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ABSOLUTE VALUES, COMPLETION, POWER SERIES

1. (Product formula) A non-archimedean absolute value | | on a field K, whose val-
uation ring O is discrete with finite residue field Ok /m, is called normalized if

7| =

(a)
(b)

|Ok /m|~! for any element 7 with (7) = m. Consider a finite field k.

Write down all normalized absolute values | |, on k(t).

For any a € k(t)* prove that [], |a|, = 1.

(Hint: Compare Examples 8.2.6 (a-b) and Theorem 8.4.15 of Ostrowski.)

Solution:

(a)

For any monic irreducible polynomial p € k[t] and any f € k(t) we define
|flp := |k[t]/(p)|~ %)), This defines a non-archimedean absolute value with
Oty = k[t](p), which is normalized because |p|, = |k[t]/(p)|™! =[Ok /()|
Varying p, this yields all the normalized absolute values on k(t) associated to
maximal ideals of klt].

An additional normalized absolute value | | is obtained in the same way from
the maximal ideal (s) C k[s] after the substitution s = §. For any non-zero
polynomial f € k[t] of degree n € Z the substitution yields f(t) = s™ f(1)-s™"
with [s" - f(1)]e = 1 and hence |f|o = |s|" = |k|?8). For arbitrary non-
zero f, g € k[t] we therefore have |§|OO = |f|dee(f)—deslg),

Clearly every absolute value on k(t) is equivalent to a unique normalized one.
Thus by Theorem 4.1 in the following notes by Brian Conrad the above list
of normalized absolute values on k(t) is complete:

http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf

By multiplicativity it suffices to prove this for generators of the group k(t)*,
namely for any monic irreducible polynomial p € k[t] and any element « € k*.
The latter has finite order and hence satisfies |a|, = 1 for all absolute values
| |, and therefore also [], |al, = 1. The former satisfies |p|, = |k[t]/(p)|~* =
k|~ 9°®) and |p|s = |k|4®), while |p|,; = 1 for all monic irreducible poly-
nomials p’ € k[t] that are distinct from p. Thus the product is again 1.

2. Work out the details of the proof of Proposition 8.5.5 of the lecture: Every metric
space possesses a completion.

Solution: See for example [Marco Manetti: Topology (2015) Theorem 6.47].



3. Let K be a complete ultrametric field. Show that a convergent series with sum-
mands in K can be arbitrarily rearranged and subdivided without changing con-
vergence or the limit.

(Hint: Test your analysis skills by trying to give a complete formal proof.)

Solution: Consider a convergent series »_~  a, in K. In the lecture we showed
that lim,, . a, = 0. Thus for any € > 0 there exists an n. > 0 such that |a,| < ¢
for all n > n..

First consider an arbitrary bijection o: Z?° — Z7°. For any € > 0 set m, =
max{n,on | 0 < n < n.}. Then for any m > m. the partial sum of differences
Yo olan — agy) is a finite sum of terms of the form +a, with n > n.. By the
construction of n. all these satisfy | £ a,| = |a,| < &; hence the strict triangle
inequality implies that |1 (a, — agn)| < €. Thus the series Y, (an — Gon)
converges to 0; hence the series 2@0 ayy, converges to the same limit as the series

Zn20 An.

Now consider a bjiection 7: (Z2°)? — Z2°. Then for each i > 0 the subse-
quence (a,(; j)); of the original sequence (ay), also converges to 0; hence the series
Z;;o ar@i ;) converges, say to x; € K. Moreover, for any € > 0 set

me == max{nU{j=>0[Fi>0:70,7) <n}tU{i=>0]|35>0:7(i,5) < n}

Then for any ¢ > 0 the partial sums 2720 ar@i ;) for all m > m, differ only by
terms a,, with n > n. and hence with |a,| < €. By the strict triangle inequality
the difference of any such partial sums thus also has norm < . Passing to the
limit we deduce that ‘Z;‘n:() Ar(ij) — xl| < eforalli>0and m > m.. Using the
strict triangle inequality again we deduce that |> 7" D im0 Gr(ig) — Dimo x| <e
for all m > m..

