Number Theory II

Exercise sheet 16

Absolute Values, Completion, Power series

- 1. (Product formula) A non-archimedean absolute value | | on a field K, whose valuation ring \mathcal{O}_K is discrete with finite residue field $\mathcal{O}_K/\mathfrak{m}$, is called *normalized* if $|\pi| = |\mathcal{O}_K/\mathfrak{m}|^{-1}$ for any element π with $(\pi) = \mathfrak{m}$. Consider a finite field k.
 - (a) Write down all normalized absolute values $| |_v$ on k(t).
 - (b) For any $a \in k(t)^{\times}$ prove that $\prod_{v} |a|_{v} = 1$.

(*Hint:* Compare Examples 8.2.6 (a–b) and Theorem 8.4.15 of Ostrowski.)

- 2. Work out the details of the proof of Proposition 8.5.5 of the lecture: Every metric space possesses a completion.
- 3. Let K be a complete ultrametric field. Show that a convergent series with summands in K can be arbitrarily rearranged and subdivided without changing convergence or the limit.

(*Hint:* Test your analysis skills by trying to give a complete formal proof.)

4. Let K be a field with a complete absolute value | |. The radius of convergence of a power series $f(X) = \sum_{n=0}^{\infty} a_n X^n \in K[[X]]$ is defined as

$$r_f := \sup \left\{ r \in \mathbb{R}^{\geq 0} : |a_n| r^n \to 0 \text{ for } n \to \infty \right\} \in \mathbb{R} \cup \{\infty\}.$$

(a) Show that

$$r_f = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$$

- (b) Show that for any $x \in K$ the series $f(x) := \sum_{n=0}^{\infty} a_n x^n$ diverges if $|x| > r_f$ and converges if $|x| < r_f$.
- (c) What happens for $|x| = r_f$?

Please turn over

- 5. Let K be a field that is complete with respect to a p-adic absolute value. Consider $\alpha, \beta \in \mathbb{Z}_p$ and $m, n \in \mathbb{Z}$ with $n \ge 0$. Prove:
 - (a) The binomial coefficient $\binom{\alpha}{n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$ lies in \mathbb{Z}_p .
 - (b) The power series $F_{\alpha}(X) := \sum_{n \ge 0} {\alpha \choose n} X^n \in K[[X]]$ has convergence radius ≥ 1 . Moreover, for $x \in K$ with |x| < 1 we have $|F_{\alpha}(x) 1| < 1$.
 - (c) $F_{\alpha+\beta}(x) = F_{\alpha}(x) \cdot F_{\beta}(x).$
 - (d) $F_{m\alpha}(x) = F_{\alpha}(x)^m$.
 - (e) $F_m(x) = (1+x)^m$.
 - (f) $y := F_{m/n}(x)$ is the only solution of the equation $y^n = (1+x)^m$ with |y-1| < 1, if $p \nmid n$.

This therefore justifies writing $F_{\alpha}(x) = (1+x)^{\alpha}$.

- *(g) Do we then also have $((1+x)^{\alpha})^{\beta} = (1+x)^{\alpha\beta}$?
- (h) Find a closed form of $\sqrt{7}$ in \mathbb{Q}_3 .
- *6. (Newton method for finding zeros of a polynomial) Let p be a prime number, let $f \in \mathbb{Z}_p[X]$ and let $\alpha \in \mathbb{Z}_p$ be a root of f such that $f'(\alpha) \neq 0$. Set

$$U := \{ a \in \mathbb{Z}_p : |f(a)| < |f'(a)|^2 \text{ and } |\alpha - a| < |f'(a)| \},\$$

which is an open neighborhood of α in \mathbb{Z}_p . Take $a_1 \in U$ and recursively define $a_{n+1} := a_n - \frac{f(a_n)}{f'(a_n)}$ for $n \ge 1$. Show that for all n:

- (a) $a_n \in U$,
- (b) $|f'(a_n)| = |f'(a_1)|,$
- (c) $|f(a_n)| \leq |f'(a_1)|^2 t^{2^{n-1}}$ for $t = |f(a_1)/f'(a_1)| < 1$.

Moreover, show that $\lim_{n \to \infty} a_n = \alpha$ and $|f'(\alpha)| = |f'(a_1)|$.