Solutions 16

Absolute Values, Completion, Power series

1. (Product formula) A non-archimedean absolute value || on a field K, whose valuation ring \mathcal{O}_{K} is discrete with finite residue field $\mathcal{O}_{K} / \mathfrak{m}$, is called normalized if $|\pi|=\left|\mathcal{O}_{K} / \mathfrak{m}\right|^{-1}$ for any element π with $(\pi)=\mathfrak{m}$. Consider a finite field k.
(a) Write down all normalized absolute values $\left|\left.\right|_{v}\right.$ on $k(t)$.
(b) For any $a \in k(t)^{\times}$prove that $\prod_{v}|a|_{v}=1$.
(Hint: Compare Examples 8.2.6 (a-b) and Theorem 8.4.15 of Ostrowski.)

Solution:

(a) For any monic irreducible polynomial $p \in k[t]$ and any $f \in k(t)$ we define $|f|_{p}:=|k[t] /(p)|^{-\operatorname{ord}_{p}(f)}$. This defines a non-archimedean absolute value with $\mathcal{O}_{k(t)}=k[t]_{(p)}$, which is normalized because $|p|_{p}=|k[t] /(p)|^{-1}=\left|\mathcal{O}_{k(t)} /(p)\right|^{-1}$. Varying p, this yields all the normalized absolute values on $k(t)$ associated to maximal ideals of $k[t]$.
An additional normalized absolute value $\mid \|_{\infty}$ is obtained in the same way from the maximal ideal $(s) \subset k[s]$ after the substitution $s=\frac{1}{t}$. For any non-zero polynomial $f \in k[t]$ of degree $n \in \mathbb{Z}$ the substitution yields $f(t)=s^{n} \cdot f\left(\frac{1}{s}\right) \cdot s^{-n}$ with $\left|s^{n} \cdot f\left(\frac{1}{s}\right)\right|_{\infty}=1$ and hence $|f|_{\infty}=|s|_{\infty}^{-n}=|k|^{\operatorname{deg}(f)}$. For arbitrary nonzero $f, g \in k[t]$ we therefore have $\left|\frac{f}{g}\right|_{\infty}=|k|^{\operatorname{deg}(f)-\operatorname{deg}(g)}$.
Clearly every absolute value on $k(t)$ is equivalent to a unique normalized one. Thus by Theorem 4.1 in the following notes by Brian Conrad the above list of normalized absolute values on $k(t)$ is complete:
http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf
(b) By multiplicativity it suffices to prove this for generators of the group $k(t)^{\times}$, namely for any monic irreducible polynomial $p \in k[t]$ and any element $\alpha \in k^{\times}$. The latter has finite order and hence satisfies $|\alpha|_{v}=1$ for all absolute values $\left.\left|\left.\right|_{v}\right.$, and therefore also $\left.\prod_{v}\right| a\right|_{v}=1$. The former satisfies $|p|_{p}=|k[t] /(p)|^{-1}=$ $|k|^{-\operatorname{deg}(p)}$ and $|p|_{\infty}=|k|^{\operatorname{deg}(p)}$, while $|p|_{p^{\prime}}=1$ for all monic irreducible polynomials $p^{\prime} \in k[t]$ that are distinct from p. Thus the product is again 1 .
2. Work out the details of the proof of Proposition 8.5.5 of the lecture: Every metric space possesses a completion.
Solution: See for example [Marco Manetti: Topology (2015) Theorem 6.47].
3. Let K be a complete ultrametric field. Show that a convergent series with summands in K can be arbitrarily rearranged and subdivided without changing convergence or the limit.
(Hint: Test your analysis skills by trying to give a complete formal proof.)
Solution: Consider a convergent series $\sum_{n=0}^{\infty} a_{n}$ in K. In the lecture we showed that $\lim _{n \rightarrow \infty} a_{n}=0$. Thus for any $\varepsilon>0$ there exists an $n_{\varepsilon} \geqslant 0$ such that $\left|a_{n}\right| \leqslant \varepsilon$ for all $n>n_{\varepsilon}$.
First consider an arbitrary bijection $\sigma: \mathbb{Z}^{\geqslant 0} \rightarrow \mathbb{Z}^{\geqslant 0}$. For any $\varepsilon>0$ set $m_{\varepsilon}:=$ $\max \left\{n, \sigma n \mid 0 \leqslant n \leqslant n_{\varepsilon}\right\}$. Then for any $m>m_{\varepsilon}$ the partial sum of differences $\sum_{n=0}^{m}\left(a_{n}-a_{\sigma n}\right)$ is a finite sum of terms of the form $\pm a_{n}$ with $n>n_{\varepsilon}$. By the construction of n_{ε} all these satisfy $\left| \pm a_{n}\right|=\left|a_{n}\right| \leqslant \varepsilon$; hence the strict triangle inequality implies that $\left|\sum_{n=0}^{m}\left(a_{n}-a_{\sigma n}\right)\right| \leqslant \varepsilon$. Thus the series $\sum_{n \geqslant 0}\left(a_{n}-a_{\sigma n}\right)$ converges to 0 ; hence the series $\sum_{n \geqslant 0} a_{\sigma n}$ converges to the same limit as the series $\sum_{n \geqslant 0} a_{n}$.
Now consider a bjiection $\tau:\left(\mathbb{Z}^{\geqslant 0}\right)^{2} \rightarrow \mathbb{Z}^{\geqslant 0}$. Then for each $i \geqslant 0$ the subsequence $\left(a_{\tau(i, j)}\right)_{j}$ of the original sequence $\left(a_{n}\right)_{n}$ also converges to 0 ; hence the series $\sum_{j \geqslant 0} a_{\tau(i, j)}$ converges, say to $x_{i} \in K$. Moreover, for any $\varepsilon>0$ set