On the other hand, the definition of m, implies that for any m > m,, the difference
Yo Z;n:o Ur(ij) — D no Gn 1S & finite sum of terms of the form +a, with n > n..
By the construction of n. all these satisty |ta,| = |a,| < &; hence the strict triangle
inequality implies that ’Z;io D im0 Gr(ing) = 2me an‘ < e. Using the strict triangle
inequality again we find that {Zgo T — Yy, an| < € as well. Thus the series
> io Ti converges to the same limit as the series ) _a,, as desired.

4. Let K be a field with a complete absolute value | |. The radius of convergence of
a power series f(X) =" a,X" € K[[X]] is defined as

ry = sup{r € R*" : |a,|r" = 0 for n — co} € RU {oo}.

(a) Show that
1

lim sup,,_, . |an|'/™

ry =



(b)
(c)

Show that for any « € K the series f(z) := > ° a,a” diverges if |z| > ry
and converges if |z| < ry.

What happens for |z| = 77

Solution:

(a)

Set
1

lim SUPp, 500 |an | Ln

/

Tf .

First consider any real number r > 7‘}. Then there exist infinitely many

1

n € N such that r > T For these n we have |a,|r" > 1, so the sequence

(lan|r™), does not converge to 0 for n — oo; hence r > r;. Varying r this
shows that r} >y

Now consider any real number 7 < r%. Choose another real number 7’ such
that r <1’ <r}. Then

1imsupr'|an|% = r'limsup|an|% = <1
n—00 n—o00 ¥

Hence there exists an N > 1 such that

sup 7’ |an|% < 1.
n>N

For any n > N we therefore have |a,| ()" < 1 and so
r

alr = Jal )" (5)" < (5)

which tends to 0 for n — oo. This shows that r < rf, and varying r it implies
that r} <y

Suppose first that |z| > ry. Then the definition of r; implies that |a,z"| =
|a,| - |x|™ does not converge to zero; hence the series diverges.

Now suppose that |z| < ;. Then by the definition of r; there exists » € R
such that |z| < r and that |a,|r" — 0 for n — oo. This r in particular
satisfies C':= sup{|a,|r" : n > 0} < oo and ||z|/r| < 1. Therefore

Slawt"| = S laalr - (2l /) < SO (el = ﬁ < o,

n=0 n=0 n=0

Hence the series converges.

For |z| = r¢ the series may or may not converge, as in real analysis.

For example take f(X) := 3> " X" Then ry = 1, but for any =z € K with
|z| =1 we have |z|™ 4 0 for n — oo; hence the series does not converge.

3



By contrast, fix any element 7 € K with 0 < || < 1, and for any n > 1 set

kn = [— g 1 |. Then we have log |x| < 0 and hence
log ||

_jognz

1 2
ogir] S K S gy 1

log ||

= —logn? > k, log|r| > —logn?+ log|r|

= L > | >

By real analysis we thus know that for any r € R*? we have |7*|r" — 0 if
r < 1and |7 |r™ — oo if r > 1. Thus the power series f(X) = 2 af X"
has radius of convergence 7y = 1. But for any € K with |z| = 1 we have

D [t = ™ < ) g < oo

n>1 n>1 n=0

hence the series converges.

5. Let K be a field that is complete with respect to a p-adic absolute value. Consider
o, € Z, and m,n € Z with n > 0. Prove:
(a) The binomial coefficient (% ) = w lies in Z,.

(b) The power series F,(X) : >0 (Z)X " € K[[X]] has convergence radius
> 1. Moreover, forxeK |]<1wehave|F() 1] < 1.

(¢) Farp(z) = Fulx) - Fp(x).
(d) Fra(z) = Fox)™.
Fo(x) = (1 + x)m

if p{ n.
This therefore justifies writing F,,(x) = (1 4+ z)*.

*(g) Do we then also have ((1 + z)?)? = (1 + z)*#?
(h) Find a closed form of v/7 in Qs.

