Number Theory II

Solutions 16

Absolute Values, Completion, Power series

- 1. (Product formula) A non-archimedean absolute value | | on a field K, whose valuation ring \mathcal{O}_K is discrete with finite residue field $\mathcal{O}_K/\mathfrak{m}$, is called normalized if $|\pi| = |\mathcal{O}_K/\mathfrak{m}|^{-1}$ for any element π with $(\pi) = \mathfrak{m}$. Consider a finite field k.
 - (a) Write down all normalized absolute values $| |_v$ on k(t).
 - (b) For any $a \in k(t)^{\times}$ prove that $\prod_{v} |a|_{v} = 1$.

(*Hint:* Compare Examples 8.2.6 (a–b) and Theorem 8.4.15 of Ostrowski.)

Solution:

(a) For any monic irreducible polynomial $p \in k[t]$ and any $f \in k(t)$ we define $|f|_p := |k[t]/(p)|^{-\operatorname{ord}_p(f)}$. This defines a non-archimedean absolute value with $\mathcal{O}_{k(t)} = k[t]_{(p)}$, which is normalized because $|p|_p = |k[t]/(p)|^{-1} = |\mathcal{O}_{k(t)}/(p)|^{-1}$. Varying p, this yields all the normalized absolute values on k(t) associated to maximal ideals of k[t].

An additional normalized absolute value $| \cdot |_{\infty}$ is obtained in the same way from the maximal ideal $(s) \subset k[s]$ after the substitution $s = \frac{1}{t}$. For any non-zero polynomial $f \in k[t]$ of degree $n \in \mathbb{Z}$ the substitution yields $f(t) = s^n \cdot f(\frac{1}{s}) \cdot s^{-n}$ with $|s^n \cdot f(\frac{1}{s})|_{\infty} = 1$ and hence $|f|_{\infty} = |s|_{\infty}^{-n} = |k|^{\deg(f)}$. For arbitrary nonzero $f, g \in k[t]$ we therefore have $|\frac{f}{g}|_{\infty} = |k|^{\deg(f)-\deg(g)}$.

Clearly every absolute value on k(t) is equivalent to a unique normalized one. Thus by Theorem 4.1 in the following notes by Brian Conrad the above list of normalized absolute values on k(t) is complete:

http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf

- (b) By multiplicativity it suffices to prove this for generators of the group $k(t)^{\times}$, namely for any monic irreducible polynomial $p \in k[t]$ and any element $\alpha \in k^{\times}$. The latter has finite order and hence satisfies $|\alpha|_v = 1$ for all absolute values $| |_v$, and therefore also $\prod_v |a|_v = 1$. The former satisfies $|p|_p = |k[t]/(p)|^{-1} = |k|^{-\deg(p)}$ and $|p|_{\infty} = |k|^{\deg(p)}$, while $|p|_{p'} = 1$ for all monic irreducible polynomials $p' \in k[t]$ that are distinct from p. Thus the product is again 1.
- 2. Work out the details of the proof of Proposition 8.5.5 of the lecture: Every metric space possesses a completion.

Solution: See for example [Marco Manetti: Topology (2015) Theorem 6.47].

3. Let K be a complete ultrametric field. Show that a convergent series with summands in K can be arbitrarily rearranged and subdivided without changing convergence or the limit.

(*Hint:* Test your analysis skills by trying to give a complete formal proof.)

Solution: Consider a convergent series $\sum_{n=0}^{\infty} a_n$ in K. In the lecture we showed that $\lim_{n\to\infty} a_n = 0$. Thus for any $\varepsilon > 0$ there exists an $n_{\varepsilon} \ge 0$ such that $|a_n| \le \varepsilon$ for all $n > n_{\varepsilon}$.

First consider an arbitrary bijection $\sigma: \mathbb{Z}^{\geq 0} \to \mathbb{Z}^{\geq 0}$. For any $\varepsilon > 0$ set $m_{\varepsilon} := \max\{n, \sigma n \mid 0 \leq n \leq n_{\varepsilon}\}$. Then for any $m > m_{\varepsilon}$ the partial sum of differences $\sum_{n=0}^{m} (a_n - a_{\sigma n})$ is a finite sum of terms of the form $\pm a_n$ with $n > n_{\varepsilon}$. By the construction of n_{ε} all these satisfy $|\pm a_n| = |a_n| \leq \varepsilon$; hence the strict triangle inequality implies that $|\sum_{n=0}^{m} (a_n - a_{\sigma n})| \leq \varepsilon$. Thus the series $\sum_{n\geq 0} (a_n - a_{\sigma n})$ converges to 0; hence the series $\sum_{n\geq 0} a_{\sigma n}$ converges to the same limit as the series $\sum_{n\geq 0} a_n$.

Now consider a bjiection $\tau: (\mathbb{Z}^{\geq 0})^2 \to \mathbb{Z}^{\geq 0}$. Then for each $i \geq 0$ the subsequence $(a_{\tau(i,j)})_j$ of the original sequence $(a_n)_n$ also converges to 0; hence the series $\sum_{j\geq 0} a_{\tau(i,j)}$ converges, say to $x_i \in K$. Moreover, for any $\varepsilon > 0$ set

$$m_{\varepsilon} := \max\{n_{\varepsilon}\} \cup \{j \ge 0 \mid \exists i \ge 0 \colon \tau(i,j) \le n_{\varepsilon}\} \cup \{i \ge 0 \mid \exists j \ge 0 \colon \tau(i,j) \le n_{\varepsilon}\}.$$

Then for any $i \ge 0$ the partial sums $\sum_{j=0}^{m} a_{\tau(i,j)}$ for all $m \ge m_{\varepsilon}$ differ only by terms a_n with $n > n_{\varepsilon}$ and hence with $|a_n| \le \varepsilon$. By the strict triangle inequality the difference of any such partial sums thus also has norm $\le \varepsilon$. Passing to the limit we deduce that $\left|\sum_{j=0}^{m} a_{\tau(i,j)} - x_i\right| \le \varepsilon$ for all $i \ge 0$ and $m \ge m_{\varepsilon}$. Using the strict triangle inequality again we deduce that $\left|\sum_{i=0}^{m} \sum_{j=0}^{m} a_{\tau(i,j)} - \sum_{i=0}^{m} x_i\right| \le \varepsilon$ for all $m \ge m_{\varepsilon}$.

On the other hand, the definition of m_{ε} implies that for any $m > m_{\varepsilon}$, the difference $\sum_{i=0}^{m} \sum_{j=0}^{m} a_{\tau(i,j)} - \sum_{n=0}^{m} a_n$ is a finite sum of terms of the form $\pm a_n$ with $n > n_{\varepsilon}$. By the construction of n_{ε} all these satisfy $|\pm a_n| = |a_n| \leq \varepsilon$; hence the strict triangle inequality implies that $|\sum_{i=0}^{m} \sum_{j=0}^{m} a_{\tau(i,j)} - \sum_{n=0}^{m} a_n| \leq \varepsilon$. Using the strict triangle inequality again we find that $|\sum_{i=0}^{m} x_i - \sum_{n=0}^{m} a_n| \leq \varepsilon$ as well. Thus the series $\sum_{i\geq 0} x_i$ converges to the same limit as the series $\sum_{n\geq 0} a_n$, as desired.

4. Let K be a field with a complete absolute value | |. The radius of convergence of a power series $f(X) = \sum_{n=0}^{\infty} a_n X^n \in K[[X]]$ is defined as

$$r_f := \sup \left\{ r \in \mathbb{R}^{\geq 0} : |a_n| r^n \to 0 \text{ for } n \to \infty \right\} \in \mathbb{R} \cup \{\infty\}.$$

(a) Show that

$$r_f = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$$

- (b) Show that for any $x \in K$ the series $f(x) := \sum_{n=0}^{\infty} a_n x^n$ diverges if $|x| > r_f$ and converges if $|x| < r_f$.
- (c) What happens for $|x| = r_f$?

Solution:

(a) Set

$$r'_f := \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$$

First consider any real number $r > r'_f$. Then there exist infinitely many $n \in \mathbb{N}$ such that $r > \frac{1}{|a_n|^{1/n}}$. For these n we have $|a_n|r^n > 1$, so the sequence $(|a_n|r^n)_n$ does not converge to 0 for $n \to \infty$; hence $r \ge r_f$. Varying r this shows that $r'_f \ge r_f$.

Now consider any real number $r < r'_f$. Choose another real number r' such that $r < r' < r'_f$. Then

$$\limsup_{n \to \infty} r' |a_n|^{\frac{1}{n}} = r' \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \frac{r'}{r'_f} < 1.$$

Hence there exists an $N \ge 1$ such that

$$\sup_{n \geqslant N} r' |a_n|^{\frac{1}{n}} < 1$$

For any n > N we therefore have $|a_n| (r')^n < 1$ and so

$$|a_n| r^n = |a_n| (r')^n \left(\frac{r}{r'}\right)^n < \left(\frac{r}{r'}\right)^n,$$

which tends to 0 for $n \to \infty$. This shows that $r \leq r_f$, and varying r it implies that $r'_f \leq r_f$.

(b) Suppose first that $|x| > r_f$. Then the definition of r_f implies that $|a_n x^n| = |a_n| \cdot |x|^n$ does not converge to zero; hence the series diverges.

