Number Theory II

Solutions 17

Absolute values, Extensions of Complete Absolute Values

- 1. Let | | be the usual archimedean absolute value on \mathbb{R} and on \mathbb{Q} .
 - (a) Prove that $||(x, y)|| := |x + \sqrt{2}y|$ defines a norm on the Q-vector space \mathbb{Q}^2 , which is not equivalent to the euclidean norm.
 - (b) Can one construct a similar example with the *p*-adic norm on \mathbb{Q} ?

Solution:

(a) Since $\sqrt{2} \notin \mathbb{Q}$, we have ||(x, y)|| = 0 if and only if x = y = 0. Also, for any $c \in \mathbb{Q}$ we have

$$\|(cx, cy)\| = |cx + \sqrt{2} cy| = |c| \cdot \|(x, y)\|.$$

Finally, for any $x_1, x_2, y_1, y_2 \in \mathbb{Q}$ we compute

$$\|(x_1 + x_2, y_1 + y_2)\| = |(x_1 + x_2) + \sqrt{2}(y_1 + y_2)| \leq |x_1 + \sqrt{2}y_1| + |x_2 + \sqrt{2}y_2|$$

= $\|(x_1, y_1)\| + \|(x_2, y_2)\|.$

Thus $\| \|$ is a norm.

Aliter: The axioms for the absolute value imply that | | is a norm on the \mathbb{R} -vector space \mathbb{R} . It is therefore also a norm on \mathbb{R} as a \mathbb{Q} -vector space and therefore induces a norm on any \mathbb{Q} -subspace thereof. By transport of structure via the isomorphism $\mathbb{Q}^2 \xrightarrow{\sim} \mathbb{Q} + \sqrt{2}\mathbb{Q} \subset \mathbb{R}$, $(x, y) \mapsto x + \sqrt{2}y$ we therefore obtain a norm on \mathbb{Q}^2 .

Finally consider a sequence (x_n) in \mathbb{Q} that converges to $\sqrt{2}$ in \mathbb{R} . Then the sequence $||(x_n, -1)||$ converges to 0, but $\sqrt{x_n^2 + 1} \ge 1$ does not. Thus our norm is not equivalent to the euclidean norm.

- (b) This works exactly as in (a) with \mathbb{R} replaced by \mathbb{Q}_p and $\sqrt{2}$ replaced by any element of $\mathbb{Q}_p \setminus \mathbb{Q}$.
- 2. Determine to which extent the factors in Hensel's lemma are unique.

Solution: Let K be a field with a complete ultrametric absolute value | | and let \mathfrak{p} be the maximal ideal of its valuation ring $\mathcal{O}_{\mathfrak{p}}$. Consider a primitive $f \in \mathcal{O}_{\mathfrak{p}}[X]$ and a decomposition $(f \mod \mathfrak{p}) = \overline{g} \cdot \overline{h}$ with coprime polynomials $\overline{g}, \overline{h} \in k[X]$.

Hensel's Lemma states that there exist $g, h \in \mathcal{O}_{\mathfrak{p}}[X]$ with $(g \mod \mathfrak{p}) = \overline{g}$ and $(h \mod \mathfrak{p}) = \overline{h}$ and $\deg(g) = \deg(\overline{g})$ and $f = g \cdot h$.

We claim that arbitrary polynomials g', h' have the same properties if and only if g' = ug and $h' = u^{-1}h$ for some $u \in \mathcal{O}_{\mathfrak{p}}$ with $u - 1 \in \mathfrak{p}$. The 'if' part is clear. To prove the 'only if' part take g', h' with the same properties. Then by assumption we have $\deg(\bar{g}) = \deg(g) = \deg(g')$, and the highest coefficients of g and g' coincide modulo \mathfrak{p} . After multiplying g and g' by suitable units we may assume that g, g' are monic, and then we will prove that g = g' and h = h'.

