
D-MATH Number Theory II FS 2024
Prof. Richard Pink

Solutions 16
Absolute Values, Completion, Power series

1. (Product formula) A non-archimedean absolute value | | on a field K, whose val-
uation ring OK is discrete with finite residue field OK/m, is called normalized if
|π| = |OK/m|−1 for any element π with (π) = m. Consider a finite field k.

(a) Write down all normalized absolute values | |v on k(t).

(b) For any a ∈ k(t)× prove that
∏

v |a|v = 1.

(Hint: Compare Examples 8.2.6 (a–b) and Theorem 8.4.15 of Ostrowski.)

Solution:

(a) For any monic irreducible polynomial p ∈ k[t] and any f ∈ k(t) we define
|f |p := |k[t]/(p)|− ordp(f). This defines a non-archimedean absolute value with
Ok(t) = k[t](p), which is normalized because |p|p = |k[t]/(p)|−1 = |Ok(t)/(p)|−1.
Varying p, this yields all the normalized absolute values on k(t) associated to
maximal ideals of k[t].

An additional normalized absolute value | |∞ is obtained in the same way from
the maximal ideal (s) ⊂ k[s] after the substitution s = 1

t
. For any non-zero

polynomial f ∈ k[t] of degree n ∈ Z the substitution yields f(t) = sn·f(1
s
)·s−n

with |sn · f(1
s
)|∞ = 1 and hence |f |∞ = |s|−n

∞ = |k|deg(f). For arbitrary non-

zero f, g ∈ k[t] we therefore have |f
g
|∞ = |k|deg(f)−deg(g).

Clearly every absolute value on k(t) is equivalent to a unique normalized one.
Thus by Theorem 4.1 in the following notes by Brian Conrad the above list
of normalized absolute values on k(t) is complete:

http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf

(b) By multiplicativity it suffices to prove this for generators of the group k(t)×,
namely for any monic irreducible polynomial p ∈ k[t] and any element α ∈ k×.
The latter has finite order and hence satisfies |α|v = 1 for all absolute values
| |v, and therefore also

∏
v |a|v = 1. The former satisfies |p|p = |k[t]/(p)|−1 =

|k|− deg(p) and |p|∞ = |k|deg(p), while |p|p′ = 1 for all monic irreducible poly-
nomials p′ ∈ k[t] that are distinct from p. Thus the product is again 1.

2. Work out the details of the proof of Proposition 8.5.5 of the lecture: Every metric
space possesses a completion.

Solution: See for example [Marco Manetti: Topology (2015) Theorem 6.47].
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3. Let K be a complete ultrametric field. Show that a convergent series with sum-
mands in K can be arbitrarily rearranged and subdivided without changing con-
vergence or the limit.

(Hint: Test your analysis skills by trying to give a complete formal proof.)

Solution: Consider a convergent series
∑∞

n=0 an in K. In the lecture we showed
that limn→∞ an = 0. Thus for any ε > 0 there exists an nε ⩾ 0 such that |an| ⩽ ε
for all n > nε.

First consider an arbitrary bijection σ : Z⩾0 → Z⩾0. For any ε > 0 set mε :=
max{n, σn | 0 ⩽ n ⩽ nε}. Then for any m > mε the partial sum of differences∑m

n=0(an − aσn) is a finite sum of terms of the form ±an with n > nε. By the
construction of nε all these satisfy | ± an| = |an| ⩽ ε; hence the strict triangle
inequality implies that

∣∣∑m
n=0(an − aσn)

∣∣ ⩽ ε. Thus the series
∑

n⩾0(an − aσn)
converges to 0; hence the series

∑
n⩾0 aσn converges to the same limit as the series∑

n⩾0 an.

Now consider a bjiection τ : (Z⩾0)2 → Z⩾0. Then for each i ⩾ 0 the subse-
quence (aτ(i,j))j of the original sequence (an)n also converges to 0; hence the series∑

j⩾0 aτ(i,j) converges, say to xi ∈ K. Moreover, for any ε > 0 set

mε := max{nε} ∪ {j ⩾ 0 | ∃i ⩾ 0: τ(i, j) ⩽ nε} ∪ {i ⩾ 0 | ∃j ⩾ 0: τ(i, j) ⩽ nε}.

Then for any i ⩾ 0 the partial sums
∑m

j=0 aτ(i,j) for all m ⩾ mε differ only by
terms an with n > nε and hence with |an| ⩽ ε. By the strict triangle inequality
the difference of any such partial sums thus also has norm ⩽ ε. Passing to the
limit we deduce that

∣∣∑m
j=0 aτ(i,j) − xi

∣∣ ⩽ ε for all i ⩾ 0 and m ⩾ mε. Using the

strict triangle inequality again we deduce that
∣∣∑m

i=0

∑m
j=0 aτ(i,j) −

∑m
i=0 xi

∣∣ ⩽ ε
for all m ⩾ mε.