Now suppose that $|x| < r_f$. Then by the definition of r_f there exists $r \in \mathbb{R}$ such that |x| < r and that $|a_n|r^n \to 0$ for $n \to \infty$. This r in particular satisfies $C := \sup\{|a_n|r^n : n \ge 0\} < \infty$ and ||x|/r| < 1. Therefore

$$\sum_{n \ge 0} |a_n x^n| = \sum_{n \ge 0} |a_n| r^n \cdot (|x|/r)^n \leqslant \sum_{n \ge 0} C \cdot (|x|/r)^n = \frac{C}{1 - |x|/r} < \infty.$$

Hence the series converges.

(c) For $|x| = r_f$ the series may or may not converge, as in real analysis. For example take $f(X) := \sum_{n=0}^{\infty} X^n$. Then $r_f = 1$, but for any $x \in K$ with |x| = 1 we have $|x|^n \neq 0$ for $n \to \infty$; hence the series does not converge. By contrast, fix any element $\pi \in K$ with $0 < |\pi| < 1$, and for any $n \ge 1$ set $k_n := \left\lceil -\frac{\log n^2}{\log |\pi|} \right\rceil$. Then we have $\log |\pi| < 0$ and hence

$$\begin{aligned} & -\frac{\log n^2}{\log |\pi|} \leqslant k_n \leqslant -\frac{\log n^2}{\log |\pi|} + 1 \\ \Rightarrow & -\log n^2 \geqslant k_n \cdot \log |\pi| \geqslant -\log n^2 + \log |\pi| \\ \Rightarrow & \frac{1}{n^2} \geqslant |\pi^{k_n}| \geqslant \frac{|\pi|}{n^2}. \end{aligned}$$

By real analysis we thus know that for any $r \in \mathbb{R}^{\geq 0}$ we have $|\pi^{k_n}| r^n \to 0$ if r < 1 and $|\pi^{k_n}| r^n \to \infty$ if r > 1. Thus the power series $f(X) := \sum_{n=0}^{\infty} \pi^{k_n} X^n$ has radius of convergence $r_f = 1$. But for any $x \in K$ with |x| = 1 we have

$$\sum_{n \ge 1} |\pi^{k_n} x^n| = \sum_{n \ge 1} |\pi|^{k_n} \le \sum_{n \ge 0} \frac{1}{n^2} < \infty;$$

hence the series converges.

- 5. Let K be a field that is complete with respect to a p-adic absolute value. Consider $\alpha, \beta \in \mathbb{Z}_p$ and $m, n \in \mathbb{Z}$ with $n \ge 0$. Prove:
 - (a) The binomial coefficient $\binom{\alpha}{n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$ lies in \mathbb{Z}_p .
 - (b) The power series $F_{\alpha}(X) := \sum_{n \ge 0} {\alpha \choose n} X^n \in K[[X]]$ has convergence radius ≥ 1 . Moreover, for $x \in K$ with |x| < 1 we have $|F_{\alpha}(x) 1| < 1$.
 - (c) $F_{\alpha+\beta}(x) = F_{\alpha}(x) \cdot F_{\beta}(x)$.
 - (d) $F_{m\alpha}(x) = F_{\alpha}(x)^m$.
 - (e) $F_m(x) = (1+x)^m$.
 - (f) $y := F_{m/n}(x)$ is the only solution of the equation $y^n = (1+x)^m$ with |y-1| < 1, if $p \nmid n$.

This therefore justifies writing $F_{\alpha}(x) = (1+x)^{\alpha}$.

- *(g) Do we then also have $((1+x)^{\alpha})^{\beta} = (1+x)^{\alpha\beta}$?
- (h) Find a closed form of $\sqrt{7}$ in \mathbb{Q}_3 .

Solution:

(a) Since \mathbb{Z} is dense in \mathbb{Z}_p , we can find a sequence of non-negative integers $(a_k)_{k \in \mathbb{Z}^{\ge 1}}$ such that $\lim_{k \to \infty} a_k = \alpha$ in \mathbb{Z}_p . It follows that $\lim_{k \to \infty} {a_k \choose n} = {\alpha \choose n}$, because ${X \choose n} \in \mathbb{Z}_p[X]$ is a polynomial and it follows from exercise 4 of sheet 15 that polynomial functions are continuous. As ${a_k \choose n} \in \mathbb{Z} \subset \mathbb{Z}_p$ for all k and \mathbb{Z}_p is closed in \mathbb{Q}_p it follows that the limit ${\alpha \choose n}$ also lies in \mathbb{Z}_p .