$$
m_{\varepsilon}:=\max \left\{n_{\varepsilon}\right\} \cup\left\{j \geqslant 0 \mid \exists i \geqslant 0: \tau(i, j) \leqslant n_{\varepsilon}\right\} \cup\left\{i \geqslant 0 \mid \exists j \geqslant 0: \tau(i, j) \leqslant n_{\varepsilon}\right\} .
$$

Then for any $i \geqslant 0$ the partial sums $\sum_{j=0}^{m} a_{\tau(i, j)}$ for all $m \geqslant m_{\varepsilon}$ differ only by terms a_{n} with $n>n_{\varepsilon}$ and hence with $\left|a_{n}\right| \leqslant \varepsilon$. By the strict triangle inequality the difference of any such partial sums thus also has norm $\leqslant \varepsilon$. Passing to the limit we deduce that $\left|\sum_{j=0}^{m} a_{\tau(i, j)}-x_{i}\right| \leqslant \varepsilon$ for all $i \geqslant 0$ and $m \geqslant m_{\varepsilon}$. Using the strict triangle inequality again we deduce that $\left|\sum_{i=0}^{m} \sum_{j=0}^{m} a_{\tau(i, j)}-\sum_{i=0}^{m} x_{i}\right| \leqslant \varepsilon$ for all $m \geqslant m_{\varepsilon}$.
On the other hand, the definition of m_{ε} implies that for any $m>m_{\varepsilon}$, the difference $\sum_{i=0}^{m} \sum_{j=0}^{m} a_{\tau(i, j)}-\sum_{n=0}^{m} a_{n}$ is a finite sum of terms of the form $\pm a_{n}$ with $n>n_{\varepsilon}$. By the construction of n_{ε} all these satisfy $\left| \pm a_{n}\right|=\left|a_{n}\right| \leqslant \varepsilon$; hence the strict triangle inequality implies that $\left|\sum_{i=0}^{m} \sum_{j=0}^{m} a_{\tau(i, j)}-\sum_{n=0}^{m} a_{n}\right| \leqslant \varepsilon$. Using the strict triangle inequality again we find that $\left|\sum_{i=0}^{m} x_{i}-\sum_{n=0}^{m} a_{n}\right| \leqslant \varepsilon$ as well. Thus the series $\sum_{i \geqslant 0} x_{i}$ converges to the same limit as the series $\sum_{n \geqslant 0} a_{n}$, as desired.
4. Let K be a field with a complete absolute value ||. The radius of convergence of a power series $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n} \in K[[X]]$ is defined as

$$
r_{f}:=\sup \left\{r \in \mathbb{R}^{\geqslant 0}:\left|a_{n}\right| r^{n} \rightarrow 0 \text { for } n \rightarrow \infty\right\} \in \mathbb{R} \cup\{\infty\} .
$$

(a) Show that

$$
r_{f}=\frac{1}{\limsup } \frac{1}{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} .
$$

(b) Show that for any $x \in K$ the series $f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$ diverges if $|x|>r_{f}$ and converges if $|x|<r_{f}$.
(c) What happens for $|x|=r_{f}$?

