D-MATH
Prof. Richard Pink

Solutions 17

Absolute values, Extensions of Complete Absolute Values

1. Let $|\mid$ be the usual archimedean absolute value on \mathbb{R} and on \mathbb{Q}.
(a) Prove that $\|(x, y)\|:=|x+\sqrt{2} y|$ defines a norm on the \mathbb{Q}-vector space \mathbb{Q}^{2}, which is not equivalent to the euclidean norm.
(b) Can one construct a similar example with the p-adic norm on \mathbb{Q} ?

Solution:

(a) Since $\sqrt{2} \notin \mathbb{Q}$, we have $\|(x, y)\|=0$ if and only if $x=y=0$. Also, for any $c \in \mathbb{Q}$ we have

$$
\|(c x, c y)\|=|c x+\sqrt{2} c y|=|c| \cdot\|(x, y)\| .
$$

Finally, for any $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Q}$ we compute

$$
\begin{aligned}
\left\|\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right\|=\left|\left(x_{1}+x_{2}\right)+\sqrt{2}\left(y_{1}+y_{2}\right)\right| & \leqslant\left|x_{1}+\sqrt{2} y_{1}\right|+\left|x_{2}+\sqrt{2} y_{2}\right| \\
& =\left\|\left(x_{1}, y_{1}\right)\right\|+\left\|\left(x_{2}, y_{2}\right)\right\| .
\end{aligned}
$$

Thus || || is a norm.
Aliter: The axioms for the absolute value imply that || is a norm on the \mathbb{R}-vector space \mathbb{R}. It is therefore also a norm on \mathbb{R} as a \mathbb{Q}-vector space and therefore induces a norm on any \mathbb{Q}-subspace thereof. By transport of structure via the isomorphism $\mathbb{Q}^{2} \xrightarrow{\sim} \mathbb{Q}+\sqrt{2} \mathbb{Q} \subset \mathbb{R},(x, y) \mapsto x+\sqrt{2} y$ we therefore obtain a norm on \mathbb{Q}^{2}.

Finally consider a sequence $\left(x_{n}\right)$ in \mathbb{Q} that converges to $\sqrt{2}$ in \mathbb{R}. Then the sequence $\left\|\left(x_{n},-1\right)\right\|$ converges to 0 , but $\sqrt{x_{n}^{2}+1} \geqslant 1$ does not. Thus our norm is not equivalent to the euclidean norm.
(b) This works exactly as in (a) with \mathbb{R} replaced by \mathbb{Q}_{p} and $\sqrt{2}$ replaced by any element of $\mathbb{Q}_{p} \backslash \mathbb{Q}$.
2. Determine to which extent the factors in Hensel's lemma are unique.

Solution: Let K be a field with a complete ultrametric absolute value || and let \mathfrak{p} be the maximal ideal of its valuation ring $\mathcal{O}_{\mathfrak{p}}$. Consider a primitive $f \in \mathcal{O}_{\mathfrak{p}}[X]$ and a decomposition $(f \bmod \mathfrak{p})=\bar{g} \cdot \bar{h}$ with coprime polynomials $\bar{g}, \bar{h} \in k[X]$.

Hensel's Lemma states that there exist $g, h \in \mathcal{O}_{\mathfrak{p}}[X]$ with $(g \bmod \mathfrak{p})=\bar{g}$ and $(h \bmod \mathfrak{p})=\bar{h}$ and $\operatorname{deg}(g)=\operatorname{deg}(\bar{g})$ and $f=g \cdot h$.
We claim that arbitrary polynomials g^{\prime}, h^{\prime} have the same properties if and only if $g^{\prime}=u g$ and $h^{\prime}=u^{-1} h$ for some $u \in \mathcal{O}_{\mathfrak{p}}$ with $u-1 \in \mathfrak{p}$. The 'if' part is clear. To prove the 'only if' part take g^{\prime}, h^{\prime} with the same properties. Then by assumption we have $\operatorname{deg}(\bar{g})=\operatorname{deg}(g)=\operatorname{deg}\left(g^{\prime}\right)$, and the highest coefficients of g and g^{\prime} coincide modulo \mathfrak{p}. After multiplying g and g^{\prime} by suitable units we may assume that g, g^{\prime} are monic, and then we will prove that $g=g^{\prime}$ and $h=h^{\prime}$.
So assume that this is not the case. Since each of these equalities implies the other, we then have $g \neq g^{\prime}$ and $h \neq h^{\prime}$. As g and g^{\prime} coincide modulo \mathfrak{p} and are both monic, there exist $0 \neq \pi_{1} \in \mathfrak{p}$ and a primitive $p \in \mathcal{O}_{\mathfrak{p}}[X]$ with $\operatorname{deg}(p)<\operatorname{deg}(g)$ such that $g^{\prime}=g+\pi_{1} p$. Also, since h and h^{\prime} coincide modulo \mathfrak{p}, there exist $0 \neq \pi_{2} \in \mathfrak{p}$ and a primitive $q \in \mathcal{O}_{\mathfrak{p}}[X]$ such that $h^{\prime}=h+\pi_{2} q$. We then compute

