Solutions 18

Newton Polygons, Extensions of Absolute Values

1. (a) Show that $X^{3}-X^{2}-2 X-8$ is irreducible in $\mathbb{Q}[X]$ but splits completely in $\mathbb{Q}_{2}[X]$.
(b) Find two monic polynomials of degree 3 in $\mathbb{Q}_{5}[X]$ with the same Newton polygons, but one irreducible and the other not.
(c) Hensel's lemma concerns a polynomial f with a factorization $(f \bmod \mathfrak{p})=$ $\bar{g} \bar{h}$ such that \bar{g} and \bar{h} are coprime. Show by a counterexample that the assumption 'coprime' is necessary.

Solution:

(a) Since the polynomial is monic, any rational root would be an integer that divides the constant coefficient 8 , but $\pm 1, \pm 2, \pm 4, \pm 8$ are no roots. Thus the polynomial has no linear factor, and being of degree 3 it is therefore irreducible in $\mathbb{Q}[X]$.
The Newton polygon with respect to ord ${ }_{2}$ has the three distinct slopes $2,1,0$. By Proposition 9.3.5 from the lecture the polynomial therefore splits completely over \mathbb{Q}_{2}. The following drawing shows the Newton polygon:

(b) The Newton polygon of both polynomials $f(X):=X^{3}+X^{2}+X+1$ and $g(X):=X^{3}+X^{2}+X-1$ is the horizontal straight line between $(0,0)$ and $(3,0)$. The first polynomial is reducible as $f(-1)=0$, while g is irreducible in $\mathbb{Q}_{5}[X]$, as its reduction modulo 5 has degree 3 and is irreducible in $\mathbb{F}_{5}[X]$.
(c) Let K be a complete non-archimedean field such that \mathcal{O}_{K} is a discrete valuation ring, for example $K=\mathbb{Q}_{p}$ for any prime number $p<\infty$. Let $\pi \in \mathcal{O}_{K}$ be a uniformizer, that is a generator of the maximal ideal of \mathcal{O}_{K}. Then $f(X):=$ $X^{2}-\pi$ is irreducible by the Eisenstein criterion and $\bar{g}(X)=\bar{h}(X)=X$ with $(f \bmod (\pi))=\bar{g} \bar{h}$ is a factorization modulo (π).
2. (Krasner's lemma) Let K be a field that is complete for a non-archimedean absolute value $|\mid$. Let $| \mid$ also denote the unique extension to an algebraic closure \bar{K}. Consider an element $\alpha \in \bar{K}$ that is separable over K, and let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be its Galois conjugates over K. Consider an element $\beta \in \bar{K}$ such that

$$
|\alpha-\beta|<\left|\alpha-\alpha_{i}\right|
$$

for all $2 \leqslant i \leqslant n$. Show that $K(\alpha) \subseteq K(\beta)$.
Hint: Let M be the Galois closure of the extension $K(\alpha, \beta) / K(\beta)$ and consider the action of $\operatorname{Gal}(M / K(\beta))$ on α.

Solution: See Lemma 8.1.6 on page 429 of [J. Neukirch, A. Schmidt, K. Wingberg: Cohomology of number fields. Second edition. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2008].
*3. Consider an integer $n \geqslant 1$ and a finite set S of rational primes $p \leqslant \infty$ (including $\left.\mathbb{Q}_{\infty}=\mathbb{R}\right)$. For each $p \in S$ consider field extensions $L_{p, i} / \mathbb{Q}_{p}$ for $1 \leqslant i \leqslant r_{p}$ such that $\sum_{i=1}^{r_{p}}\left[L_{p, i} / \mathbb{Q}_{p}\right]=n$. Show that there exists a number field L of degree n over \mathbb{Q} such that for every $p \in S$ we have $L \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \prod_{i=1}^{r_{p}} L_{p, i}$.
Hint: Use Krasner's lemma from above or adapt it suitably.
Solution: As a preparation consider an arbitrary field K with absolute value ||. We extend this absolute value to polynomials by defining $\left|\sum^{\prime} b_{j} X^{j}\right|:=\max \left\{\left|b_{j}\right|\right\}$. This induces a metric on $K[X]$. Convergence of polynomials of a fixed degree is equivalent to convergence of the coefficients.

Lemma 1. Assume that K is algebraically closed. Let $f \in K[X]$ be a monic polynomial of degree n with roots $\alpha_{1}, \ldots, \alpha_{n} \in K$. Then for any $\varepsilon>0$ there exists $\delta>0$ such that for any monic polynomial $g \in K[X]$ of degree n with $|g-f|<\delta$, the roots $\beta_{i} \in K$ of g can be numbered in such a way that $\left|\alpha_{i}-\beta_{i}\right|<\varepsilon$ for all i.