On the other hand, the definition of mε implies that for any m > mε, the difference∑m
i=0

∑m
j=0 aτ(i,j) −

∑m
n=0 an is a finite sum of terms of the form ±an with n > nε.

By the construction of nε all these satisfy |±an| = |an| ⩽ ε; hence the strict triangle
inequality implies that

∣∣∑m
i=0

∑m
j=0 aτ(i,j)−

∑m
n=0 an

∣∣ ⩽ ε. Using the strict triangle

inequality again we find that
∣∣∑m

i=0 xi −
∑m

n=0 an
∣∣ ⩽ ε as well. Thus the series∑

i⩾0 xi converges to the same limit as the series
∑

n⩾0 an, as desired.

4. Let K be a field with a complete absolute value | |. The radius of convergence of
a power series f(X) =

∑∞
n=0 anX

n ∈ K[[X]] is defined as

rf := sup
{
r ∈ R⩾0 : |an|rn → 0 for n → ∞

}
∈ R ∪ {∞}.

(a) Show that

rf =
1

lim supn→∞ |an|1/n
.
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(b) Show that for any x ∈ K the series f(x) :=
∑∞

n=0 anx
n diverges if |x| > rf

and converges if |x| < rf .

(c) What happens for |x| = rf?

Solution:

(a) Set

r′f :=
1

lim supn→∞ |an|1/n
.

First consider any real number r > r′f . Then there exist infinitely many

n ∈ N such that r > 1
|an|1/n

. For these n we have |an|rn > 1, so the sequence

(|an|rn)n does not converge to 0 for n → ∞; hence r ⩾ rf . Varying r this
shows that r′f ⩾ rf .

Now consider any real number r < r′f . Choose another real number r′ such
that r < r′ < r′f . Then

lim sup
n→∞

r′ |an|
1
n = r′ lim sup

n→∞
|an|

1
n =

r′

r′f
< 1.

Hence there exists an N ⩾ 1 such that

sup
n⩾N

r′ |an|
1
n < 1.

For any n > N we therefore have |an| (r′)n < 1 and so

|an| rn = |an| (r′)n
( r

r′

)n

<
( r

r′

)n

,

which tends to 0 for n → ∞. This shows that r ⩽ rf , and varying r it implies
that r′f ⩽ rf .

(b) Suppose first that |x| > rf . Then the definition of rf implies that |anxn| =
|an| · |x|n does not converge to zero; hence the series diverges.

Now suppose that |x| < rf . Then by the definition of rf there exists r ∈ R
such that |x| < r and that |an|rn → 0 for n → ∞. This r in particular
satisfies C := sup{|an|rn : n ⩾ 0} < ∞ and

∣∣|x|/r∣∣ < 1. Therefore∑
n⩾0

|anxn| =
∑
n⩾0

|an|rn · (|x|/r)n ⩽
∑
n⩾0

C · (|x|/r)n =
C

1− |x|/r
< ∞.

Hence the series converges.

(c) For |x| = rf the series may or may not converge, as in real analysis.

For example take f(X) :=
∑∞

n=0X
n. Then rf = 1, but for any x ∈ K with

|x| = 1 we have |x|n ̸→ 0 for n → ∞; hence the series does not converge.
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By contrast, fix any element π ∈ K with 0 < |π| < 1, and for any n ⩾ 1 set

kn :=
⌈
− logn2

log |π|

⌉
. Then we have log |π| < 0 and hence

− logn2

log |π| ⩽ kn ⩽ − logn2

log |π| + 1

⇒ − log n2 ⩾ kn · log |π| ⩾ − log n2 + log |π|

⇒ 1
n2 ⩾ |πkn| ⩾ |π|

n2 .

By real analysis we thus know that for any r ∈ R⩾0 we have |πkn|rn → 0 if
r < 1 and |πkn|rn → ∞ if r > 1. Thus the power series f(X) :=

∑∞
n=0 π

knXn

has radius of convergence rf = 1. But for any x ∈ K with |x| = 1 we have∑
n⩾1

|πknxn| =
∑
n⩾1

|π|kn ⩽
∑
n⩾0

1
n2 < ∞;

hence the series converges.

5. Let K be a field that is complete with respect to a p-adic absolute value. Consider
α, β ∈ Zp and m,n ∈ Z with n ⩾ 0. Prove:

(a) The binomial coefficient
(
α
n

)
:= α(α−1)···(α−n+1)

n!
lies in Zp.

(b) The power series Fα(X) :=
∑

n⩾0

(
α
n

)
Xn ∈ K[[X]] has convergence radius

⩾ 1. Moreover, for x ∈ K with |x| < 1 we have |Fα(x)− 1| < 1.

(c) Fα+β(x) = Fα(x) · Fβ(x).

(d) Fmα(x) = Fα(x)
m.

(e) Fm(x) = (1 + x)m.

(f) y := Fm/n(x) is the only solution of the equation yn = (1+x)m with |y−1| < 1,
if p ∤ n.

