
D-MATH Number Theory II FS 2024
Prof. Richard Pink

Solutions 18

Newton Polygons, Extensions of Absolute Values

1. (a) Show that X3 −X2 − 2X − 8 is irreducible in Q[X] but splits completely in
Q2[X].

(b) Find two monic polynomials of degree 3 in Q5[X] with the same Newton
polygons, but one irreducible and the other not.

(c) Hensel’s lemma concerns a polynomial f with a factorization (f mod p) =
ḡh̄ such that ḡ and h̄ are coprime. Show by a counterexample that the
assumption ‘coprime’ is necessary.

Solution:

(a) Since the polynomial is monic, any rational root would be an integer that
divides the constant coefficient 8, but ±1,±2,±4,±8 are no roots. Thus
the polynomial has no linear factor, and being of degree 3 it is therefore
irreducible in Q[X].

The Newton polygon with respect to ord2 has the three distinct slopes 2, 1, 0.
By Proposition 9.3.5 from the lecture the polynomial therefore splits com-
pletely over Q2. The following drawing shows the Newton polygon:

(b) The Newton polygon of both polynomials f(X) := X3 + X2 + X + 1 and
g(X) := X3 +X2 +X − 1 is the horizontal straight line between (0, 0) and
(3, 0). The first polynomial is reducible as f(−1) = 0, while g is irreducible
in Q5[X], as its reduction modulo 5 has degree 3 and is irreducible in F5[X].

(c) Let K be a complete non-archimedean field such that OK is a discrete valua-
tion ring, for example K = Qp for any prime number p < ∞. Let π ∈ OK be
a uniformizer, that is a generator of the maximal ideal of OK . Then f(X) :=
X2 − π is irreducible by the Eisenstein criterion and ḡ(X) = h̄(X) = X with
(f mod (π)) = ḡh̄ is a factorization modulo (π).

1



2. (Krasner’s lemma) Let K be a field that is complete for a non-archimedean abso-
lute value | |. Let | | also denote the unique extension to an algebraic closure K̄.
Consider an element α ∈ K̄ that is separable over K, and let α = α1, . . . , αn be
its Galois conjugates over K. Consider an element β ∈ K̄ such that

|α− β| < |α− αi|

for all 2 ⩽ i ⩽ n. Show that K(α) ⊆ K(β).

Hint: Let M be the Galois closure of the extension K(α, β)/K(β) and consider
the action of Gal(M/K(β)) on α.

Solution: See Lemma 8.1.6 on page 429 of [J. Neukirch, A. Schmidt, K. Wingberg:
Cohomology of number fields. Second edition. Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 2008].

*3. Consider an integer n ⩾ 1 and a finite set S of rational primes p ⩽ ∞ (including
Q∞ = R). For each p ∈ S consider field extensions Lp,i/Qp for 1 ⩽ i ⩽ rp such
that

∑rp
i=1[Lp,i/Qp] = n. Show that there exists a number field L of degree n over

Q such that for every p ∈ S we have L⊗Q Qp
∼=

∏rp
i=1 Lp,i.

Hint: Use Krasner’s lemma from above or adapt it suitably.

Solution: As a preparation consider an arbitrary field K with absolute value | |.
We extend this absolute value to polynomials by defining |

∑′ bjX
j| := max{|bj|}.

This induces a metric on K[X]. Convergence of polynomials of a fixed degree is
equivalent to convergence of the coefficients.

Lemma 1. Assume that K is algebraically closed. Let f ∈ K[X] be a monic
polynomial of degree n with roots α1, . . . , αn ∈ K. Then for any ε > 0 there exists
δ > 0 such that for any monic polynomial g ∈ K[X] of degree n with |g − f | < δ,
the roots βi ∈ K of g can be numbered in such a way that |αi − βi| < ε for all i.

Proof. The assertion is equivalent to saying that for any sequence (fk) of monic
polynomials of degree n in K[X] with lim

k→∞
fk = f , the roots αk,i ∈ K of the fk can

be numbered in such a way that lim
k→∞

αk,i = αi for all i. In the archimedean case,

this is for example Proposition 5.2.1 on page 138 in [M. Artin: Algebra. Second
edition. Pearson Education, Harlow, 2011]. The proof for the non-archimedean
case works analogously.