So assume that this is not the case. Since each of these equalities implies the other, we then have $g \neq g'$ and $h \neq h'$. As g and g' coincide modulo \mathfrak{p} and are both monic, there exist $0 \neq \pi_1 \in \mathfrak{p}$ and a primitive $p \in \mathcal{O}_{\mathfrak{p}}[X]$ with $\deg(p) < \deg(g)$ such that $g' = g + \pi_1 p$. Also, since h and h' coincide modulo \mathfrak{p} , there exist $0 \neq \pi_2 \in \mathfrak{p}$ and a primitive $q \in \mathcal{O}_{\mathfrak{p}}[X]$ such that $h' = h + \pi_2 q$. We then compute

$$0 = g'h' - gh = g\pi_2 q + h\pi_1 p + \pi_1 \pi_2 p q.$$

If $|\pi_1| < |\pi_2|$, dividing by π_2 and reducing modulo \mathfrak{p} yields $\bar{g}\bar{q} = 0$, which contradicts g and q being primitive. In the same way $|\pi_1| > |\pi_2|$ yields a contradiction. Thus we have $|\pi_1| = |\pi_2|$ and hence $c := \pi_1/\pi_2 \in \mathcal{O}_{\mathfrak{p}}^{\times}$. Dividing the equation by π_2 and reducing modulo \mathfrak{p} then yields

$$\bar{g}\bar{q} + h\bar{c}\bar{p} = 0.$$

Since \bar{g} and h are coprime, this implies $\bar{g}|\bar{p}$. But by construction $\bar{p} = (p \mod \mathfrak{p})$ is non-zero of degree $\langle \deg(g) = \deg(\bar{g}) \rangle$. Thus we have a contradiction and are therefore done.

- *3. Here we consider \mathbb{Q}_p as an abstract field and include $\mathbb{Q}_{\infty} := \mathbb{R}$.
 - (a) Show that \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic for any $p \neq q$.
 - (b) Prove that every automorphism of \mathbb{Q}_p is trivial.

Hint: Look at which elements are squares in the respective field.

Solution: (a) For any prime number p, the equation $x^2 = p$ has a solution in \mathbb{R} , but not in \mathbb{Q}_p , because every element of \mathbb{Q}_p^{\times} has the form $x = p^n u$ for some $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_p^{\times}$ and hence $x^2 = p^2 u^2$ with $u^2 \in \mathbb{Z}_p^{\times}$. Thus $\mathbb{Q}_p \not\cong \mathbb{R}$.

For any two prime numbers $p \neq q$, without loss of generality we can assume that q is odd. Choose an integer a with $pa \equiv 1 \mod (q)$. After replacing a by a + q if necessary, we can assume that in addition $p \nmid a$. Then the equation $x^2 = pa$ does not have a solution in \mathbb{Q}_p for the same reason as above. But we claim that it has a solution in \mathbb{Q}_q . Indeed, for every $n \ge 1$ the residue class $pa + q^n \mathbb{Z}$ lies in the subgroup $1 + q\mathbb{Z}/q^n\mathbb{Z}$ of odd order q^{n-1} . Thus the equation $x^2 = pa$ has a solution

in $1 + q\mathbb{Z}/q^n\mathbb{Z}$, namely $(pa)^k + q^n\mathbb{Z}$ for the integer $k := \frac{q^{n-1}+1}{2}$. Varying *n*, by Prop 8.1.9 of the lecture course it follows that $x^2 = pa$ has a solution in \mathbb{Z}_q , as claimed. (*Aliter:* Use exercise 5 of sheet 16.) As the same equation has a solution in \mathbb{Q}_p but not in \mathbb{Q}_q , the fields are not isomorphic.

(b) Let σ be any automorphism of \mathbb{Q}_p . In each case we exploit the fact that σ maps the set of squares in \mathbb{Q}_p bijectively to itself.

In $\mathbb{Q}_p = \mathbb{R}$ the squares are precisely the non-negative real numbers. Thus σ preserves the sign. Applying this to the difference x - y of two real numbers it follows that σ preserves the order relation '<'. Being order preserving and the identity on the dense subset \mathbb{Q} it must therefore be the identity.

