Number Theory II

Solutions 19

EXTENSIONS OF ABSOLUTE VALUES, LOCAL AND GLOBAL FIELDS

1. Consider a Dedekind ring A with a maximal ideal \mathfrak{p} . Let L be a finite Galois extension of $K := \operatorname{Quot}(A)$ with Galois group Γ . Let B be the integral closure of A in L and let \mathfrak{q} be a prime of B above \mathfrak{p} . Let K' be the intermediate field corresponding to the decomposition group $\Gamma_{\mathfrak{q}}$, and consider the prime ideal $\mathfrak{p}' := \mathfrak{q} \cap K'$ of $A' := B \cap K'$. Prove that the inclusion $A \hookrightarrow A'$ induces an isomorphism of completions $A_{\mathfrak{p}} \xrightarrow{\sim} A'_{\mathfrak{p}'}$.

Solution: By Propositions 9.5.2 and 9.5.6 for L/K we have natural isomorphisms

(1)
$$L \otimes_K \hat{K} \cong \sum_{i=1}^r \hat{L}_i$$
 and $B \otimes_A \mathcal{O} \cong \sum_{i=1}^r \mathcal{O}_i$

for finite separable field extensions \hat{L}_i/\hat{K} with $[L/K] = \sum_{i=1}^r [\hat{L}_i/\hat{K}]$, where $\mathcal{O} = A_{\mathfrak{p}}$. Moreover, by Propositions 9.5.4 and 9.5.7 (a) and 9.5.10, the prime ideals of B above \mathfrak{p} are precisely the r different ideals $\mathfrak{q}_i := \mathfrak{n}_i \cap B$ with the associated completion \hat{L}_i , which is galois over \hat{K} with Galois group $\Gamma_{\mathfrak{q}_i}$. Without loss of generality we may assume that $\mathfrak{q} = \mathfrak{q}_1$.

Then the factors \hat{L}_1 and \mathcal{O}_1 in the cartesian products in (1) are stable under $\Gamma_{\mathfrak{q}}$ with $\hat{L}_1^{\Gamma_{\mathfrak{q}}} = \hat{K}$ and hence $\mathcal{O}_1^{\Gamma_{\mathfrak{q}}} = \mathcal{O}_1 \cap \hat{K} = \mathcal{O}$. On the other hand we have $L^{\Gamma_{\mathfrak{q}}} = K'$ and hence $B^{\Gamma_{\mathfrak{q}}} = B \cap K' = A'$. Taking $\Gamma_{\mathfrak{q}}$ -invariants[†] in (1) thus shows that

(2) $K' \otimes_K \hat{K} \cong \hat{K} \times (\text{other factors})$ and $A' \otimes_A \mathcal{O} \cong \mathcal{O} \times (\text{other factors}).$

By Propositions 9.5.2 and 9.5.6 for the extension K'/K the factors \hat{K} and \mathcal{O} on the right hand sides of (2) must therefore be the completions of K' and A' with respect to a certain prime ideal of A' above \mathfrak{p} . The inclusion $\mathcal{O} \hookrightarrow \mathcal{O}_i$ shows that this can only be the prime ideal $\mathfrak{p}' := \mathfrak{q} \cap K'$.

[†]: For any K-vector space V with an action of a group G and any overfield \hat{K}/K there is a natural isomorphism $(V \otimes_K \hat{K})^G \cong V^G \otimes_K \hat{K}$. To see this choose a basis \mathcal{B} of \hat{K} over K, which induces an isomorphism of K-vector spaces $K^{(\mathcal{B})} \cong \hat{K}$. This then induces natural isomorphisms

$$(V \otimes_K \hat{K})^G \cong (V \otimes_K K^{(\mathcal{B})})^G \cong (V^{(\mathcal{B})})^G \cong (V^G)^{(\mathcal{B})} \cong V^G \otimes_K K^{(\mathcal{B})} \cong V^G \otimes_K \hat{K}.$$

In particular this yields the first isomorphism in (2). The second follows from the first by intersecting with $B \otimes_A \mathcal{O}$.

2. Show that any local field is the completion of a global field at an absolute value.

Solution: By definition the local fields are, up to isomorphism, the finite extensions of \mathbb{R} , $\mathbb{F}_p((t))$ and \mathbb{Q}_p .

The archimedean complete fields \mathbb{R} and \mathbb{C} are the completions of \mathbb{Q} and $\mathbb{Q}(i)$ with respect to the usual archimedean absolute value.

By Proposition 11.1.4 (b) of the lecture any local field of positive characteristic is isomorphic to k((t)) for a finite field k. This is the completion of the global field k(t) for the valuation ord_t.

Suppose now that $K = \mathbb{Q}_p(\alpha)$ is a finite extension of \mathbb{Q}_p . Let f be the minimal polynomial of α over \mathbb{Q}_p with zeros $\alpha, \alpha_2, \ldots, \alpha_n$. As in the solution of exercise 3 of sheet 18, we can choose a monic polynomial $g \in \mathbb{Q}[X]$ of degree n that is coefficientwise close to f and has a root β such that

 $|\alpha - \beta| < |\min\{|\alpha - \alpha_i| \ 2 \le i \le n\}.$

As in the solution, we get $\mathbb{Q}_p(\alpha) = \mathbb{Q}_p(\beta)$. Thus K is the completion of the number field $\mathbb{Q}(\beta)$ with respect to $||_p$.