Lemma 2. Assume that K is complete. Let f ∈ K[X] be a monic separable
polynomial of degree n. Then there exists δ > 0 such that for any monic polynomial
g ∈ K[X] of degree n with |g − f | < δ we have K[X]/(g) ∼= K[X]/(f).

Proof. Let K̄ be an algebraic closure of K, endowed with the unique extension of
the absolute value. Let α1, . . . , αn ∈ K̄ denote the roots of f . Let δ > 0 be the
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constant obtained from Lemma 1 for f ∈ K̄[X] and ε := min{|αi − αj| : i ̸= j}/2.
Let g ∈ K[X] be any monic polynomial of degree n with |g − f | < δ and let
β1, . . . , βn ∈ K̄ be the roots of g ordered in such a way that |αi − βi| < ε for all i.

Then for all i ̸= j we have |αi− βj| ⩾ |αi−αj| − |αj − βj| > 2ε− ε = ε > |αi − βi|
and hence βj ̸= βi. Therefore g is also separable. Moreover, any automor-
phism σ ∈ AutK(K̄) preserves the absolute value on K̄ and permutes the αi

and independently the βi. Thus for any indices i, j, k with σ(αi) = αj and
σ(βi) = βk, we have |αj − βk| = |σ(αi) − σ(βi)| = |αi − βi| < ε and hence
|αj − αk| ⩽ |αj − βk|+ |αk − βk| < 2ε. By the choice of ε this implies that j = k.
Thus AutK(K̄) permutes the αi in the same way as the βi. Since all αi and βi are
separable over K, it follows in particular that K(αi) = K(βi) for all i. (Remark:
One can also deduce this from Krasner’s lemma, but this direct proof, inspired by
the proof of Krasner’s lemma, is more efficient.)

Let f =
∏r

ν=1 fν be the factorization of f into distinct monic irreducible poly-
nomials. Then the roots of the different fν are precisely the AutK(K̄)-orbits in
{α1, . . . , αn}. The corresponding orbits in {β1, . . . , βn} are thus the roots of the
different gν for the factorization of g into distinct monic irreducible polynomials
g =

∏r
ν=1 gν . For each ν choose iν such that αiν is a root of fν . Then fν is the

minimal polynomial of αiν over K, and gν is the minimal polynomial of βiν over K.
Using the Chinese Remainder Theorem we now conclude that

K[X]/(f) ∼ ∏r
ν=1K[X]/(fν)

∼ ∏r
ν=1K(αiν )

≀

K[X]/(g) ∼ ∏r
ν=1K[X]/(gν)

∼ ∏r
ν=1K(βiν )

as desired.

In the given situation let us first fix p ∈ S. As each extension Lp,i/Qp is finite
separable, we can write Lp,i = Qp(αp,i) for some αp,i ∈ Lp,i. Let fp,i denote the
minimal polynomial of αp,i over Qp. After possibly replacing αp,i by αp,i + γp,i
for some γp,i ∈ Qp we may assume that the fp,i are pairwise inequivalent. Then
fp :=

∏rp
i=1 fp,i ∈ Qp[X] is separable monic of degree n, and by the Chinese

remainder theorem we have Qp[X]/(fp) ∼=
∏rp

i=1 Lp,i.

Let δ > 0 be the constant given by Lemma 2 for the polynomial fp ∈ Qp[X]. Since
S is finite, we can choose δ independent of p ∈ S. As Q is dense in Qp, we can
take a polynomial gp ∈ Q[X] with |gp − fp|p < δ/2. By applying Prop 9.5.1 of the
lecture course coefficientwise, we can then find a monic polynomial f ∈ Q[X] of
degree n such that |f − gp|p < δ/2 for all p ∈ S. By the triangle inequality we
then have |f − fp|p < δ for all p ∈ S.

Set L := Q[X]/(f), which is a Q-algebra of dimension n. By construction and
Lemma 2, for every p ∈ S we then have

L⊗Q Qp
∼= Qp[X]/(f) ∼= Qp[X]/(fp) ∼=

∏rp
i=1 Lp,i.
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Thus we are done if L is a field. This is the case if rp = 1 for some p ∈ S, because
then L embeds into the field Lp,1. In general we can always add a new prime
number ℓ to S with rℓ = 1 and a field extension Lℓ,1/Qℓ of degree n; achieving
again that L is a field.

4. Let L/K be a purely inseparable finite extension of degree q. Show that every
absolute value | | on K possesses a unique extension to L, given by the formula

|y| := |yq|1/q.