Solution:

(a) Set

$$
r_{f}^{\prime}:=\frac{1}{\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}} .
$$

First consider any real number $r>r_{f}^{\prime}$. Then there exist infinitely many $n \in \mathbb{N}$ such that $r>\frac{1}{\left|a_{n}\right|^{1 / n}}$. For these n we have $\left|a_{n}\right| r^{n}>1$, so the sequence $\left(\left|a_{n}\right| r^{n}\right)_{n}$ does not converge to 0 for $n \rightarrow \infty$; hence $r \geqslant r_{f}$. Varying r this shows that $r_{f}^{\prime} \geqslant r_{f}$.
Now consider any real number $r<r_{f}^{\prime}$. Choose another real number r^{\prime} such that $r<r^{\prime}<r_{f}^{\prime}$. Then

$$
\limsup _{n \rightarrow \infty} r^{\prime}\left|a_{n}\right|^{\frac{1}{n}}=r^{\prime} \limsup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\frac{r^{\prime}}{r_{f}^{\prime}}<1
$$

Hence there exists an $N \geqslant 1$ such that

$$
\sup _{n \geqslant N} r^{\prime}\left|a_{n}\right|^{\frac{1}{n}}<1 .
$$

For any $n>N$ we therefore have $\left|a_{n}\right|\left(r^{\prime}\right)^{n}<1$ and so

$$
\left|a_{n}\right| r^{n}=\left|a_{n}\right|\left(r^{\prime}\right)^{n}\left(\frac{r}{r^{\prime}}\right)^{n}<\left(\frac{r}{r^{\prime}}\right)^{n},
$$

which tends to 0 for $n \rightarrow \infty$. This shows that $r \leqslant r_{f}$, and varying r it implies that $r_{f}^{\prime} \leqslant r_{f}$.
(b) Suppose first that $|x|>r_{f}$. Then the definition of r_{f} implies that $\left|a_{n} x^{n}\right|=$ $\left|a_{n}\right| \cdot|x|^{n}$ does not converge to zero; hence the series diverges.
Now suppose that $|x|<r_{f}$. Then by the definition of r_{f} there exists $r \in \mathbb{R}$ such that $|x|<r$ and that $\left|a_{n}\right| r^{n} \rightarrow 0$ for $n \rightarrow \infty$. This r in particular satisfies $C:=\sup \left\{\left|a_{n}\right| r^{n}: n \geqslant 0\right\}<\infty$ and $||x| / r|<1$. Therefore

$$
\sum_{n \geqslant 0}\left|a_{n} x^{n}\right|=\sum_{n \geqslant 0}\left|a_{n}\right| r^{n} \cdot(|x| / r)^{n} \leqslant \sum_{n \geqslant 0} C \cdot(|x| / r)^{n}=\frac{C}{1-|x| / r}<\infty .
$$

Hence the series converges.
(c) For $|x|=r_{f}$ the series may or may not converge, as in real analysis.

For example take $f(X):=\sum_{n=0}^{\infty} X^{n}$. Then $r_{f}=1$, but for any $x \in K$ with $|x|=1$ we have $|x|^{n} \nrightarrow 0$ for $n \rightarrow \infty$; hence the series does not converge.

By contrast, fix any element $\pi \in K$ with $0<|\pi|<1$, and for any $n \geqslant 1$ set $k_{n}:=\left\lceil-\frac{\log n^{2}}{\log \mid \pi\rceil}\right\rceil$. Then we have $\log |\pi|<0$ and hence

$$
\begin{aligned}
& -\frac{\log n^{2}}{\log |\pi|} \leqslant k_{n} \leqslant-\frac{\log n^{2}}{\log |\pi|}+1 \\
\Rightarrow & -\log n^{2} \geqslant k_{n} \cdot \log |\pi| \geqslant-\log n^{2}+\log |\pi| \\
\Rightarrow & \frac{1}{n^{2}} \geqslant\left|\pi^{k_{n}}\right| \geqslant \frac{|\pi|}{n^{2}} .
\end{aligned}
$$