Proof. The assertion is equivalent to saying that for any sequence $\left(f_{k}\right)$ of monic polynomials of degree n in $K[X]$ with $\lim _{k \rightarrow \infty} f_{k}=f$, the roots $\alpha_{k, i} \in K$ of the f_{k} can be numbered in such a way that $\lim _{k \rightarrow \infty} \alpha_{k, i}=\alpha_{i}$ for all i. In the archimedean case, this is for example Proposition 5.2.1 on page 138 in [M. Artin: Algebra. Second edition. Pearson Education, Harlow, 2011]. The proof for the non-archimedean case works analogously.

Lemma 2. Assume that K is complete. Let $f \in K[X]$ be a monic separable polynomial of degree n. Then there exists $\delta>0$ such that for any monic polynomial $g \in K[X]$ of degree n with $|g-f|<\delta$ we have $K[X] /(g) \cong K[X] /(f)$.

Proof. Let \bar{K} be an algebraic closure of K, endowed with the unique extension of the absolute value. Let $\alpha_{1}, \ldots, \alpha_{n} \in \bar{K}$ denote the roots of f. Let $\delta>0$ be the
constant obtained from Lemma 1 for $f \in \bar{K}[X]$ and $\varepsilon:=\min \left\{\left|\alpha_{i}-\alpha_{j}\right|: i \neq j\right\} / 2$. Let $g \in K[X]$ be any monic polynomial of degree n with $|g-f|<\delta$ and let $\beta_{1}, \ldots, \beta_{n} \in \bar{K}$ be the roots of g ordered in such a way that $\left|\alpha_{i}-\beta_{i}\right|<\varepsilon$ for all i.
Then for all $i \neq j$ we have $\left|\alpha_{i}-\beta_{j}\right| \geqslant\left|\alpha_{i}-\alpha_{j}\right|-\left|\alpha_{j}-\beta_{j}\right|>2 \varepsilon-\varepsilon=\varepsilon>\left|\alpha_{i}-\beta_{i}\right|$ and hence $\beta_{j} \neq \beta_{i}$. Therefore g is also separable. Moreover, any automorphism $\sigma \in \operatorname{Aut}_{K}(\bar{K})$ preserves the absolute value on \bar{K} and permutes the α_{i} and independently the β_{i}. Thus for any indices i, j, k with $\sigma\left(\alpha_{i}\right)=\alpha_{j}$ and $\sigma\left(\beta_{i}\right)=\beta_{k}$, we have $\left|\alpha_{j}-\beta_{k}\right|=\left|\sigma\left(\alpha_{i}\right)-\sigma\left(\beta_{i}\right)\right|=\left|\alpha_{i}-\beta_{i}\right|<\varepsilon$ and hence $\left|\alpha_{j}-\alpha_{k}\right| \leqslant\left|\alpha_{j}-\beta_{k}\right|+\left|\alpha_{k}-\beta_{k}\right|<2 \varepsilon$. By the choice of ε this implies that $j=k$. Thus $\operatorname{Aut}_{K}(\bar{K})$ permutes the α_{i} in the same way as the β_{i}. Since all α_{i} and β_{i} are separable over K, it follows in particular that $K\left(\alpha_{i}\right)=K\left(\beta_{i}\right)$ for all i. (Remark: One can also deduce this from Krasner's lemma, but this direct proof, inspired by the proof of Krasner's lemma, is more efficient.)
Let $f=\prod_{\nu=1}^{r} f_{\nu}$ be the factorization of f into distinct monic irreducible polynomials. Then the roots of the different f_{ν} are precisely the $\operatorname{Aut}_{K}(\bar{K})$-orbits in $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. The corresponding orbits in $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are thus the roots of the different g_{ν} for the factorization of g into distinct monic irreducible polynomials $g=\prod_{\nu=1}^{r} g_{\nu}$. For each ν choose i_{ν} such that $\alpha_{i_{\nu}}$ is a root of f_{ν}. Then f_{ν} is the minimal polynomial of $\alpha_{i_{\nu}}$ over K, and g_{ν} is the minimal polynomial of $\beta_{i_{\nu}}$ over K. Using the Chinese Remainder Theorem we now conclude that

$$
\begin{aligned}
& K[X] /(f) \cong \prod_{\nu=1}^{r} K[X] /\left(f_{\nu}\right) \cong \prod_{\nu=1}^{r} K\left(\alpha_{i_{\nu}}\right) \\
& K[X] /(g) \cong \prod_{\nu=1}^{r} K[X] /\left(g_{\nu}\right) \cong \prod_{\nu=1}^{r} K\left(\beta_{i_{\nu}}\right)
\end{aligned}
$$

as desired.
In the given situation let us first fix $p \in S$. As each extension $L_{p, i} / \mathbb{Q}_{p}$ is finite separable, we can write $L_{p, i}=\mathbb{Q}_{p}\left(\alpha_{p, i}\right)$ for some $\alpha_{p, i} \in L_{p, i}$. Let $f_{p, i}$ denote the minimal polynomial of $\alpha_{p, i}$ over \mathbb{Q}_{p}. After possibly replacing $\alpha_{p, i}$ by $\alpha_{p, i}+\gamma_{p, i}$ for some $\gamma_{p, i} \in \mathbb{Q}_{p}$ we may assume that the $f_{p, i}$ are pairwise inequivalent. Then $f_{p}:=\prod_{i=1}^{r_{p}} f_{p, i} \in \mathbb{Q}_{p}[X]$ is separable monic of degree n, and by the Chinese remainder theorem we have $\mathbb{Q}_{p}[X] /\left(f_{p}\right) \cong \prod_{i=1}^{r_{p}} L_{p, i}$.
Let $\delta>0$ be the constant given by Lemma 2 for the polynomial $f_{p} \in \mathbb{Q}_{p}[X]$. Since S is finite, we can choose δ independent of $p \in S$. As \mathbb{Q} is dense in \mathbb{Q}_{p}, we can take a polynomial $g_{p} \in \mathbb{Q}[X]$ with $\left|g_{p}-f_{p}\right|_{p}<\delta / 2$. By applying Prop 9.5.1 of the lecture course coefficientwise, we can then find a monic polynomial $f \in \mathbb{Q}[X]$ of degree n such that $\left|f-g_{p}\right|_{p}<\delta / 2$ for all $p \in S$. By the triangle inequality we then have $\left|f-f_{p}\right|_{p}<\delta$ for all $p \in S$.
Set $L:=\mathbb{Q}[X] /(f)$, which is a \mathbb{Q}-algebra of dimension n. By construction and Lemma 2, for every $p \in S$ we then have

$$
L \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \mathbb{Q}_{p}[X] /(f) \cong \mathbb{Q}_{p}[X] /\left(f_{p}\right) \cong \prod_{i=1}^{r_{p}} L_{p, i} .
$$

Thus we are done if L is a field. This is the case if $r_{p}=1$ for some $p \in S$, because then L embeds into the field $L_{p, 1}$. In general we can always add a new prime number ℓ to S with $r_{\ell}=1$ and a field extension $L_{\ell, 1} / \mathbb{Q}_{\ell}$ of degree n; achieving again that L is a field.
4. Let L / K be a purely inseparable finite extension of degree q. Show that every absolute value || on K possesses a unique extension to L, given by the formula

$$
|y|:=\left|y^{q}\right|^{1 / q} .
$$

Solution: By assumption, for every $y \in L$ we have $y^{q} \in K$. Thus any extension $\|\|$ of the absolute value must satisfy $\| y\left\|^{q}=\right\| y^{q} \|=\left|y^{q}\right|$, so it is given by the indicated formula.
The converse is trivial if $q=1$. Otherwise K has characteristic >0, so the given absolute value on it is non-archimedean. Thus $\left|\left.\right|^{1 / q}\right.$ is again an absolute value on K, and so is its pullback under the homomorphism $L \hookrightarrow K, y \mapsto y^{q}$.
*5. Let L / K be a finite field extension and let | | be a (nontrivial) absolute value on L. Show that the restriction of $\|$ to K is nontrivial.
(Hint: Use Newton polygons.)
Solution: Suppose that the restriction of $|\mid$ to K is trivial. Then $| n \cdot 1_{K} \mid \leqslant 1$ for all integers n; hence the absolute value is non-archimedean. Write $|x|=c^{-v(x)}$ for $c>1$ and a valuation $v: L \rightarrow \mathbb{R} \cup\{\infty\}$. Choose $y \in L$ with $|y| \neq 0,1$. Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ be its minimal polynomial over K. Then $a_{n}=1$, and $y \neq 0$ implies that $a_{0} \neq 0$. Thus $v\left(a_{n}\right)=v\left(a_{0}\right)=0$, and since $v \mid K$ is trivial, we have $v\left(a_{i}\right) \in\{0, \infty\}$ for all $1 \leqslant i \leqslant n$. Thus the Newton polygon of f is a horizontal straight line segment.
By Proposition 9.3.4 of the lecture course it follows that $v(y)=0$. Thus $|y|=1$, contrary to the assumption.
6. (a) Determine all the absolute values on $\mathbb{Q}(\sqrt{5})$.
(b) How many extensions to $\mathbb{Q}(\sqrt[n]{2})$ does the archimedean absolute value on \mathbb{Q} admit?
Solution: (a) Every absolute value on $\mathbb{Q}(\sqrt{5})$ is an extension of an absolute value on \mathbb{Q}. The restriction to \mathbb{Q} is nontrivial by exercise 5 above. Up to equivalence, the absolute values on \mathbb{Q} are precisely the $\left|\left.\right|_{p}\right.$ for primes p including the archimedean case $p=\infty$. We distinguish the case when $X^{2}-5$ splits in $\mathbb{Q}_{p}[X]$ and the case when it is irreducible.
If $X^{2}-5$ splits over \mathbb{Q}_{p}, then $\mathbb{Q}(\sqrt{5}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \mathbb{Q}_{p} \times \mathbb{Q}_{p}$ and the extensions of $\left|\left.\right|_{p}\right.$ are the pullbacks of the absolute value on \mathbb{Q}_{p} under the two embeddings $\mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{Q}_{p}$.

Letting $\pm \alpha$ denote the roots of $X^{2}-5$ in \mathbb{Q}_{p}, the extensions of $\left|\left.\right|_{p}\right.$ are therefore given by $|a+b \sqrt{5}|:=|a \pm b \alpha|_{p}$.
If $X^{2}-5$ is irreducible over \mathbb{Q}_{p}, then $\mathbb{Q}(\sqrt{5}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ is a field and there is a unique extension of $\left|\left.\right|_{p}\right.$ to $\mathbb{Q}(\sqrt{5})$, which is the pullback of the unique extension of the absolute value of \mathbb{Q}_{p} to $\mathbb{Q}_{p}[X] /\left(X^{2}-5\right)$. By Proposition 9.2 .4 of the lecture course, it is given by $|a+b \sqrt{5}|:=\sqrt{\left|\operatorname{Norm}_{\hat{L} / \mathbb{Q}_{p}}(a+b \sqrt{5})\right|_{p}}=\sqrt{\left|a^{2}-5 b^{2}\right|_{p}}$.
It remains to determine the $p \leqslant \infty$ for which $X^{2}-5$ splits. Since $\sqrt{5} \in \mathbb{R}$, it splits for $p=\infty$. Since 5 is not a square modulo 2^{3}, it follows that $X^{2}-5$ does not split over \mathbb{Z}_{2} and hence neither over \mathbb{Q}_{2} as \mathbb{Z}_{2} is normal. Furthermore $X^{2}-5$ is irreducible over \mathbb{Z}_{5} by the Eisenstein criterion and hence it does not split over \mathbb{Q}_{5}. For $p \notin\{2,5, \infty\}$ it follows from Hensel's lemma that $X^{2}-5$ splits if and only if it splits over \mathbb{F}_{p}. This is so if and only if the Legendre symbol $\left(\frac{5}{p}\right)$ is 1 . By quadratic reciprocity that is equal to $\left(\frac{p}{5}\right)$, which is 1 if and only if $p \equiv \pm 1$ modulo (5).
(b) The number $\sqrt[n]{2}$ is a root of the polynomial $X^{n}-2$, which is irreducible over \mathbb{Q} by the Eisenstein criterion for the prime 2. Thus $X^{n}-2$ is the minimal polynomial of $\sqrt[n]{2}$ over \mathbb{Q}.
If n is even, it has 2 roots in \mathbb{R} and $\frac{n-2}{2}$ pairs of complex conjugate roots in $\mathbb{C} \backslash \mathbb{R}$. In that case we thus have $\mathbb{Q}(\sqrt[n]{2}) \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{2} \times \mathbb{C}^{\frac{n-2}{2}}$ and hence $2+\frac{n-2}{2}=\frac{n+2}{2}$ distinct extensions.
If n is odd, the polynomial $X^{n}-2$ has 1 root in \mathbb{R} and $\frac{n-1}{2}$ pairs of complex conjugate roots in $\mathbb{C} \backslash \mathbb{R}$. In that case thus we have $\mathbb{Q}(\sqrt[n]{2}) \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R} \times \mathbb{C}^{\frac{n-1}{2}}$ and hence $1+\frac{n-1}{2}=\frac{n+1}{2}$ distinct extensions.