$$
0=g^{\prime} h^{\prime}-g h=g \pi_{2} q+h \pi_{1} p+\pi_{1} \pi_{2} p q .
$$

If $\left|\pi_{1}\right|<\left|\pi_{2}\right|$, dividing by π_{2} and reducing modulo \mathfrak{p} yields $\bar{g} \bar{q}=0$, which contradicts g and q being primitive. In the same way $\left|\pi_{1}\right|>\left|\pi_{2}\right|$ yields a contradiction. Thus we have $\left|\pi_{1}\right|=\left|\pi_{2}\right|$ and hence $c:=\pi_{1} / \pi_{2} \in \mathcal{O}_{\mathfrak{p}}^{\times}$. Dividing the equation by π_{2} and reducing modulo \mathfrak{p} then yields

$$
\bar{g} \bar{q}+\bar{h} \bar{c} \bar{p}=0
$$

Since \bar{g} and \bar{h} are coprime, this implies $\bar{g} \mid \bar{p}$. But by construction $\bar{p}=(p \bmod \mathfrak{p})$ is non-zero of degree $<\operatorname{deg}(g)=\operatorname{deg}(\bar{g})$. Thus we have a contradiction and are therefore done.
*3. Here we consider \mathbb{Q}_{p} as an abstract field and include $\mathbb{Q}_{\infty}:=\mathbb{R}$.
(a) Show that \mathbb{Q}_{p} and \mathbb{Q}_{q} are not isomorphic for any $p \neq q$.
(b) Prove that every automorphism of \mathbb{Q}_{p} is trivial.