For \mathbb{Q}_p with $p < \infty$ we follow Lahtonen: https://math.stackexchange.com/q/449465

For p odd we first prove that an element $a \in \mathbb{Q}_p$ lies in \mathbb{Z}_p if and only if $1 + pa^2$ is a square in \mathbb{Q}_p . Indeed, if $a \in \mathbb{Z}_p$, we have $X^2 - 1 - pa^2 \equiv (X - 1)(X + 1) \mod (p)$ with coprime factors X - 1, $X + 1 \in \mathbb{F}_p[X]$; so by Hensel's lemma the left hand side factors in $\mathbb{Z}_p[X]$ and hence $1 + pa^2$ is a square in \mathbb{Q}_p . Conversely, if $a \in \mathbb{Q}_p \setminus \mathbb{Z}_p$, then $0 > \operatorname{ord}_p(pa^2) = \operatorname{ord}_p(1 + pa^2)$ is odd and so $1 + pa^2$ cannot be a square in \mathbb{Q}_p .

For p = 2 we show that an element $a \in \mathbb{Q}_2$ lies in \mathbb{Z}_2 if and only if $1 + 8a^2$ is a square in \mathbb{Q}_2 . Suppose first that $a \in \mathbb{Z}_2$. Then $1 + 8a^2$ is a square in \mathbb{Q}_2 if and only if $X^2 - 1 - 8a^2 = 0$ has a solution in \mathbb{Q}_2 . Substituting X by 2Y + 1and dividing by 4, we obtain the equivalent equation $Y^2 + Y - 2a^2 = 0$. Since $Y^2 + Y - 2a^2 \equiv Y(Y+1) \mod (2)$ with coprime factors $Y, Y + 1 \in \mathbb{F}_2[X]$, we can apply Hensel's lemma and deduce that $1 + 8a^2$ is a square in \mathbb{Q}_2 . Conversely, suppose that $a \in \mathbb{Q}_2 \setminus \mathbb{Z}_2$, that is $\operatorname{ord}_2(a) < 0$. If $\operatorname{ord}_2(a) \leq -2$, analogously to the case when p is odd, it follows that $\operatorname{ord}_2(1 + 8a^2)$ is odd and hence $1 + 8a^2$ is not a square in \mathbb{Q}_2 . By contrast, if $\operatorname{ord}_2(a) = -1$, then $2a \in \mathbb{Z}_2^{\times} = 1 + 2\mathbb{Z}_2$ and hence $1 + 8a^2 \equiv 3 \mod (4)$. In particular $\operatorname{ord}_2(1 + 8a^2) = 0$, so if $1 + 8a^2$ is a square in \mathbb{Q}_2 , it is already the square of an element in $\mathbb{Z}_2^{\times} = 1 + 2\mathbb{Z}_2$. But for every $b \in \mathbb{Z}_2$ we have $(1 + 2b)^2 = 1 + 4b + 4b^2 \equiv 1 \mod (4)$. Thus $1 + 8a^2 \equiv 3 \mod (4)$ implies that $1 + 8a^2$ is not a square in \mathbb{Q}_2 .

In all cases we have thus proved that an element $a \in \mathbb{Q}_p$ lies in \mathbb{Z}_p if and only if $1 + qa^2$ is a square in \mathbb{Q}_p for q := p or 8. Since $\sigma(1 + qa^2) = 1 + q\sigma(a)^2$ and the set of squares is preserved by σ , it follows that $\sigma(\mathbb{Z}_p) = \mathbb{Z}_p$. As σ is the identity on \mathbb{Q} , for all $\alpha \in \mathbb{Q}$ and all $k \in \mathbb{Z}$ it follows that $\sigma(\alpha + p^k \mathbb{Z}_p) = \alpha + p^k \mathbb{Z}_p$.

Now consider an arbitrary $a \in \mathbb{Q}_p$. Since \mathbb{Q} is dense in \mathbb{Q}_p , for any $k \in \mathbb{Z}$ there exists an $\alpha \in \mathbb{Q} \cap (a + p^k \mathbb{Z}_p)$. The strict triangle inequality then implies that $a + p^k \mathbb{Z}_p = \alpha + p^k \mathbb{Z}_p$. Thus it follows that $\sigma(a + p^k \mathbb{Z}_p) = a + p^k \mathbb{Z}_p$. Since $\bigcap_{k \ge 0} (\alpha + p^k \mathbb{Z}_p) = \{a\}$, we conclude that $\sigma(a) = a$, as desired.

4. Prove that every finite extension of $\mathbb{C}((t))$ of degree *n* is isomorphic to $\mathbb{C}((s))$ where $s^n = t$.