This therefore justifies writing Fα(x) = (1 + x)α.

*(g) Do we then also have ((1 + x)α)β = (1 + x)αβ?

(h) Find a closed form of
√
7 in Q3.

Solution:

(a) Since Z is dense in Zp, we can find a sequence of non-negative integers
(ak)k∈Z⩾1 such that lim

k→∞
ak = α in Zp. It follows that lim

k→∞

(
ak
n

)
=

(
α
n

)
, because(

X
n

)
∈ Zp[X] is a polynomial and it follows from exercise 4 of sheet 15 that

polynomial functions are continuous. As
(
ak
n

)
∈ Z ⊂ Zp for all k and Zp is

closed in Qp it follows that the limit
(
α
n

)
also lies in Zp.
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(b) By (a), we have
(
α
n

)
∈ Zp and hence |

(
α
n

)
| ⩽ 1. Thus by exercise 4 the radius

of convergence is at least 1. In particular it converges whenever |x| < 1. In
that case the multiplicativity of the norm implies that

∣∣(α
n

)
xn

∣∣ ⩽ |x|n ⩽ |x|
for all n ⩾ 1. Thus

|Fα(x)− 1| =
∣∣∑

n⩾1

(
α
n

)
xn

∣∣ ⩽ sup
{∣∣(α

n

)
xn

∣∣ : n ⩾ 1
}

⩽ |x| < 1.

(c) We will use the fact that for convergent series
∑

n⩾0 an and
∑

n⩾0 bn in a non-
archimedean complete field K the product can be calculated as the Cauchy
product

∑
k⩾0

∑
n+m=k ambn. A reference for this fact and many other useful

statements about infinite series can be found for example in the following
expository text by Keith Conrad:

https://kconrad.math.uconn.edu/blurbs/gradnumthy/infseriespadic.pdf

We calculate

Fα(x) · Fβ(x) =
∑
n⩾0

xn

n∑
k=0

(
α

k

)(
β

n− k

)
,

and hence the desired equality follows from the following

Claim: We have
∑n

k=0

(
α
k

)(
β

n−k

)
=

(
α+β
n

)
.

Proof. In the case when α, β ∈ Z⩾0, this is just the Vandermonde identity.
For the general case note that the polynomials

∑n
k=0

(
X
k

)(
Y

n−k

)
and

(
X+Y
n

)
in

Zp[X, Y ] agree on the set (Z⩾0)2 which is dense in (Zp)
2. Because polynomial

functions are continuous it follows that they agree everywhere.

(d) For m = 0 this is clear from the definition. For m > 0 it follows by induction
from (c). For m < 0 just observe that by (c) we have Fmα(x) · F−mα(x) =
F0(x) = 1 and therefore Fmα(x) = F−mα(x)

−1 = (Fα(x)
−m)−1 = Fα(x)

m.

(e) For m ⩾ 0 this follows immediately from the binomial theorem. For m < 0
we deduce from (d) that Fm(x) = F−m(x)

−1 = ((1 + x)−m)−1 = (1 + x)m.

(f) We calculate

yn = Fm/n(x)
n (d)
= Fm(x)

(e)
= (1 + x)m.

Moreover |y − 1| < 1 by (a), which is equivalent to saying that y ∈ OK

and y ≡ 1 mod (p). It remains to show that y is the only root of f(X) :=
Xn−(1+x)m ∈ OK [X] that is≡ 1 mod (p). But since n ̸≡ 0 mod (p), we have
f ′(y) = nyn−1 ̸≡ 0 mod (p). Thus y mod (p) is a simple root of f mod (p);
so by Hensel’s lemma f has precisely one root in OK that is ≡ 1 mod (p), as
desired.

*(g) Yes, by a similar, though somewhat more elaborate, reasoning as in (c).
Likewise we have ((1 + x)(1 + y))α = (1 + x)α(1 + y)α whenever |x|, |y| < 1.

(h) We have F1/2(6)
2 = 1 + 6 = 7. Thus

√
7 = F1/2(6).
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*6. (Newton method for finding zeros of a polynomial) Let p be a prime number, let
f ∈ Zp[X] and let α ∈ Zp be a root of f such that f ′(α) ̸= 0. Set

U :=
{
a ∈ Zp : |f(a)| < |f ′(a)|2 and |α− a| < |f ′(a)|

}
,

which is an open neighborhood of α in Zp. Take a1 ∈ U and recursively define

an+1 := an − f(an)
f ′(an)

for n ⩾ 1. Show that for all n:

(a) an ∈ U ,

(b) |f ′(an)| = |f ′(a1)|,
(c) |f(an)| ⩽ |f ′(a1)|2t2

n−1
for t = |f(a1)/f ′(a1)| < 1.

Moreover, show that lim
n→∞

an = α and |f ′(α)| = |f ′(a1)|.

Solution: See the proof of Theorem 4.1 in Section 5 of the following notes by
Keith Conrad:

https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf
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