Solution: By assumption, for every y ∈ L we have yq ∈ K. Thus any extension
∥ ∥ of the absolute value must satisfy ∥y∥q = ∥yq∥ = |yq|, so it is given by the
indicated formula.

The converse is trivial if q = 1. Otherwise K has characteristic > 0, so the given
absolute value on it is non-archimedean. Thus | |1/q is again an absolute value
on K, and so is its pullback under the homomorphism L ↪→ K, y 7→ yq.

*5. Let L/K be a finite field extension and let | | be a (nontrivial) absolute value on L.
Show that the restriction of | | to K is nontrivial.

(Hint: Use Newton polygons.)

Solution: Suppose that the restriction of | | to K is trivial. Then |n · 1K | ⩽ 1
for all integers n; hence the absolute value is non-archimedean. Write |x| = c−v(x)

for c > 1 and a valuation v : L → R ∪ {∞}. Choose y ∈ L with |y| ≠ 0, 1. Let
f(X) =

∑n
i=0 aiX

i be its minimal polynomial over K. Then an = 1, and y ̸= 0
implies that a0 ̸= 0. Thus v(an) = v(a0) = 0, and since v|K is trivial, we have
v(ai) ∈ {0,∞} for all 1 ⩽ i ⩽ n. Thus the Newton polygon of f is a horizontal
straight line segment.

By Proposition 9.3.4 of the lecture course it follows that v(y) = 0. Thus |y| = 1,
contrary to the assumption.

6. (a) Determine all the absolute values on Q(
√
5 ).

(b) How many extensions to Q( n
√
2 ) does the archimedean absolute value on Q

admit?

Solution: (a) Every absolute value on Q(
√
5 ) is an extension of an absolute value

on Q. The restriction to Q is nontrivial by exercise 5 above. Up to equivalence, the
absolute values on Q are precisely the | |p for primes p including the archimedean
case p = ∞. We distinguish the case when X2 − 5 splits in Qp[X] and the case
when it is irreducible.

If X2−5 splits over Qp, then Q(
√
5 )⊗QQp

∼= Qp×Qp and the extensions of | |p are
the pullbacks of the absolute value on Qp under the two embeddings Q(

√
5 ) ↪→ Qp.
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Letting ±α denote the roots of X2 − 5 in Qp, the extensions of | |p are therefore
given by |a+ b

√
5| := |a± bα|p.

If X2− 5 is irreducible over Qp, then Q(
√
5 )⊗QQp is a field and there is a unique

extension of | |p to Q(
√
5 ), which is the pullback of the unique extension of the

absolute value of Qp to Qp[X]/(X2−5). By Proposition 9.2.4 of the lecture course,

it is given by |a+ b
√
5| :=

√
|NormL̂/Qp

(a+ b
√
5)|p =

√
|a2 − 5b2|p.

It remains to determine the p ⩽ ∞ for which X2−5 splits. Since
√
5 ∈ R, it splits

for p = ∞. Since 5 is not a square modulo 23, it follows that X2 − 5 does not
split over Z2 and hence neither over Q2 as Z2 is normal. Furthermore X2 − 5 is
irreducible over Z5 by the Eisenstein criterion and hence it does not split over Q5.

For p /∈ {2, 5,∞} it follows from Hensel’s lemma that X2−5 splits if and only if it
splits over Fp. This is so if and only if the Legendre symbol

(
5
p

)
is 1. By quadratic

reciprocity that is equal to
(
p
5

)
, which is 1 if and only if p ≡ ±1 modulo (5).

(b) The number n
√
2 is a root of the polynomial Xn−2, which is irreducible over Q

by the Eisenstein criterion for the prime 2. Thus Xn−2 is the minimal polynomial
of n

√
2 over Q.

If n is even, it has 2 roots in R and n−2
2

pairs of complex conjugate roots in C∖R.
In that case we thus have Q( n

√
2 ) ⊗Q R ∼= R2 × Cn−2

2 and hence 2 + n−2
2

= n+2
2

distinct extensions.

If n is odd, the polynomial Xn − 2 has 1 root in R and n−1
2

pairs of complex

conjugate roots in C ∖ R. In that case thus we have Q( n
√
2 ) ⊗Q R ∼= R × Cn−1

2

and hence 1 + n−1
2

= n+1
2

distinct extensions.
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