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Prof. Richard Pink

Solutions 17

ABSOLUTE VALUES, EXTENSIONS OF COMPLETE ABSOLUTE VALUES

1. Let | | be the usual archimedean absolute value on R and on Q.

(a)
(b)

Prove that ||(x,y)|| := |z 4+ v2y| defines a norm on the Q-vector space Q?,
which is not equivalent to the euclidean norm.

Can one construct a similar example with the p-adic norm on Q7

Solution:

(a)

(b)

Since v/2 ¢ Q, we have ||(z,y)| = 0 if and only if z = y = 0. Also, for any
¢ € Q we have

(cz, ey)|| = |ex + vV2ey| = |e| - [|(z, )]l-
Finally, for any 1, 22, y1, 42 € Q we compute

(21 + 2,91 + )|l = (1 + 22) + V2 (11 + y2)| < |21 + V21| + |22 + V200
= [y, yo)ll + [[(z2, y2) I

Thus || || is a norm.

Aliter: The axioms for the absolute value imply that | | is a norm on the
R-vector space R. It is therefore also a norm on R as a Q-vector space
and therefore induces a norm on any Q-subspace thereof. By transport of
structure via the isomorphism Q> =5 Q + v2Q C R, (z,y) — = + v2y we
therefore obtain a norm on Q2.

Finally consider a sequence (z,) in Q that converges to v/2 in R. Then the
sequence ||(z,, —1)|| converges to 0, but y/22 4+ 1 > 1 does not. Thus our
norm is not equivalent to the euclidean norm.

This works exactly as in (a) with R replaced by Q, and V2 replaced by any
element of Q, \ Q.

2. Determine to which extent the factors in Hensel’s lemma are unique.

Solution: Let K be a field with a complete ultrametric absolute value | | and let
p be the maximal ideal of its valuation ring O,. Consider a primitive f € O,[X]
and a decomposition (f mod p) = g - h with coprime polynomials g, h € k[X].



*3.

Hensel’s Lemma states that there exist g,h € Oy[X] with (g mod p) = g and
(h mod p) = h and deg(g) = deg(g) and f =g - h.

We claim that arbitrary polynomials ¢’, b’ have the same properties if and only if
g =ug and I = u~'h for some u € O, with u — 1 € p. The ‘if’ part is clear. To
prove the ‘only if” part take ¢’, A’ with the same properties. Then by assumption
we have deg(g) = deg(g) = deg(¢’), and the highest coefficients of g and ¢’ coincide
modulo p. After multiplying g and ¢’ by suitable units we may assume that g, ¢’
are monic, and then we will prove that g = ¢’ and h = h/.

So assume that this is not the case. Since each of these equalities implies the other,
we then have g # ¢’ and h # h'. As g and ¢’ coincide modulo p and are both
monic, there exist 0 # m; € p and a primitive p € O,[X] with deg(p) < deg(g) such
that ¢’ = g + mp. Also, since h and A’ coincide modulo p, there exist 0 # 75 € p
and a primitive ¢ € O,[X] such that b’ = h + moq. We then compute

0 = ¢'h' —gh = gmaq+ hmp + mimapg.

If |m1| < |mal, dividing by 7 and reducing modulo p yields gg = 0, which contra-
dicts g and ¢ being primitive. In the same way |m;| > |m2| yields a contradiction.
Thus we have |m| = || and hence ¢ := 7 /m; € O,F. Dividing the equation by
7 and reducing modulo p then yields

Gg+hep = 0.

Since g and h are coprime, this implies g|p. But by construction p = (p mod p)
is non-zero of degree < deg(g) = deg(g). Thus we have a contradiction and are
therefore done.

Here we consider Q, as an abstract field and include Q := R.

(a) Show that Q, and Q, are not isomorphic for any p # q.

(b) Prove that every automorphism of Q,, is trivial.
Hint: Look at which elements are squares in the respective field.

Solution: (a) For any prime number p, the equation 2> = p has a solution in R,
but not in @Q,, because every element of Q' has the form x = p"u for some n € Z
and u € Z7 and hence z* = p*u® with v* € ZX. Thus Q, % R.

For any two prime numbers p # ¢, without loss of generality we can assume that
q is odd. Choose an integer a with pa = 1 mod (q). After replacing a by a + ¢ if
necessary, we can assume that in addition p{ a. Then the equation 22 = pa does
not have a solution in @Q, for the same reason as above. But we claim that it has
a solution in Q. Indeed, for every n > 1 the residue class pa + ¢"Z lies in the
subgroup 1+ ¢Z/q"Z of odd order ¢"~!. Thus the equation 2% = pa has a solution
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in 1+ qZ/q"Z, namely (pa)* + ¢"Z for the integer k := @. Varying n, by Prop
8.1.9 of the lecture course it follows that 2> = pa has a solution in Z,, as claimed.
(Aliter: Use exercise 5 of sheet 16.) As the same equation has a solution in Q,
but not in Q,, the fields are not isomorphic.

(b) Let o be any automorphism of Q,. In each case we exploit the fact that o
maps the set of squares in QQ, bijectively to itself.

In @, = R the squares are precisely the non-negative real numbers. Thus o
preserves the sign. Applying this to the difference x — y of two real numbers it
follows that o preserves the order relation ‘<’. Being order preserving and the
identity on the dense subset Q it must therefore be the identity.

