Exercise sheet 18

Newton Polygons, Extensions of Absolute Values

1. (a) Show that $X^{3}-X^{2}-2 X-8$ is irreducible in $\mathbb{Q}[X]$ but splits completely in $\mathbb{Q}_{2}[X]$.
(b) Find two monic polynomials of degree 3 in $\mathbb{Q}_{5}[X]$ with the same Newton polygons, but one irreducible and the other not.
(c) Hensel's lemma concerns a polynomial f with a factorization $(f \bmod \mathfrak{p})=$ $\bar{g} \bar{h}$ such that \bar{g} and \bar{h} are coprime. Show by a counterexample that the assumption 'coprime' is necessary.
2. (Krasner's lemma) Let K be a field that is complete for a non-archimedean absolute value $|\mid$. Let $| \mid$ also denote the unique extension to an algebraic closure \bar{K}. Consider an element $\alpha \in \bar{K}$ that is separable over K, and let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be its Galois conjugates over K. Consider an element $\beta \in \bar{K}$ such that

$$
|\alpha-\beta|<\left|\alpha-\alpha_{i}\right|
$$

for all $2 \leqslant i \leqslant n$. Show that $K(\alpha) \subseteq K(\beta)$.
Hint: Let M be the Galois closure of the extension $K(\alpha, \beta) / K(\beta)$ and consider the action of $\operatorname{Gal}(M / K(\beta))$ on α.
*3. Consider an integer $n \geqslant 1$ and a finite set S of rational primes $p \leqslant \infty$ (including $\mathbb{Q}_{\infty}=\mathbb{R}$). For each $p \in S$ consider field extensions $L_{p, i} / \mathbb{Q}_{p}$ for $1 \leqslant i \leqslant r_{p}$ such that $\sum_{i=1}^{r_{p}}\left[L_{p, i} / \mathbb{Q}_{p}\right]=n$. Show that there exists a number field L of degree n over \mathbb{Q} such that for every $p \in S$ we have $L \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \prod_{i=1}^{r_{p}} L_{p, i}$.
Hint: Use Krasner's lemma from above or adapt it suitably.
4. Let L / K be a purely inseparable finite extension of degree q. Show that every absolute value $|\mid$ on K possesses a unique extension to L, given by the formula

$$
|y|:=\left|y^{q}\right|^{1 / q} .
$$

*5. Let L / K be a finite field extension and let || be a (nontrivial) absolute value on L. Show that the restriction of $\|$ to K is nontrivial.
(Hint: Use Newton polygons.)
6. (a) Determine all the absolute values on $\mathbb{Q}(\sqrt{5})$.
(b) How many extensions to $\mathbb{Q}(\sqrt[n]{2})$ does the archimedean absolute value on \mathbb{Q} admit?