By real analysis we thus know that for any $r \in \mathbb{R}^{\geqslant 0}$ we have $\left|\pi^{k_{n}}\right| r^{n} \rightarrow 0$ if $r<1$ and $\left|\pi^{k_{n}}\right| r^{n} \rightarrow \infty$ if $r>1$. Thus the power series $f(X):=\sum_{n=0}^{\infty} \pi^{k_{n}} X^{n}$ has radius of convergence $r_{f}=1$. But for any $x \in K$ with $|x|=1$ we have

$$
\sum_{n \geqslant 1}\left|\pi^{k_{n}} x^{n}\right|=\sum_{n \geqslant 1}|\pi|^{k_{n}} \leqslant \sum_{n \geqslant 0} \frac{1}{n^{2}}<\infty ;
$$

hence the series converges.
5. Let K be a field that is complete with respect to a p-adic absolute value. Consider $\alpha, \beta \in \mathbb{Z}_{p}$ and $m, n \in \mathbb{Z}$ with $n \geqslant 0$. Prove:
(a) The binomial coefficient $\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}$ lies in \mathbb{Z}_{p}.
(b) The power series $F_{\alpha}(X):=\sum_{n \geqslant 0}\binom{\alpha}{n} X^{n} \in K[[X]]$ has convergence radius $\geqslant 1$. Moreover, for $x \in K$ with $|x|<1$ we have $\left|F_{\alpha}(x)-1\right|<1$.
(c) $F_{\alpha+\beta}(x)=F_{\alpha}(x) \cdot F_{\beta}(x)$.
(d) $F_{m \alpha}(x)=F_{\alpha}(x)^{m}$.
(e) $F_{m}(x)=(1+x)^{m}$.
(f) $y:=F_{m / n}(x)$ is the only solution of the equation $y^{n}=(1+x)^{m}$ with $|y-1|<1$, if $p \nmid n$.

This therefore justifies writing $F_{\alpha}(x)=(1+x)^{\alpha}$.

* (g) Do we then also have $\left((1+x)^{\alpha}\right)^{\beta}=(1+x)^{\alpha \beta}$?
(h) Find a closed form of $\sqrt{7}$ in \mathbb{Q}_{3}.

Solution:

(a) Since \mathbb{Z} is dense in \mathbb{Z}_{p}, we can find a sequence of non-negative integers $\left(a_{k}\right)_{k \in \mathbb{Z} \geq 1}$ such that $\lim _{k \rightarrow \infty} a_{k}=\alpha$ in \mathbb{Z}_{p}. It follows that $\lim _{k \rightarrow \infty}\binom{a_{k}}{n}=\binom{\alpha}{n}$, because $\binom{X}{n} \in \mathbb{Z}_{p}[X]$ is a polynomial and it follows from exercise 4 of sheet 15 that polynomial functions are continuous. As $\binom{a_{k}}{n} \in \mathbb{Z} \subset \mathbb{Z}_{p}$ for all k and \mathbb{Z}_{p} is closed in \mathbb{Q}_{p} it follows that the limit $\binom{\alpha}{n}$ also lies in \mathbb{Z}_{p}.
(b) By (a), we have $\binom{\alpha}{n} \in \mathbb{Z}_{p}$ and hence $\left|\binom{\alpha}{n}\right| \leqslant 1$. Thus by exercise 4 the radius of convergence is at least 1 . In particular it converges whenever $|x|<1$. In that case the multiplicativity of the norm implies that $\left.\left\lvert\, \begin{array}{c}\alpha \\ n\end{array}\right.\right) x^{n}\left|\leqslant|x|^{n} \leqslant|x|\right.$ for all $n \geqslant 1$. Thus

$$
\left|F_{\alpha}(x)-1\right|=\left|\sum_{n \geqslant 1}\binom{\alpha}{n} x^{n}\right| \leqslant \sup \left\{\left|\binom{\alpha}{n} x^{n}\right|: n \geqslant 1\right\} \leqslant|x|<1 .
$$