For Q, with p < oo we follow Lahtonen:
https://math.stackexchange.com/q/449465

For p odd we first prove that an element a € Q, lies in Z, if and only if 1 + pa? is
a square in Q. Indeed, if a € Z,, we have X? —1—pa®* = (X —1)(X +1) mod (p)
with coprime factors X —1, X +1 € F,[X]; so by Hensel’s lemma the left hand side
factors in Z,[X] and hence 1+ pa? is a square in Q,. Conversely, if a € Q, \ Z,,
then 0 > ord,(pa?) = ord,(1+ pa?) is odd and so 1+ pa® cannot be a square in Q,.

For p = 2 we show that an element a € Q, lies in Z, if and only if 1 + 8a? is
a square in Q,. Suppose first that a € Z,. Then 1 + 8a? is a square in Q, if
and only if X2 — 1 — 8a? = 0 has a solution in Q,. Substituting X by 2V + 1
and dividing by 4, we obtain the equivalent equation Y2 +Y — 2a®> = 0. Since
Y2 +Y —2a® =Y (Y + 1) mod (2) with coprime factors Y, Y + 1 € Fy[X], we
can apply Hensel’s lemma and deduce that 1 + 8a? is a square in Q,. Conversely,
suppose that a € Qy \ Zy, that is ords(a) < 0. If ordy(a) < —2, analogously to
the case when p is odd, it follows that ordy(1 + 8a?) is odd and hence 1 + 8a? is
not a square in Q. By contrast, if ords(a) = —1, then 2a € Z = 1 + 2Z, and
hence 1+8a? = 3 mod (4). In particular ordy(1+8a?) = 0, so if 1+ 8a? is a square
in Q», it is already the square of an element in Z; = 1+ 27Z,. But for every b € Z,
we have (14 2b)? = 1+ 4b+ 4b*> = 1 mod (4). Thus 1+ 8a* = 3 mod (4) implies
that 1 + 8a? is not a square in Q,.

In all cases we have thus proved that an element a € Q, lies in Z, if and only if
1 + ga? is a square in Q, for ¢ := p or 8. Since o(1 + ga?) = 1 + go(a)? and the
set of squares is preserved by o, it follows that o0(Z,) = Z,. As o is the identity
on Q, for all « € Q and all k € Z it follows that o(a + p*Z,) = a + p*Z,.

Now consider an arbitrary a € Q,. Since Q is dense in Q,,, for any k € Z there
exists an @ € Q N (a + p*Z,). The strict triangle inequality then implies that
a+ p*Z, = o+ p*Z,. Thus it follows that o(a + p*Z,) = a + p*Z,. Since
Nisola + p*Zy) = {a}, we conclude that o(a) = a, as desired.



4. Prove that every finite extension of C((t)) of degree n is isomorphic to C((s))
where s" = t.

Solution: Note that K := C((t)) is a complete non-archimedean field with respect
to the discrete valuation defined by v(apt® + apyit*1 +...) := k if a # 0 and
v(0) = +o0, and its valuation ring is Ok = C[[t]]. Let L be a finite extension
of K of degree n. Since the residue field C of Ok is algebraically closed, the
extension of residue fields is trivial. Thus L is totally ramified over K. For
any uniformizer m € Op, that is, any generator of the maximal ideal of Oy,
we therefore have (7)" = tOp and hence 7"/t € Of. Consider the polynomial
f(X):=X"— 2" € Oy[X]. Since 7"/t is a unit, it is nonzero modulo (7). As the
residue field C of Oy, is algebraically closed of characteristic zero, it follows that
f mod (7) has a simple root. By Hensel’s lemma this root can be lifted to a root
u € Op, of f. This u is a unit, because u™ = 7"/t is a unit. Setting s := 7/u € Oy,
we deduce that s™ = t. Finally observe that s is a root of the polynomial X™ — ¢
over C[[t]], which is irreducible by the Eisenstein criterion. Thus K[s] C L is a
subfield of degree n over K, and therefore equal to L. At last the equation s" =t
implies that L = K[s|] = C((s)), as desired.

5. Let K be a non-archimedean complete field such that O is a discrete valua-
tion ring. Prove that for every finite extension L/K with separable residue field
extension there exists o € L such that O = Ok|[a].

Solution: See Lemma 10.4 in Chapter II of Neukirch (page 178) or Theorem 10.15
in the following notes by Sutherland:
https://math.mit.edu/classes/18.785/2016fa/LectureNotes10.pdf

6. Let K be a field with a complete discrete valuation v, and let K be an algebraic
closure of K. In the lecture we have seen that v extends uniquely to a valuation
v on K. Show that this extension is not complete.

Hint: Consider roots of an element in K with positive valuation.

Solution: Without loss of generality we may assume that v is normalized. Choose
an element 7y € K with v(m) = 1. For each n > 1 choose an element m,, € K such
that 7' = m,_;. Then 7, is a root of the polynomial X™—m, and hence o(my,) = %

Thus K, := K(m,) is totally ramified of degree n! over K. In particular the value
group of K, is 9(K)}) = 7.

n:

Now assume that ¥ is complete. Then K contains the element

§ = Znnng.

n=0

In other words ¢ is algebraic over K, say of degree d. Thus £ is of degree < d over



K,, for every m > 0. Since the partial sum

m
. n
Em = E T T
n=0

already lies in K, it follows that

has degree < d over K,,;. The value group %Z of K,, therefore has index < d in
the value group of K,,(§ — &,,). On the other hand we have

V(€ — &) = V( Ty ™) = m—i-m—i—l = mmod %Z.

Thus the index of value groups is a multiple of m + 1. Together this yields a
contradiction whenever m > d. Therefore v is not complete.