(b) By (a), we have $\binom{\alpha}{n} \in \mathbb{Z}_p$ and hence $|\binom{\alpha}{n}| \leq 1$. Thus by exercise 4 the radius of convergence is at least 1. In particular it converges whenever |x| < 1. In that case the multiplicativity of the norm implies that $|\binom{\alpha}{n}x^n| \leq |x|^n \leq |x|$ for all $n \geq 1$. Thus

$$|F_{\alpha}(x) - 1| = \left| \sum_{n \ge 1} {\alpha \choose n} x^n \right| \le \sup \left\{ \left| {\alpha \choose n} x^n \right| : n \ge 1 \right\} \le |x| < 1.$$

(c) We will use the fact that for convergent series $\sum_{n\geq 0} a_n$ and $\sum_{n\geq 0} b_n$ in a nonarchimedean complete field K the product can be calculated as the Cauchy product $\sum_{k\geq 0} \sum_{n+m=k} a_m b_n$. A reference for this fact and many other useful statements about infinite series can be found for example in the following expository text by Keith Conrad:

https://kconrad.math.uconn.edu/blurbs/gradnumthy/infseriespadic.pdf We calculate

$$F_{\alpha}(x) \cdot F_{\beta}(x) = \sum_{n \ge 0} x^n \sum_{k=0}^n \binom{\alpha}{k} \binom{\beta}{n-k},$$

and hence the desired equality follows from the following **Claim:** We have $\sum_{k=0}^{n} {\alpha \choose k} {\beta \choose n-k} = {\alpha+\beta \choose n}$.

Proof. In the case when $\alpha, \beta \in \mathbb{Z}^{\geq 0}$, this is just the Vandermonde identity. For the general case note that the polynomials $\sum_{k=0}^{n} {\binom{X}{k}} {\binom{Y}{n-k}}$ and ${\binom{X+Y}{n}}$ in $\mathbb{Z}_p[X,Y]$ agree on the set $(\mathbb{Z}^{\geq 0})^2$ which is dense in $(\mathbb{Z}_p)^2$. Because polynomial functions are continuous it follows that they agree everywhere.

- (d) For m = 0 this is clear from the definition. For m > 0 it follows by induction from (c). For m < 0 just observe that by (c) we have $F_{m\alpha}(x) \cdot F_{-m\alpha}(x) = F_0(x) = 1$ and therefore $F_{m\alpha}(x) = F_{-m\alpha}(x)^{-1} = (F_{\alpha}(x)^{-m})^{-1} = F_{\alpha}(x)^m$.
- (e) For $m \ge 0$ this follows immediately from the binomial theorem. For m < 0 we deduce from (d) that $F_m(x) = F_{-m}(x)^{-1} = ((1+x)^{-m})^{-1} = (1+x)^m$.
- (f) We calculate

$$y^n = F_{m/n}(x)^n \stackrel{(d)}{=} F_m(x) \stackrel{(e)}{=} (1+x)^m.$$

Moreover |y-1| < 1 by (a), which is equivalent to saying that $y \in \mathcal{O}_K$ and $y \equiv 1 \mod (p)$. It remains to show that y is the only root of $f(X) := X^n - (1+x)^m \in \mathcal{O}_K[X]$ that is $\equiv 1 \mod (p)$. But since $n \not\equiv 0 \mod (p)$, we have $f'(y) = ny^{n-1} \not\equiv 0 \mod (p)$. Thus $y \mod (p)$ is a simple root of $f \mod (p)$; so by Hensel's lemma f has precisely one root in \mathcal{O}_K that is $\equiv 1 \mod (p)$, as desired.

- *(g) Yes, by a similar, though somewhat more elaborate, reasoning as in (c). Likewise we have $((1+x)(1+y))^{\alpha} = (1+x)^{\alpha}(1+y)^{\alpha}$ whenever |x|, |y| < 1.
- (h) We have $F_{1/2}(6)^2 = 1 + 6 = 7$. Thus $\sqrt{7} = F_{1/2}(6)$.

*6. (Newton method for finding zeros of a polynomial) Let p be a prime number, let $f \in \mathbb{Z}_p[X]$ and let $\alpha \in \mathbb{Z}_p$ be a root of f such that $f'(\alpha) \neq 0$. Set

$$U := \{ a \in \mathbb{Z}_p : |f(a)| < |f'(a)|^2 \text{ and } |\alpha - a| < |f'(a)| \},\$$

which is an open neighborhood of α in \mathbb{Z}_p . Take $a_1 \in U$ and recursively define $a_{n+1} := a_n - \frac{f(a_n)}{f'(a_n)}$ for $n \ge 1$. Show that for all n:

- (a) $a_n \in U$,
- (b) $|f'(a_n)| = |f'(a_1)|,$
- (c) $|f(a_n)| \leq |f'(a_1)|^2 t^{2^{n-1}}$ for $t = |f(a_1)/f'(a_1)| < 1$.

Moreover, show that $\lim_{n \to \infty} a_n = \alpha$ and $|f'(\alpha)| = |f'(a_1)|$.

Solution: See the proof of Theorem 4.1 in Section 5 of the following notes by Keith Conrad:

https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf