D-MATH Number Theory II FS 2024
Prof. Richard Pink .
Solutions 18

NEWTON POLYGONS, EXTENSIONS OF ABSOLUTE VALUES

1. (a) Show that X* — X? — 2X — 8 is irreducible in Q[X] but splits completely in
Q[ X].
(b) Find two monic polynomials of degree 3 in Qs[X] with the same Newton
polygons, but one irreducible and the other not.

(c) Hensel’s lemma concerns a polynomial f with a factorization (f mod p) =
gh such that g and h are coprime. Show by a counterexample that the
assumption ‘coprime’ is necessary.

Solution:

(a) Since the polynomial is monic, any rational root would be an integer that
divides the constant coefficient 8, but +1,4+2, +4, £8 are no roots. Thus
the polynomial has no linear factor, and being of degree 3 it is therefore
irreducible in Q[X].

The Newton polygon with respect to ords has the three distinct slopes 2, 1, 0.
By Proposition 9.3.5 from the lecture the polynomial therefore splits com-
pletely over Q,. The following drawing shows the Newton polygon:

(b) The Newton polygon of both polynomials f(X) := X? + X? + X + 1 and
g(X) := X3+ X% + X — 1 is the horizontal straight line between (0, 0) and
(3,0). The first polynomial is reducible as f(—1) = 0, while g is irreducible
in Q5[X], as its reduction modulo 5 has degree 3 and is irreducible in F5[X].

(c) Let K be a complete non-archimedean field such that O is a discrete valua-
tion ring, for example K = Q, for any prime number p < oo. Let 7 € Ok be
a uniformizer, that is a generator of the maximal ideal of Of. Then f(X) :=
X? — 1 is irreducible by the Eisenstein criterion and g(X) = h(X) = X with
(f mod (7)) = gh is a factorization modulo (7).
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(Krasner’s lemma) Let K be a field that is complete for a non-archimedean abso-
lute value | |. Let | | also denote the unique extension to an algebraic closure K.
Consider an element o € K that is separable over K, and let & = ay,...,a, be
its Galois conjugates over K. Consider an element 8 € K such that

jor = Bl < |a =«

for all 2 < ¢ < n. Show that K(a) C K(5).

Hint: Let M be the Galois closure of the extension K(a,)/K(f) and consider
the action of Gal(M/K(f3)) on «a.

Solution: See Lemma 8.1.6 on page 429 of [J. Neukirch, A. Schmidt, K. Wingberg;:
Cohomology of number fields. Second edition. Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 2008].

Consider an integer n > 1 and a finite set S of rational primes p < co (including
Qs = R). For each p € S consider field extensions L,;/Q, for 1 < i < r, such
that >°'7,[L,:/Q,] = n. Show that there exists a number field L of degree n over
Q such that for every p € S we have L ®9 Q, = [[:%, L

Hint: Use Krasner’s lemma from above or adapt it suitably.

Solution: As a preparation consider an arbitrary field K with absolute value | |.
We extend this absolute value to polynomials by defining | > b; X7| := max{|b;|}.
This induces a metric on K[X]. Convergence of polynomials of a fixed degree is
equivalent to convergence of the coefficients.

Lemma 1. Assume that K is algebraically closed. Let f € K[X] be a monic
polynomial of degree n with roots aq, ..., a, € K. Then for any € > 0 there exists
d > 0 such that for any monic polynomial g € K[X| of degree n with |g — f| < 6,
the roots B; € K of g can be numbered in such a way that |o; — B;| < e for all i.

Proof. The assertion is equivalent to saying that for any sequence (f) of monic
polynomials of degree n in K[X] with lim fr = [, the roots oy, ; € K of the fj can

be numbered in such a way that hm ozk i = «; for all 7. In the archimedean case,

this is for example Proposition 5. 2 1 on page 138 in [M. Artin: Algebra. Second
edition. Pearson Education, Harlow, 2011]. The proof for the non-archimedean
case works analogously. O

Lemma 2. Assume that K is complete. Let f € K[X]| be a monic separable
polynomial of degree n. Then there exists 6 > 0 such that for any monic polynomial

g € K[X] of degree n with |g — f| < ¢ we have K[X]/(g) = K[X]/(f).

Proof. Let K be an algebraic closure of K, endowed with the unique extension of
the absolute value. Let aq,...,a, € K denote the roots of f. Let 6 > 0 be the

2



constant obtained from Lemma 1 for f € K[X] and € := min{|a; — | 1 i # j}/2.
Let ¢ € K[X] be any monic polynomial of degree n with |g — f| < ¢ and let
B1,- -, B0 € K be the roots of g ordered in such a way that |o; — ;| < e for all 4.

Then for all i # j we have |a; — 55| = |ay — o] — |o; — 5] > 2e —e = > |a; — i
and hence f; # [;. Therefore g is also separable. Moreover, any automor-
phism ¢ € Auty(K) preserves the absolute value on K and permutes the o;
and independently the ;. Thus for any indices ¢, j, k with o(c;) = a; and
o(Bi) = Bk, we have |a; — Bi| = |o(ow) — o(Bi)| = |ou — Bi] < € and hence
la; — ag| < |y — Bi| + |aw, — Br| < 2e. By the choice of ¢ this implies that j = k.
Thus Aut K([_( ) permutes the «; in the same way as the (5;. Since all a; and §; are
separable over K, it follows in particular that K(a;) = K(8;) for all i. (Remark:
One can also deduce this from Krasner’s lemma, but this direct proof, inspired by
the proof of Krasner’s lemma, is more efficient.)

Let f = [I,_, f, be the factorization of f into distinct monic irreducible poly-
nomials. Then the roots of the different f, are precisely the Autg (K )-orbits in
{a1,...,a,}. The corresponding orbits in {fi,...,5,} are thus the roots of the
different ¢, for the factorization of g into distinct monic irreducible polynomials
g =11 _, g,. For each v choose i, such that «;, is a root of f,. Then f, is the
minimal polynomial of «;, over K, and g, is the minimal polynomial of 3;, over K.

Using the Chinese Remainder Theorem we now conclude that

KX1/(f) = Lo KIX)/(f) = H';zlﬁ((aiu)
K[X1/(9) = IL= K[X1/(90) = 11— K(5i)

as desired. O

In the given situation let us first fix p € S. As each extension L,;/Q, is finite
separable, we can write L,; = Q,(c,;) for some «a,; € L,;. Let f,; denote the
minimal polynomial of «,; over Q,. After possibly replacing a,; by o,; + V.
for some 7,; € Q, we may assume that the f,; are pairwise inequivalent. Then
fp = TI2, fri € Qp[X] is separable monic of degree n, and by the Chinese
remainder theorem we have Q,[X]/(f,) 2 [12; Lp-

Let 0 > 0 be the constant given by Lemma 2 for the polynomial f, € Q,[X]. Since
S is finite, we can choose ¢ independent of p € S. As Q is dense in Q,, we can
take a polynomial g, € Q[X] with |g, — f,|, < §/2. By applying Prop 9.5.1 of the
lecture course coefficientwise, we can then find a monic polynomial f € Q[X] of
degree n such that |f — g,|, < §/2 for all p € S. By the triangle inequality we
then have |f — f,|, < d forallp € S.

Set L := Q[X]/(f), which is a Q-algebra of dimension n. By construction and
Lemma 2, for every p € S we then have

L®gQ, = Q[X]/(f) = QlX]/(fy) = TLiLi Ly
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Thus we are done if L is a field. This is the case if r, = 1 for some p € S, because
then L embeds into the field L,;. In general we can always add a new prime
number ¢ to S with 7, = 1 and a field extension L;;/Q, of degree n; achieving
again that L is a field.