Solution:

(a) Since Z is dense in Z,, we can find a sequence of non-negative integers
(ak)gez>1 such that lim ax = o in Z,,. It follows that lim (%) = (%), because
k—o0 k—oco * " n

(%) € Z,[X] is a polynomial and it follows from exercise 4 of sheet 15 that
polynomial functions are continuous. As (%) € Z C Z, for all k and Z, is
closed in Q, it follows that the limit (z) also lies in Z,.



(b) By (a), we have () € Z,, and hence |(%)] < 1. Thus by exercise 4 the radius
of convergence is at least 1. In particular it converges whenever |z| < 1. In
that case the multiplicativity of the norm implies that |(¢)z"| < |z|" < ||
for all n > 1. Thus

Fal) ~ 1] = [ (2] < sup{[(a"] n>1) < ol < 1

(c) We will use the fact that for convergent series ) _;a, and ) b, in a non-
archimedean complete field K the product can be calculated as the Cauchy
product D ;-0 >, —p @mbn. A reference for this fact and many other useful
statements about infinite series can be found for example in the following
expository text by Keith Conrad:

https://kconrad.math.uconn.edu/blurbs/gradnumthy/infseriespadic.pdf

Fu(z) - Fy(z) =) 2"y (Z) (n f k:)

n
n=0 k=0

We calculate

and hence the desired equality follows from the following
Claim: We have ), _, (Z)( B ) — (a+5>'

n—k n

Proof. In the case when «, 3 € Z7°, this is just the Vandermonde identity.
: no(X\(Y X+4YY
For the general case note that the polynomials ), _, (k) (n_k) and ( Z ) in
Z,[X,Y] agree on the set (Z7°)? which is dense in (Z,)?. Because polynomial
functions are continuous it follows that they agree everywhere. O]

(d) For m = 0 this is clear from the definition. For m > 0 it follows by induction
from (c). For m < 0 just observe that by (c) we have F,,,(z) - F_pa(x) =
Fy(z) = 1 and therefore Fy,(x) = F_po(2)™! = (Fy(x) ™)t = F,(2)™.

(e) For m > 0 this follows immediately from the binomial theorem. For m < 0
we deduce from (d) that Fy,(z) = F_,(2) ' = ((1+2)™™)" ! = (1 +2)™.

(f) We calculate
n n (@) (e) m
y"' = Fom(@)" = Fu(z) = (14+2)™.
Moreover |y — 1| < 1 by (a), which is equivalent to saying that y € Ok
and y = 1 mod (p). It remains to show that y is the only root of f(X) :=
X"—(142)™ € Ok[X] that is = 1 mod (p). But since n # 0 mod (p), we have
f'(y) = ny"' # 0mod (p). Thus y mod (p) is a simple root of f mod (p);
so by Hensel’s lemma f has precisely one root in Ok that is = 1 mod (p), as
desired.

*(g) Yes, by a similar, though somewhat more elaborate, reasoning as in (c).
Likewise we have ((1+ z)(1+y))* = (1 + z)*(1 4+ y)* whenever |z|, |y| < 1.

(h) We have F}5(6)> =1+ 6 = 7. Thus V7 = F} »(6).



*6. (Newton method for finding zeros of a polynomial) Let p be a prime number, let
f € Z,[X] and let o € Z,, be a root of f such that f'(«) # 0. Set

U = {a€Zy:|f(a)] <|f(a)) and |o —a| < |f'(a)[},

which is an open neighborhood of « in Z,. Take a; € U and recursively define
Gpi1 = Qp — }c,((’;:)) for n > 1. Show that for all n:

(a) a, € U,

(b) [f"(an)| = [f"(ar)],

(0) 1f(an)] < |f'(ar) Pt for t = |f(ar)/f(ar)] < 1.
Moreover, show that nh_)rgo a, = a and |f'(a)| = |f'(a1)]-

Solution: See the proof of Theorem 4.1 in Section 5 of the following notes by
Keith Conrad:

https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf



