
D-MATH Number Theory II FS 2024
Prof. Richard Pink

Solutions 17

Absolute values, Extensions of Complete Absolute Values

1. Let | | be the usual archimedean absolute value on R and on Q.

(a) Prove that ∥(x, y)∥ := |x +
√
2 y| defines a norm on the Q-vector space Q2,

which is not equivalent to the euclidean norm.

(b) Can one construct a similar example with the p-adic norm on Q?

Solution:

(a) Since
√
2 /∈ Q, we have ∥(x, y)∥ = 0 if and only if x = y = 0. Also, for any

c ∈ Q we have

∥(cx, cy)∥ =
∣∣cx+

√
2 cy

∣∣ = |c| · ∥(x, y)∥.

Finally, for any x1, x2, y1, y2 ∈ Q we compute

∥(x1 + x2, y1 + y2)∥ = |(x1 + x2) +
√
2 (y1 + y2)| ⩽ |x1 +

√
2 y1|+ |x2 +

√
2 y2|

= ∥(x1, y1)∥+ ∥(x2, y2)∥.

Thus ∥ ∥ is a norm.

Aliter: The axioms for the absolute value imply that | | is a norm on the
R-vector space R. It is therefore also a norm on R as a Q-vector space
and therefore induces a norm on any Q-subspace thereof. By transport of
structure via the isomorphism Q2 ∼−→ Q +

√
2Q ⊂ R, (x, y) 7→ x +

√
2 y we

therefore obtain a norm on Q2.

Finally consider a sequence (xn) in Q that converges to
√
2 in R. Then the

sequence ∥(xn,−1)∥ converges to 0, but
√

x2
n + 1 ⩾ 1 does not. Thus our

norm is not equivalent to the euclidean norm.

(b) This works exactly as in (a) with R replaced by Qp and
√
2 replaced by any

element of Qp ∖Q.

2. Determine to which extent the factors in Hensel’s lemma are unique.

Solution: Let K be a field with a complete ultrametric absolute value | | and let
p be the maximal ideal of its valuation ring Op. Consider a primitive f ∈ Op[X]
and a decomposition (f mod p) = ḡ · h̄ with coprime polynomials ḡ, h̄ ∈ k[X].
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Hensel’s Lemma states that there exist g, h ∈ Op[X] with (g mod p) = ḡ and
(h mod p) = h̄ and deg(g) = deg(ḡ) and f = g · h.
We claim that arbitrary polynomials g′, h′ have the same properties if and only if
g′ = ug and h′ = u−1h for some u ∈ Op with u− 1 ∈ p. The ‘if’ part is clear. To
prove the ‘only if’ part take g′, h′ with the same properties. Then by assumption
we have deg(ḡ) = deg(g) = deg(g′), and the highest coefficients of g and g′ coincide
modulo p. After multiplying g and g′ by suitable units we may assume that g, g′

are monic, and then we will prove that g = g′ and h = h′.

So assume that this is not the case. Since each of these equalities implies the other,
we then have g ̸= g′ and h ̸= h′. As g and g′ coincide modulo p and are both
monic, there exist 0 ̸= π1 ∈ p and a primitive p ∈ Op[X] with deg(p) < deg(g) such
that g′ = g + π1p. Also, since h and h′ coincide modulo p, there exist 0 ̸= π2 ∈ p
and a primitive q ∈ Op[X] such that h′ = h+ π2q. We then compute

0 = g′h′ − gh = gπ2q + hπ1p+ π1π2pq.

If |π1| < |π2|, dividing by π2 and reducing modulo p yields ḡq̄ = 0, which contra-
dicts g and q being primitive. In the same way |π1| > |π2| yields a contradiction.
Thus we have |π1| = |π2| and hence c := π1/π2 ∈ O×

p . Dividing the equation by
π2 and reducing modulo p then yields

ḡq̄ + h̄c̄p̄ = 0.

Since ḡ and h̄ are coprime, this implies ḡ|p̄. But by construction p̄ = (p mod p)
is non-zero of degree < deg(g) = deg(ḡ). Thus we have a contradiction and are
therefore done.