Solution: Note that $K := \mathbb{C}((t))$ is a complete non-archimedean field with respect to the discrete valuation defined by $v(a_k t^k + a_{k+1} t^{k+1} + ...) := k$ if $a_k \neq 0$ and $v(0) = +\infty$, and its valuation ring is $\mathcal{O}_K = \mathbb{C}[[t]]$. Let L be a finite extension of K of degree n. Since the residue field \mathbb{C} of \mathcal{O}_K is algebraically closed, the extension of residue fields is trivial. Thus L is totally ramified over K. For any uniformizer $\pi \in \mathcal{O}_L$, that is, any generator of the maximal ideal of \mathcal{O}_L , we therefore have $(\pi)^n = t\mathcal{O}_L$ and hence $\pi^n/t \in \mathcal{O}_L^{\times}$. Consider the polynomial $f(X) := X^n - \frac{\pi^n}{t} \in \mathcal{O}_L[X]$. Since π^n/t is a unit, it is nonzero modulo (π) . As the residue field \mathbb{C} of \mathcal{O}_L is algebraically closed of characteristic zero, it follows that $f \mod (\pi)$ has a simple root. By Hensel's lemma this root can be lifted to a root $u \in \mathcal{O}_L$ of f. This u is a unit, because $u^n = \pi^n/t$ is a unit. Setting $s := \pi/u \in \mathcal{O}_L$, we deduce that $s^n = t$. Finally observe that s is a root of the polynomial $X^n - t$ over $\mathbb{C}[[t]]$, which is irreducible by the Eisenstein criterion. Thus $K[s] \subset L$ is a subfield of degree n over K, and therefore equal to L. At last the equation $s^n = t$ implies that $L = K[s] = \mathbb{C}((s))$, as desired.

5. Let K be a non-archimedean complete field such that \mathcal{O}_K is a discrete valuation ring. Prove that for every finite extension L/K with separable residue field extension there exists $\alpha \in L$ such that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$.

Solution: See Lemma 10.4 in Chapter II of Neukirch (page 178) or Theorem 10.15 in the following notes by Sutherland:

https://math.mit.edu/classes/18.785/2016fa/LectureNotes10.pdf

6. Let K be a field with a complete discrete valuation v, and let \overline{K} be an algebraic closure of K. In the lecture we have seen that v extends uniquely to a valuation \overline{v} on \overline{K} . Show that this extension is not complete.

Hint: Consider roots of an element in K with positive valuation.

Solution: Without loss of generality we may assume that v is normalized. Choose an element $\pi_0 \in K$ with $v(\pi_0) = 1$. For each $n \ge 1$ choose an element $\pi_n \in \overline{K}$ such that $\pi_n^n = \pi_{n-1}$. Then π_n is a root of the polynomial $X^{n!} - \pi_0$ and hence $\overline{v}(\pi_n) = \frac{1}{n!}$. Thus $K_n := K(\pi_n)$ is totally ramified of degree n! over K. In particular the value group of K_n is $\overline{v}(K_n^{\times}) = \frac{1}{n!}\mathbb{Z}$.

Now assume that \bar{v} is complete. Then \bar{K} contains the element

$$\xi := \sum_{n \ge 0} \pi_n \pi_0^n.$$

In other words ξ is algebraic over K, say of degree d. Thus ξ is of degree $\leqslant d$ over

 K_m for every $m \ge 0$. Since the partial sum

$$\xi_m := \sum_{n=0}^m \pi_n \pi_0^n$$

already lies in K_m , it follows that

$$\xi - \xi_m = \sum_{n \ge m+1} \pi_n \pi_0^n$$

has degree $\leq d$ over $K_{m!}$. The value group $\frac{1}{m!}\mathbb{Z}$ of K_m therefore has index $\leq d$ in the value group of $K_m(\xi - \xi_m)$. On the other hand we have

$$\bar{v}(\xi - \xi_m) = \bar{v}(\pi_{m+1}\pi_0^{m+1}) = \frac{1}{(m+1)!} + m + 1 \equiv \frac{1}{(m+1)!} \mod \frac{1}{m!}\mathbb{Z}.$$

Thus the index of value groups is a multiple of m + 1. Together this yields a contradiction whenever $m \ge d$. Therefore \bar{v} is not complete.