Hint: Look at which elements are squares in the respective field.
Solution: (a) For any prime number p, the equation $x^{2}=p$ has a solution in \mathbb{R}, but not in \mathbb{Q}_{p}, because every element of \mathbb{Q}_{p}^{\times}has the form $x=p^{n} u$ for some $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$and hence $x^{2}=p^{2} u^{2}$ with $u^{2} \in \mathbb{Z}_{p}^{\times}$. Thus $\mathbb{Q}_{p} \neq \mathbb{R}$.
For any two prime numbers $p \neq q$, without loss of generality we can assume that q is odd. Choose an integer a with $p a \equiv 1 \bmod (q)$. After replacing a by $a+q$ if necessary, we can assume that in addition $p \nmid a$. Then the equation $x^{2}=p a$ does not have a solution in \mathbb{Q}_{p} for the same reason as above. But we claim that it has a solution in \mathbb{Q}_{q}. Indeed, for every $n \geqslant 1$ the residue class $p a+q^{n} \mathbb{Z}$ lies in the subgroup $1+q \mathbb{Z} / q^{n} \mathbb{Z}$ of odd order q^{n-1}. Thus the equation $x^{2}=p a$ has a solution
in $1+q \mathbb{Z} / q^{n} \mathbb{Z}$, namely $(p a)^{k}+q^{n} \mathbb{Z}$ for the integer $k:=\frac{q^{n-1}+1}{2}$. Varying n, by Prop 8.1.9 of the lecture course it follows that $x^{2}=p a$ has a solution in \mathbb{Z}_{q}, as claimed. (Aliter: Use exercise 5 of sheet 16.) As the same equation has a solution in \mathbb{Q}_{p} but not in \mathbb{Q}_{q}, the fields are not isomorphic.
(b) Let σ be any automorphism of \mathbb{Q}_{p}. In each case we exploit the fact that σ maps the set of squares in \mathbb{Q}_{p} bijectively to itself.
In $\mathbb{Q}_{p}=\mathbb{R}$ the squares are precisely the non-negative real numbers. Thus σ preserves the sign. Applying this to the difference $x-y$ of two real numbers it follows that σ preserves the order relation ' $<$ '. Being order preserving and the identity on the dense subset \mathbb{Q} it must therefore be the identity.
For \mathbb{Q}_{p} with $p<\infty$ we follow Lahtonen:
https://math.stackexchange.com/q/449465
For p odd we first prove that an element $a \in \mathbb{Q}_{p}$ lies in \mathbb{Z}_{p} if and only if $1+p a^{2}$ is a square in \mathbb{Q}_{p}. Indeed, if $a \in \mathbb{Z}_{p}$, we have $X^{2}-1-p a^{2} \equiv(X-1)(X+1) \bmod (p)$ with coprime factors $X-1, X+1 \in \mathbb{F}_{p}[X]$; so by Hensel's lemma the left hand side factors in $\mathbb{Z}_{p}[X]$ and hence $1+p a^{2}$ is a square in \mathbb{Q}_{p}. Conversely, if $a \in \mathbb{Q}_{p} \backslash \mathbb{Z}_{p}$, then $0>\operatorname{ord}_{p}\left(p a^{2}\right)=\operatorname{ord}_{p}\left(1+p a^{2}\right)$ is odd and so $1+p a^{2}$ cannot be a square in \mathbb{Q}_{p}.
For $p=2$ we show that an element $a \in \mathbb{Q}_{2}$ lies in \mathbb{Z}_{2} if and only if $1+8 a^{2}$ is a square in \mathbb{Q}_{2}. Suppose first that $a \in \mathbb{Z}_{2}$. Then $1+8 a^{2}$ is a square in \mathbb{Q}_{2} if and only if $X^{2}-1-8 a^{2}=0$ has a solution in \mathbb{Q}_{2}. Substituting X by $2 Y+1$ and dividing by 4 , we obtain the equivalent equation $Y^{2}+Y-2 a^{2}=0$. Since $Y^{2}+Y-2 a^{2} \equiv Y(Y+1) \bmod (2)$ with coprime factors $Y, Y+1 \in \mathbb{F}_{2}[X]$, we can apply Hensel's lemma and deduce that $1+8 a^{2}$ is a square in \mathbb{Q}_{2}. Conversely, suppose that $a \in \mathbb{Q}_{2} \backslash \mathbb{Z}_{2}$, that is $\operatorname{ord}_{2}(a)<0$. If $\operatorname{ord}_{2}(a) \leqslant-2$, analogously to the case when p is odd, it follows that $\operatorname{ord}_{2}\left(1+8 a^{2}\right)$ is odd and hence $1+8 a^{2}$ is not a square in \mathbb{Q}_{2}. By contrast, if $\operatorname{ord}_{2}(a)=-1$, then $2 a \in \mathbb{Z}_{2}^{\times}=1+2 \mathbb{Z}_{2}$ and hence $1+8 a^{2} \equiv 3 \bmod$ (4). In particular $\operatorname{ord}_{2}\left(1+8 a^{2}\right)=0$, so if $1+8 a^{2}$ is a square in \mathbb{Q}_{2}, it is already the square of an element in $\mathbb{Z}_{2}^{\times}=1+2 \mathbb{Z}_{2}$. But for every $b \in \mathbb{Z}_{2}$ we have $(1+2 b)^{2}=1+4 b+4 b^{2} \equiv 1 \bmod (4)$. Thus $1+8 a^{2} \equiv 3 \bmod (4)$ implies that $1+8 a^{2}$ is not a square in \mathbb{Q}_{2}.
In all cases we have thus proved that an element $a \in \mathbb{Q}_{p}$ lies in \mathbb{Z}_{p} if and only if $1+q a^{2}$ is a square in \mathbb{Q}_{p} for $q:=p$ or 8 . Since $\sigma\left(1+q a^{2}\right)=1+q \sigma(a)^{2}$ and the set of squares is preserved by σ, it follows that $\sigma\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p}$. As σ is the identity on \mathbb{Q}, for all $\alpha \in \mathbb{Q}$ and all $k \in \mathbb{Z}$ it follows that $\sigma\left(\alpha+p^{k} \mathbb{Z}_{p}\right)=\alpha+p^{k} \mathbb{Z}_{p}$.
Now consider an arbitrary $a \in \mathbb{Q}_{p}$. Since \mathbb{Q} is dense in \mathbb{Q}_{p}, for any $k \in \mathbb{Z}$ there exists an $\alpha \in \mathbb{Q} \cap\left(a+p^{k} \mathbb{Z}_{p}\right)$. The strict triangle inequality then implies that $a+p^{k} \mathbb{Z}_{p}=\alpha+p^{k} \mathbb{Z}_{p}$. Thus it follows that $\sigma\left(a+p^{k} \mathbb{Z}_{p}\right)=a+p^{k} \mathbb{Z}_{p}$. Since $\bigcap_{k \geqslant 0}\left(\alpha+p^{k} \mathbb{Z}_{p}\right)=\{a\}$, we conclude that $\sigma(a)=a$, as desired.
4. Prove that every finite extension of $\mathbb{C}((t))$ of degree n is isomorphic to $\mathbb{C}((s))$ where $s^{n}=t$.
Solution: Note that $K:=\mathbb{C}((t))$ is a complete non-archimedean field with respect to the discrete valuation defined by $v\left(a_{k} t^{k}+a_{k+1} t^{k+1}+\ldots\right):=k$ if $a_{k} \neq 0$ and $v(0)=+\infty$, and its valuation ring is $\mathcal{O}_{K}=\mathbb{C}[[t]]$. Let L be a finite extension of K of degree n. Since the residue field \mathbb{C} of \mathcal{O}_{K} is algebraically closed, the extension of residue fields is trivial. Thus L is totally ramified over K. For any uniformizer $\pi \in \mathcal{O}_{L}$, that is, any generator of the maximal ideal of \mathcal{O}_{L}, we therefore have $(\pi)^{n}=t \mathcal{O}_{L}$ and hence $\pi^{n} / t \in \mathcal{O}_{L}^{\times}$. Consider the polynomial $f(X):=X^{n}-\frac{\pi^{n}}{t} \in \mathcal{O}_{L}[X]$. Since π^{n} / t is a unit, it is nonzero modulo (π). As the residue field \mathbb{C} of \mathcal{O}_{L} is algebraically closed of characteristic zero, it follows that $f \bmod (\pi)$ has a simple root. By Hensel's lemma this root can be lifted to a root $u \in \mathcal{O}_{L}$ of f. This u is a unit, because $u^{n}=\pi^{n} / t$ is a unit. Setting $s:=\pi / u \in \mathcal{O}_{L}$, we deduce that $s^{n}=t$. Finally observe that s is a root of the polynomial $X^{n}-t$ over $\mathbb{C}[t t]$, which is irreducible by the Eisenstein criterion. Thus $K[s] \subset L$ is a subfield of degree n over K, and therefore equal to L. At last the equation $s^{n}=t$ implies that $L=K[s]=\mathbb{C}((s))$, as desired.
5. Let K be a non-archimedean complete field such that \mathcal{O}_{K} is a discrete valuation ring. Prove that for every finite extension L / K with separable residue field extension there exists $\alpha \in L$ such that $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]$.
Solution: See Lemma 10.4 in Chapter II of Neukirch (page 178) or Theorem 10.15 in the following notes by Sutherland:
https://math.mit.edu/classes/18.785/2016fa/LectureNotes10.pdf
6. Let K be a field with a complete discrete valuation v, and let \bar{K} be an algebraic closure of K. In the lecture we have seen that v extends uniquely to a valuation \bar{v} on \bar{K}. Show that this extension is not complete.
Hint: Consider roots of an element in K with positive valuation.
Solution: Without loss of generality we may assume that v is normalized. Choose an element $\pi_{0} \in K$ with $v\left(\pi_{0}\right)=1$. For each $n \geqslant 1$ choose an element $\pi_{n} \in \bar{K}$ such that $\pi_{n}^{n}=\pi_{n-1}$. Then π_{n} is a root of the polynomial $X^{n!}-\pi_{0}$ and hence $\bar{v}\left(\pi_{n}\right)=\frac{1}{n!}$. Thus $K_{n}:=K\left(\pi_{n}\right)$ is totally ramified of degree n ! over K. In particular the value group of K_{n} is $\bar{v}\left(K_{n}^{\times}\right)=\frac{1}{n!} \mathbb{Z}$.
Now assume that \bar{v} is complete. Then \bar{K} contains the element

