Number Theory II

Exercise sheet 20

PROFINITE GROUPS, INFINITE GALOIS THEORY

- 1. Consider a topological group G.
 - (a) Show that if G is hausdorff, then the center of G and the centralizer of any element $g \in G$ are closed subgroups.
 - (b) Show that for any continuous action of G on a topological space the stabilizer of any closed point is closed.
 - (c) Show that G is hausdorff if and only if G is T_0 . (A topological space is called T_0 if for any two distinct points, one of them possesses a neighborhood that does not contain the other.)
- *2. A topological space is called *totally disconnected* if every connected subset contains only one element. Prove that a topological group is profinite if and only if it is compact and totally disconnected.
- 3. Consider a Galois extension L/K with $\Gamma := \operatorname{Gal}(L/K)$ and an intermediate field K' with $\Gamma' := \operatorname{Gal}(L/K')$. Show that K'/K is Galois if and only if $\Gamma' \triangleleft \Gamma$, and that then there is a natural isomorphism of profinite groups $\Gamma/\Gamma' \cong \operatorname{Gal}(K'/K)$.
- 4. (The cyclotomic \mathbb{Z}_p -extension) Set $\mathbb{Q}(\mu_{p^{\infty}}) := \bigcup_n \mathbb{Q}(\mu_{p^n})$ for a prime number p.
 - (a) Show that $\mathbb{Q}(\mu_{p^{\infty}})$ possesses a unique subfield K_{∞} with $\operatorname{Gal}(K_{\infty}/\mathbb{Q}) \cong \mathbb{Z}_p$.
 - *(b) Give explicit generators for K_{∞} .
- 5. Let p be a prime number and $\overline{\mathbb{Q}}$ an algebraic closure of \mathbb{Q} .
 - (a) Show that $||_p$ extends to some absolute value || on \mathbb{Q} .
 - (b) For any subfield $K \subset \overline{\mathbb{Q}}$ which is finite over \mathbb{Q} let \hat{K} be the completion of K with respect to the restriction of | |. Show that for any subfields $K \subset L \subset \overline{\mathbb{Q}}$ which are finite over \mathbb{Q} we get a natural inclusion $\hat{K} \hookrightarrow \hat{L}$.
 - (c) Show that the union $\overline{\mathbb{Q}}_p$ of all these \hat{K} is an algebraic closure of \mathbb{Q}_p .
 - (d) Show that there is a natural isomorphism

$$\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \xrightarrow{\sim} \operatorname{Stab}_{\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})}(||).$$