Let L/K be a purely inseparable finite extension of degree ¢. Show that every
absolute value | | on K possesses a unique extension to L, given by the formula

lyl = ly?["e.

Solution: By assumption, for every y € L we have y? € K. Thus any extension
| || of the absolute value must satisfy ||y||? = ||y?]| = |y?|, so it is given by the
indicated formula.

The converse is trivial if ¢ = 1. Otherwise K has characteristic > 0, so the given
absolute value on it is non-archimedean. Thus | |'/7 is again an absolute value
on K, and so is its pullback under the homomorphism L — K, y +— y9.

Let L/K be a finite field extension and let | | be a (nontrivial) absolute value on L.
Show that the restriction of | | to K is nontrivial.

(Hint: Use Newton polygons.)

Solution: Suppose that the restriction of | | to K is trivial. Then |n - 1x| <1
for all integers n; hence the absolute value is non-archimedean. Write |z| = ¢
for ¢ > 1 and a valuation v: L — R U {oco}. Choose y € L with |y| # 0,1. Let
f(X) =31 ya; X" be its minimal polynomial over K. Then a, = 1, and y # 0
implies that ap # 0. Thus v(a,) = v(ag) = 0, and since v|K is trivial, we have
v(a;) € {0,00} for all 1 < i < n. Thus the Newton polygon of f is a horizontal
straight line segment.

By Proposition 9.3.4 of the lecture course it follows that v(y) = 0. Thus |y| = 1,
contrary to the assumption.

(a) Determine all the absolute values on Q(v/5).

(b) How many extensions to Q(4/2) does the archimedean absolute value on Q
admit?

Solution: (a) Every absolute value on Q(v/5) is an extension of an absolute value
on Q. The restriction to Q is nontrivial by exercise 5 above. Up to equivalence, the
absolute values on Q are precisely the | |, for primes p including the archimedean
case p = oo. We distinguish the case when X? — 5 splits in Q,[X] and the case
when it is irreducible.

If X2 —5 splits over Q,, then Q(v/5)®qQ, = Q, xQ, and the extensions of | |, are
the pullbacks of the absolute value on @, under the two embeddings @(\/5 ) = Q,.



Letting +« denote the roots of X? — 5 in @,, the extensions of | |, are therefore
given by |a + bV/5| := |a & bal,.

If X2 —5 is irreducible over Q,, then Q(v/5) ®g Q, is a field and there is a unique
extension of | |, to Q(+/5), which is the pullback of the unique extension of the
absolute value of Q, to Q,[X]/(X?—5). By Proposition 9.2.4 of the lecture course,

it is given by |a + bv/5| == \/| Norm; ¢ (a + bW5)|, = /]a® — 5[,

It remains to determine the p < oo for which X2 — 5 splits. Since v/5 € R, it splits
for p = co. Since 5 is not a square modulo 23, it follows that X? — 5 does not
split over Z, and hence neither over Q, as Z, is normal. Furthermore X2 — 5 is
irreducible over Zs by the Eisenstein criterion and hence it does not split over Qs.

For p ¢ {2,5, 00} it follows from Hensel’s lemma that X2 — 5 splits if and only if it
splits over [F,,. This is so if and only if the Legendre symbol (g) is 1. By quadratic

reciprocity that is equal to (’—;), which is 1 if and only if p = £1 modulo (5).

(b) The number /2 is a root of the polynomial X™ — 2, which is irreducible over Q
by the Eisenstein criterion for the prime 2. Thus X" —2 is the minimal polynomial
of /2 over Q.

If n is even, it has 2 roots in R and "T’z pairs of complex conjugate roots in C \ R.

In that case we thus have Q({/2) ®o R = R? x C"3* and hence 2 + "T—Q — "T+2
distinct extensions.

If n is odd, the polynomial X™ — 2 has 1 root in R and "T’l pairs of complex
conjugate roots in C ~ R. In that case thus we have Q(3/2) ®o R = R x c*
and hence 1 + ”T_l = "T“ distinct extensions.