(c) We will use the fact that for convergent series $\sum_{n \geqslant 0} a_{n}$ and $\sum_{n \geqslant 0} b_{n}$ in a nonarchimedean complete field K the product can be calculated as the Cauchy product $\sum_{k \geqslant 0} \sum_{n+m=k} a_{m} b_{n}$. A reference for this fact and many other useful statements about infinite series can be found for example in the following expository text by Keith Conrad:
https://kconrad.math.uconn.edu/blurbs/gradnumthy/infseriespadic.pdf We calculate

$$
F_{\alpha}(x) \cdot F_{\beta}(x)=\sum_{n \geqslant 0} x^{n} \sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k},
$$

and hence the desired equality follows from the following
Claim: We have $\sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k}=\binom{\alpha+\beta}{n}$.
Proof. In the case when $\alpha, \beta \in \mathbb{Z}^{\geqslant 0}$, this is just the Vandermonde identity. For the general case note that the polynomials $\sum_{k=0}^{n}\binom{X}{k}\binom{Y}{n-k}$ and $\binom{X+Y}{n}$ in $\mathbb{Z}_{p}[X, Y]$ agree on the set $\left(\mathbb{Z}^{\geqslant 0}\right)^{2}$ which is dense in $\left(\mathbb{Z}_{p}\right)^{2}$. Because polynomial functions are continuous it follows that they agree everywhere.
(d) For $m=0$ this is clear from the definition. For $m>0$ it follows by induction from (c). For $m<0$ just observe that by (c) we have $F_{m \alpha}(x) \cdot F_{-m \alpha}(x)=$ $F_{0}(x)=1$ and therefore $F_{m \alpha}(x)=F_{-m \alpha}(x)^{-1}=\left(F_{\alpha}(x)^{-m}\right)^{-1}=F_{\alpha}(x)^{m}$.
(e) For $m \geqslant 0$ this follows immediately from the binomial theorem. For $m<0$ we deduce from (d) that $F_{m}(x)=F_{-m}(x)^{-1}=\left((1+x)^{-m}\right)^{-1}=(1+x)^{m}$.
(f) We calculate

$$
y^{n}=F_{m / n}(x)^{n} \stackrel{(d)}{=} F_{m}(x) \stackrel{(e)}{=}(1+x)^{m} .
$$

Moreover $|y-1|<1$ by (a), which is equivalent to saying that $y \in \mathcal{O}_{K}$ and $y \equiv 1 \bmod (p)$. It remains to show that y is the only root of $f(X):=$ $X^{n}-(1+x)^{m} \in \mathcal{O}_{K}[X]$ that is $\equiv 1 \bmod (p)$. But since $n \not \equiv 0 \bmod (p)$, we have $f^{\prime}(y)=n y^{n-1} \not \equiv 0 \bmod (p)$. Thus $y \bmod (p)$ is a simple root of $f \bmod (p)$; so by Hensel's lemma f has precisely one root in \mathcal{O}_{K} that is $\equiv 1 \bmod (p)$, as desired.

* (g) Yes, by a similar, though somewhat more elaborate, reasoning as in (c). Likewise we have $((1+x)(1+y))^{\alpha}=(1+x)^{\alpha}(1+y)^{\alpha}$ whenever $|x|,|y|<1$.
(h) We have $F_{1 / 2}(6)^{2}=1+6=7$. Thus $\sqrt{7}=F_{1 / 2}(6)$.
*6. (Newton method for finding zeros of a polynomial) Let p be a prime number, let $f \in \mathbb{Z}_{p}[X]$ and let $\alpha \in \mathbb{Z}_{p}$ be a root of f such that $f^{\prime}(\alpha) \neq 0$. Set

$$
U:=\left\{a \in \mathbb{Z}_{p}:|f(a)|<\left|f^{\prime}(a)\right|^{2} \text { and }|\alpha-a|<\left|f^{\prime}(a)\right|\right\},
$$

which is an open neighborhood of α in \mathbb{Z}_{p}. Take $a_{1} \in U$ and recursively define $a_{n+1}:=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}$ for $n \geqslant 1$. Show that for all n :
(a) $a_{n} \in U$,
(b) $\left|f^{\prime}\left(a_{n}\right)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$,
(c) $\left|f\left(a_{n}\right)\right| \leqslant\left|f^{\prime}\left(a_{1}\right)\right|^{2} t^{2^{n-1}}$ for $t=\left|f\left(a_{1}\right) / f^{\prime}\left(a_{1}\right)\right|<1$.

Moreover, show that $\lim _{n \rightarrow \infty} a_{n}=\alpha$ and $\left|f^{\prime}(\alpha)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$.
Solution: See the proof of Theorem 4.1 in Section 5 of the following notes by Keith Conrad:
https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf

