Exercise sheet 16

Absolute Values, Completion, Power series

1. (Product formula) A non-archimedean absolute value || on a field K, whose valuation ring \mathcal{O}_{K} is discrete with finite residue field $\mathcal{O}_{K} / \mathfrak{m}$, is called normalized if $|\pi|=\left|\mathcal{O}_{K} / \mathfrak{m}\right|^{-1}$ for any element π with $(\pi)=\mathfrak{m}$. Consider a finite field k.
(a) Write down all normalized absolute values $\left|\left.\right|_{v}\right.$ on $k(t)$.
(b) For any $a \in k(t)^{\times}$prove that $\prod_{v}|a|_{v}=1$.
(Hint: Compare Examples 8.2.6 (a-b) and Theorem 8.4.15 of Ostrowski.)
2. Work out the details of the proof of Proposition 8.5.5 of the lecture: Every metric space possesses a completion.
3. Let K be a complete ultrametric field. Show that a convergent series with summands in K can be arbitrarily rearranged and subdivided without changing convergence or the limit.
(Hint: Test your analysis skills by trying to give a complete formal proof.)
4. Let K be a field with a complete absolute value ||. The radius of convergence of a power series $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n} \in K[[X]]$ is defined as

$$
r_{f}:=\sup \left\{r \in \mathbb{R}^{\geqslant 0}:\left|a_{n}\right| r^{n} \rightarrow 0 \text { for } n \rightarrow \infty\right\} \in \mathbb{R} \cup\{\infty\}
$$

(a) Show that

$$
r_{f}=\frac{1}{\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}}
$$

(b) Show that for any $x \in K$ the series $f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$ diverges if $|x|>r_{f}$ and converges if $|x|<r_{f}$.
(c) What happens for $|x|=r_{f}$?
5. Let K be a field that is complete with respect to a p-adic absolute value. Consider $\alpha, \beta \in \mathbb{Z}_{p}$ and $m, n \in \mathbb{Z}$ with $n \geqslant 0$. Prove:
(a) The binomial coefficient $\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}$ lies in \mathbb{Z}_{p}.
(b) The power series $F_{\alpha}(X):=\sum_{n \geqslant 0}\binom{\alpha}{n} X^{n} \in K[[X]]$ has convergence radius $\geqslant 1$. Moreover, for $x \in K$ with $|x|<1$ we have $\left|F_{\alpha}(x)-1\right|<1$.
(c) $F_{\alpha+\beta}(x)=F_{\alpha}(x) \cdot F_{\beta}(x)$.
(d) $F_{m \alpha}(x)=F_{\alpha}(x)^{m}$.
(e) $F_{m}(x)=(1+x)^{m}$.
(f) $y:=F_{m / n}(x)$ is the only solution of the equation $y^{n}=(1+x)^{m}$ with $|y-1|<1$, if $p \nmid n$.

This therefore justifies writing $F_{\alpha}(x)=(1+x)^{\alpha}$.
*(g) Do we then also have $\left((1+x)^{\alpha}\right)^{\beta}=(1+x)^{\alpha \beta}$?
(h) Find a closed form of $\sqrt{7}$ in \mathbb{Q}_{3}.
*6. (Newton method for finding zeros of a polynomial) Let p be a prime number, let $f \in \mathbb{Z}_{p}[X]$ and let $\alpha \in \mathbb{Z}_{p}$ be a root of f such that $f^{\prime}(\alpha) \neq 0$. Set

$$
U:=\left\{a \in \mathbb{Z}_{p}:|f(a)|<\left|f^{\prime}(a)\right|^{2} \text { and }|\alpha-a|<\left|f^{\prime}(a)\right|\right\}
$$

which is an open neighborhood of α in \mathbb{Z}_{p}. Take $a_{1} \in U$ and recursively define $a_{n+1}:=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}$ for $n \geqslant 1$. Show that for all n :
(a) $a_{n} \in U$,
(b) $\left|f^{\prime}\left(a_{n}\right)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$,
(c) $\left|f\left(a_{n}\right)\right| \leqslant\left|f^{\prime}\left(a_{1}\right)\right|^{2} t^{2 n-1}$ for $t=\left|f\left(a_{1}\right) / f^{\prime}\left(a_{1}\right)\right|<1$.

Moreover, show that $\lim _{n \rightarrow \infty} a_{n}=\alpha$ and $\left|f^{\prime}(\alpha)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$.