*3. Here we consider Qp as an abstract field and include Q∞ := R.

(a) Show that Qp and Qq are not isomorphic for any p ̸= q.

(b) Prove that every automorphism of Qp is trivial.

Hint: Look at which elements are squares in the respective field.

Solution: (a) For any prime number p, the equation x2 = p has a solution in R,
but not in Qp, because every element of Q×

p has the form x = pnu for some n ∈ Z
and u ∈ Z×

p and hence x2 = p2u2 with u2 ∈ Z×
p . Thus Qp ̸∼= R.

For any two prime numbers p ̸= q, without loss of generality we can assume that
q is odd. Choose an integer a with pa ≡ 1 mod (q). After replacing a by a + q if
necessary, we can assume that in addition p ∤ a. Then the equation x2 = pa does
not have a solution in Qp for the same reason as above. But we claim that it has
a solution in Qq. Indeed, for every n ⩾ 1 the residue class pa + qnZ lies in the
subgroup 1+ qZ/qnZ of odd order qn−1. Thus the equation x2 = pa has a solution
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in 1+qZ/qnZ, namely (pa)k+qnZ for the integer k := qn−1+1
2

. Varying n, by Prop
8.1.9 of the lecture course it follows that x2 = pa has a solution in Zq, as claimed.
(Aliter: Use exercise 5 of sheet 16.) As the same equation has a solution in Qp

but not in Qq, the fields are not isomorphic.

(b) Let σ be any automorphism of Qp. In each case we exploit the fact that σ
maps the set of squares in Qp bijectively to itself.

In Qp = R the squares are precisely the non-negative real numbers. Thus σ
preserves the sign. Applying this to the difference x − y of two real numbers it
follows that σ preserves the order relation ‘<’. Being order preserving and the
identity on the dense subset Q it must therefore be the identity.

For Qp with p < ∞ we follow Lahtonen:
https://math.stackexchange.com/q/449465

For p odd we first prove that an element a ∈ Qp lies in Zp if and only if 1 + pa2 is
a square in Qp. Indeed, if a ∈ Zp, we have X

2−1−pa2 ≡ (X−1)(X+1) mod (p)
with coprime factors X−1, X+1 ∈ Fp[X]; so by Hensel’s lemma the left hand side
factors in Zp[X] and hence 1 + pa2 is a square in Qp. Conversely, if a ∈ Qp ∖ Zp,
then 0 > ordp(pa

2) = ordp(1+pa2) is odd and so 1+pa2 cannot be a square in Qp.

For p = 2 we show that an element a ∈ Q2 lies in Z2 if and only if 1 + 8a2 is
a square in Q2. Suppose first that a ∈ Z2. Then 1 + 8a2 is a square in Q2 if
and only if X2 − 1 − 8a2 = 0 has a solution in Q2. Substituting X by 2Y + 1
and dividing by 4, we obtain the equivalent equation Y 2 + Y − 2a2 = 0. Since
Y 2 + Y − 2a2 ≡ Y (Y + 1) mod (2) with coprime factors Y , Y + 1 ∈ F2[X], we
can apply Hensel’s lemma and deduce that 1 + 8a2 is a square in Q2. Conversely,
suppose that a ∈ Q2 ∖ Z2, that is ord2(a) < 0. If ord2(a) ⩽ −2, analogously to
the case when p is odd, it follows that ord2(1 + 8a2) is odd and hence 1 + 8a2 is
not a square in Q2. By contrast, if ord2(a) = −1, then 2a ∈ Z×

2 = 1 + 2Z2 and
hence 1+8a2 ≡ 3 mod (4). In particular ord2(1+8a2) = 0, so if 1+8a2 is a square
in Q2, it is already the square of an element in Z×

2 = 1+2Z2. But for every b ∈ Z2

we have (1 + 2b)2 = 1 + 4b + 4b2 ≡ 1 mod (4). Thus 1 + 8a2 ≡ 3 mod (4) implies
that 1 + 8a2 is not a square in Q2.

In all cases we have thus proved that an element a ∈ Qp lies in Zp if and only if
1 + qa2 is a square in Qp for q := p or 8. Since σ(1 + qa2) = 1 + qσ(a)2 and the
set of squares is preserved by σ, it follows that σ(Zp) = Zp. As σ is the identity
on Q, for all α ∈ Q and all k ∈ Z it follows that σ(α + pkZp) = α + pkZp.

Now consider an arbitrary a ∈ Qp. Since Q is dense in Qp, for any k ∈ Z there
exists an α ∈ Q ∩ (a + pkZp). The strict triangle inequality then implies that
a + pkZp = α + pkZp. Thus it follows that σ(a + pkZp) = a + pkZp. Since⋂

k⩾0(α + pkZp) = {a}, we conclude that σ(a) = a, as desired.
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4. Prove that every finite extension of C((t)) of degree n is isomorphic to C((s))
where sn = t.

Solution: Note thatK := C((t)) is a complete non-archimedean field with respect
to the discrete valuation defined by v(akt

k + ak+1t
k+1 + . . . ) := k if ak ̸= 0 and

v(0) = +∞, and its valuation ring is OK = C[[t]]. Let L be a finite extension
of K of degree n. Since the residue field C of OK is algebraically closed, the
extension of residue fields is trivial. Thus L is totally ramified over K. For
any uniformizer π ∈ OL, that is, any generator of the maximal ideal of OL,
we therefore have (π)n = tOL and hence πn/t ∈ O×

L . Consider the polynomial
f(X) := Xn − πn

t
∈ OL[X]. Since πn/t is a unit, it is nonzero modulo (π). As the

residue field C of OL is algebraically closed of characteristic zero, it follows that
f mod (π) has a simple root. By Hensel’s lemma this root can be lifted to a root
u ∈ OL of f . This u is a unit, because un = πn/t is a unit. Setting s := π/u ∈ OL,
we deduce that sn = t. Finally observe that s is a root of the polynomial Xn − t
over C[[t]], which is irreducible by the Eisenstein criterion. Thus K[s] ⊂ L is a
subfield of degree n over K, and therefore equal to L. At last the equation sn = t
implies that L = K[s] = C((s)), as desired.

5. Let K be a non-archimedean complete field such that OK is a discrete valua-
tion ring. Prove that for every finite extension L/K with separable residue field
extension there exists α ∈ L such that OL = OK [α].

Solution: See Lemma 10.4 in Chapter II of Neukirch (page 178) or Theorem 10.15
in the following notes by Sutherland:
https://math.mit.edu/classes/18.785/2016fa/LectureNotes10.pdf

6. Let K be a field with a complete discrete valuation v, and let K̄ be an algebraic
closure of K. In the lecture we have seen that v extends uniquely to a valuation
v̄ on K̄. Show that this extension is not complete.

Hint: Consider roots of an element in K with positive valuation.

Solution: Without loss of generality we may assume that v is normalized. Choose
an element π0 ∈ K with v(π0) = 1. For each n ⩾ 1 choose an element πn ∈ K̄ such
that πn

n = πn−1. Then πn is a root of the polynomialXn!−π0 and hence v̄(πn) =
1
n!
.

Thus Kn := K(πn) is totally ramified of degree n! over K. In particular the value
group of Kn is v̄(K×

n ) =
1
n!
Z.

Now assume that v̄ is complete. Then K̄ contains the element

ξ :=
∑
n⩾0

πnπ
n
0 .

In other words ξ is algebraic over K, say of degree d. Thus ξ is of degree ⩽ d over
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Km for every m ⩾ 0. Since the partial sum

ξm :=
m∑

n=0

πnπ
n
0

already lies in Km, it follows that

ξ − ξm =
∑

n⩾m+1

πnπ
n
0

has degree ⩽ d over Km!. The value group 1
m!
Z of Km therefore has index ⩽ d in

the value group of Km(ξ − ξm). On the other hand we have

v̄(ξ − ξm) = v̄(πm+1π
m+1
0 ) = 1

(m+1)!
+m+ 1 ≡ 1

(m+1)!
mod 1

m!
Z.

Thus the index of value groups is a multiple of m + 1. Together this yields a
contradiction whenever m ⩾ d. Therefore v̄ is not complete.
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