in $A_\mathfrak{p}$. Determine its reciprocal $\frac{1}{2} \in A_\mathfrak{p}$ explicitly.

Solution: We formally compute

$$\frac{1}{2} \; = \; \frac{2}{4} \; = \; \frac{2}{1-(-3)} \; = \; \sum_{n \geqslant 0} 2 \cdot (-3)^n,$$

which makes sense and is correct within $A_{\mathfrak{p}}$, because -3 lies in \mathfrak{p} and therefore also in the maximal ideal of $A_{\mathfrak{p}}$. Moreover we have $(-3)^n \in \mathfrak{p}^k$ for all $n \ge k \ge 0$; hence the finite geometric sum

$$a_k := \sum_{n=0}^{k-1} 2 \cdot (-3)^n = 2 \cdot \frac{1 - (-3)^k}{1 - (-3)} = \frac{1 - (-3)^k}{2}$$

represents the reciprocal of 2 in A/\mathfrak{p}^k . Thus $\frac{1}{2} = (a_k + \mathfrak{p}^k)_k \in \lim_{\stackrel{\longleftarrow}{n}} A/\mathfrak{p}^n = A_\mathfrak{p}$.

Fun Fact: This has nothing to do with the special situation and holds for any maximal ideal \mathfrak{p} of any ring A with residue field of characteristic 3. Doing mathematics successfully sometimes involves distinguishing relevant information from irrelevant one.