Exercise sheet 17

Absolute values, Extensions of Complete Absolute Values

- 1. Let | | be the usual archimedean absolute value on \mathbb{R} and on \mathbb{Q} .
 - (a) Prove that $||(x, y)|| := |x + \sqrt{2}y|$ defines a norm on the Q-vector space \mathbb{Q}^2 , which is not equivalent to the euclidean norm.
 - (b) Can one construct a similar example with the *p*-adic norm on \mathbb{Q} ?
- 2. Determine to which extent the factors in Hensel's lemma are unique.
- *3. Here we consider \mathbb{Q}_p as an abstract field and include $\mathbb{Q}_{\infty} := \mathbb{R}$.
 - (a) Show that \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic for any $p \neq q$.
 - (b) Prove that every automorphism of \mathbb{Q}_p is trivial.

Hint: Look at which elements are squares in the respective field.

- 4. Prove that every finite extension of $\mathbb{C}((t))$ of degree *n* is isomorphic to $\mathbb{C}((s))$ where $s^n = t$.
- 5. Let K be a non-archimedean complete field such that \mathcal{O}_K is a discrete valuation ring. Prove that for every finite extension L/K with separable residue field extension there exists $\alpha \in L$ such that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$.
- 6. Let K be a field with a complete discrete valuation v, and let \overline{K} be an algebraic closure of K. In the lecture we have seen that v extends uniquely to a valuation \overline{v} on \overline{K} . Show that this extension is not complete.

Hint: Consider roots of an element in K with positive valuation.