$$
\xi:=\sum_{n \geqslant 0} \pi_{n} \pi_{0}^{n} .
$$

In other words ξ is algebraic over K, say of degree d. Thus ξ is of degree $\leqslant d$ over
K_{m} for every $m \geqslant 0$. Since the partial sum

$$
\xi_{m}:=\sum_{n=0}^{m} \pi_{n} \pi_{0}^{n}
$$

already lies in K_{m}, it follows that

$$
\xi-\xi_{m}=\sum_{n \geqslant m+1} \pi_{n} \pi_{0}^{n}
$$

has degree $\leqslant d$ over $K_{m!}$. The value group $\frac{1}{m!} \mathbb{Z}$ of K_{m} therefore has index $\leqslant d$ in the value group of $K_{m}\left(\xi-\xi_{m}\right)$. On the other hand we have

$$
\bar{v}\left(\xi-\xi_{m}\right)=\bar{v}\left(\pi_{m+1} \pi_{0}^{m+1}\right)=\frac{1}{(m+1)!}+m+1 \equiv \frac{1}{(m+1)!} \bmod \frac{1}{m!} \mathbb{Z}
$$

Thus the index of value groups is a multiple of $m+1$. Together this yields a contradiction whenever $m \geqslant d$. Therefore \bar{v} is not complete.

